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Abstract. In this set of lecture notes we review the mode-coupling theory
of the glass transition from several perspectives. First, we derive mode-
coupling equations for the description of density fluctuations from microscopic
considerations with the use the Mori–Zwanzig projection operator technique. We
also derive schematic mode-coupling equations of a similar form from a field-
theoretic perspective. We review the successes and failures of mode-coupling
theory, and discuss recent advances in the applications of the theory.
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1. Important phenomenology for mode-coupling theory

Since our objective will be to sketch a derivation of what we will call mode-coupling
theory (MCT), we will focus our attention on one observable in particular, namely density
fluctuations. For this we will first define some of the concepts needed to do so.

We want to calculate a specific time correlation function. In general, such a function
is expressed as follows:

C(t) = 〈A(t)A(0)〉. (1)

It is an ensemble average of the evolution of the fluctuations of a variable in time, at
equilibrium. As seen in figure 1, A(t) fluctuates around its average value in equilibrium,
while C(t) measures the correlation of A at one time with the value of A at another time.

The density or particles in a liquid can be one example of A(t),

ρ(r, t) =
∑

i

δ(r − ri(t)), (2)

which we can Fourier transform,

ρk(t) =
∑

i

∫
dr eik·rδ(r − ri(t)),

=
∑

i

eik·ri(t). (3)

In this case the correlation function will be labelled F (k, t), which is can be expressed as
follows:

F (k, t) =
1

N
〈ρ−k(0)ρk(t)〉 =

1

N

∑

ij

〈e−ik·ri(0)eik·rj(t)〉. (4)

doi:10.1088/1742-5468/2005/05/P05013 2
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L

A(t)

A

tt0 t +t’0
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Figure 1. Left: time evolution of the instantaneous fluctuations of the quantity
A. The product of fluctuations separated by time t′, averaged over all t0s, gives
the correlation function C(t′), at equilibrium. Right: fluctuations of the density
on length scale L ∼ 2π/k; if k is small, the area of density fluctuations is large.

Note that we need to have
∑

i ki = 0 (i.e. −k+k = 0!) to conserve momentum; otherwise
the correlation function is equal to zero.

The variables labelled with k measure density fluctuations in reciprocal (‘k = |k|’)
space, which can be thought of as the inverse length. When k is small we are looking at
long length scales, as we can see in figure 1. When it is large, we are probing very short
scales.

The function F (k, t) is essentially what scattering experiments measure. At t = 0,

F (k, t = 0) =
1

N
〈ρ−k(0)ρk(0)〉 ≡ S(k), (5)

where S(k) is called the static structure factor of the liquid. Why that name? Consider
the radial distribution function of a liquid g(r). The function g(r) is proportional to the
probability that a particle is a distance r away from a particle at the origin. In a dense
liquid, g(r) shows the structure of the solvation shells as depicted in figure 2. Also, it can
be shown that [1]–[3]

S(k) = 1 + ρ

∫
dr e−ik·rg(r), (6)

where ρ = N/V is the density of the system, and thus S(k) is also indicating something
about the liquid structure [1]–[3]. An example for a simple liquid is depicted in figure 2.

But how do we expect F (k, t) to behave? For high temperatures—above the melting
point—F (k, t) will decay like a single-exponential function in time for k ≥ 2π/σ as plotted
in figure 3. For supercooled liquids, the situation is different and a characteristic decay
pattern can also be seen in figure 3. We observe a multi-step relaxation.

(1) At short times decay is coming from free and collisional events that involve local
particle motion. Consistent with a short-time expansion, F (k, t) ∼ S(k)−A(k)t2+· · ·
in this regime [1]–[3]. This will be true at any temperature. We will not be concerned
much with this part of the decay.

doi:10.1088/1742-5468/2005/05/P05013 3

http://dx.doi.org/10.1088/1742-5468/2005/05/P05013


J.S
tat.M

ech.
(2005)

P
05013

Mode-coupling theory

σ 2 σ 3 σ
r

g(r) S(k)

k
≈     2π/σ

Figure 2. Left: radial distribution function g(r) for a simple liquid of size σ.
Right: the corresponding structure factor S(k). A sample structure is also
depicted where the solvation shells are indicated by the dotted lines. The
exclusion radius can be seen in the absence of amplitude of g(r) for r � σ.

I
II

III
IIb

IIa
f

ln(t)

F(k,t)

ln(t)

Figure 3. Left: F (k, t) exhibiting exponential e−t/τ decay for a normal liquid.
Right: supercooled liquids do not have such a simple decay. The various temporal
regimes are described in the text. Notice the logarithmic scale.

(2) Intermediate times encompass a period during which particles appear trapped in cages
formed by other particles. This regime is the β-relaxation regime. The decay to the
plateau (IIa) may be fitted as f + At−a and the decay from the plateau (IIb) as
f − Btb. Also, the exponents have a scaling consistent with the relationship

Γ(1 − a)2

Γ(1 − 2a)
=

Γ(1 + b)2

Γ(1 + 2b)
. (7)

(3) At long times, in the α-relaxation regime, the decay may be fitted to a stretched
exponential law [4]

F (k, t) ∼ e−(t/τ)β

(8)

with 0 < β < 1. Do not be confused by the notation. It is the β power that appears
in the α-relaxation regime! In general β and τ will be k and temperature dependent.

doi:10.1088/1742-5468/2005/05/P05013 4
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In a later section, we will return to this kind of phenomenology. For now, we just
make a few superficial remarks about things that will be covered in more depth by others
in these lectures.

The constant τ that appears in the stretched exponential decay law is strongly
temperature dependent. All transport coefficients—D (diffusion), η (viscosity), etc—
are strongly temperature dependent as well. Over a rather wide range of temperatures, a
fit to this temperature dependence may be [4]

η ∼ eE/(T−T0). (9)

Clearly, as T0 is approached, relaxation times become so large that the system cannot
stay in equilibrium. Other fitting forms, some that do not imply a divergence at finite
temperatures, may be used to fit the data as well.

Some systems, hard spheres for example, are not characterized by temperature, but
by density of the packing fraction φ = 4

3
πa3ρ, where a is the particle radius. For such

systems, one may fit with [4]

η ∼ eB/(φ−φc), (10)

or with other forms.

2. The mode-coupling theory of density fluctuations

Our strategy will be to derive an exact equation of motion for F (k, t) and then to make
approximations that allow us to solve them [5, 6]. The approximations are uncontrolled,
and we will judge them by their success or failure.

2.1. Memory functions

Consider some classical function of phase space variables A(t), where the time dependence
originates from that of the positions ri and of the momenta pi for an N -particle system.
We know from Hamilton’s equations that

dA(t)

dt
= {A(t),H} ≡ iLA(t), (11)

where {, } is a classical Poisson bracket, which can be expressed as follows:

{A, B} ≡
∑

i

(
∂A

∂ri

· ∂B

∂pi

− ∂A

∂pi

· ∂B

∂ri

)
. (12)

Also, for liquids of interest, H is a classical Hamiltonian with pairwise interactions φ(r)
between the particles,

H =
∑

i

p2
i

2m
+

1

2

∑

i,j �=i

φ(rij). (13)

We can thus identify the following:

iL =
1

m

∑

i

(
pi · ∂

∂ri

)
−

∑

i,j �=i

(
∂φ(rij)

∂ri

· ∂

∂pi

)
. (14)

It would be possible to integrate the differential equation to find A(t) = eiLtA(0), but this
is not useful by itself.

doi:10.1088/1742-5468/2005/05/P05013 5
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A

B

Figure 4. A two-dimensional version of the projection operator PB. The quantity
B is projected unto the space A, which extracts the A component of B (indicated
by a thick dashed line).

We also need to define a scalar product of the variables as

(A, B) ≡ 〈A∗B〉. (15)

Now, consider an operator called a projection operator P [1]–[3], [5, 6],

P ≡ (A, . . .)(A, A)−1A. (16)

If A is a vector, (A, A)−1 is thus the inverse of a matrix. Note also that P2A = PA = A.
In geometrical terms, the projection operator finds the component of some variable B
along the chosen direction A, as depicted in figure 4.

This is useful, as we can extract from an arbitrary B how much ‘character’ of A it
has. In particular, the operator A may be a slowly varying (quasi-hydrodynamic) variable.
Consider the density as defined in equation (4),

ρk(t) =
∑

i

eik·ri(t),

and then

ρ̇k(t) = ik ·
∑

i

pi(t)

m
eik·ri(t) = ik · jk(t) = i|k|jL

k (t), (17)

where jL
k (t) is the longitudinal current. If k is small (large length scales), then ρ̇k(t) is

approximately small. This is what is meant by slow. In the limit k = 0, then ρ̇k=0 = 0,
and the density is strictly conserved. As figure 1 indicates, if k is small, the area of density
fluctuations is large, i.e. the rate at which the number of particles fluctuates is small.

We now want to find the exact equation of motion for a correlation function

dA(t)

dt
= eiLt

=1︷ ︸︸ ︷
[P + (1 − P)] iLA,

= iΩ · A(t) + eiLt(1 −P)iLA, (18)

where

iΩ = (A, iLA) · (A, A)−1. (19)

doi:10.1088/1742-5468/2005/05/P05013 6
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Now, writing

eiLt = eiLtO(t) + ei(1−P)Lt, (20)

O(t) can be obtained by differentiating both sides of the equation:

iLeiLt = iLeiLtO(t) + eiLtȮ(t) + i[(1 − P)L]ei(1−P)Lt,

iL(eiLtO(t) + ei(1−P)Lt) = iLeiLtO(t) + eiLtȮ(t) + i[(1 − P)L]ei(1−P)Lt,

iLO(t) + ei(1−P)Lt = eiLtȮ(t) + i[(1 − P)L]ei(1−P)Lt,

eiLtȮ(t) = iPLei(1−P)Lt,

O(t) = i

∫ t

0

dτ eiLtPLei(1−P)Lτ , (21)

where the last equality follows from the fact that O(0) = 0. As a result, we may write

eiLti(1 − P)LA =

∫ t

0

dτ eiL(t−τ)iPLf(τ) + f(t), (22)

where f(t) is called the fluctuating force:

f(t) ≡ ei(1−P)Lti(1 −P)LA. (23)

What does this mean? The fluctuating force is obtained by taking the time derivative
of A, using the complementary projection operator (1−P) to remove the ‘A’ character—
perhaps the slow character—and is then propagated in the orthogonal—fast—space. To
put it another way, if P removes the slow character from a variable, then the fluctuating
force is the remaining fast force. We will come back to this later.

It can be shown that (A, f(t)) = 0, by noticing that the definition of f(t) contains
the (1−P) factor. This means that f(t) is orthogonal to A, in accord with the discussion
above. Noting that

i(A,Lf(t)) = i(LA, f(t)) = i((1 − P)LA, f(t)) = −(f(0), f(t)), (24)

the first term on the RHS of equation (22) allows the equation of motion to be rewritten
as

dA(t)

dt
= iΩ · A(t) −

∫ t

0

dτ K(τ) · A(t − τ) + f(t), (25)

where we define the memory function K(t):

K(t) ≡ (f, f(t)) · (A, A)−1. (26)

This is a fundamental and exact equation for the time dependence of A(t).
Defining the correlation matrix

C(t) ≡ 〈A∗(0)A(t)〉 = (A, A(t)) (27)

and using the equality (A, f(t)) = 0, we get

dC(t)

dt
= iΩ · C(t) −

∫ t

0

dτ K(τ) · C(t − τ) (28)

doi:10.1088/1742-5468/2005/05/P05013 7
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as an exact equation for the matrix of correlation functions C(t) that we will want to
compute. The problem with computing C(t) is embodied in the difficulty of determining
K(t).

Now, we want to focus this general framework on density fluctuations with respect to
the bulk density ρ, which will allow us to get an expression for the intermediate scattering
function. Consider [3]

A =

[
δρq

jL
q

]
, (29)

where

δρq =
∑

i

eiq·ri − (2π)3ρδ(q),

jL
q =

1

m

∑

i

(q̂ · pi)e
iq·ri,

(30)

and therefore

C(t) = 〈A∗A(t)〉

=

[ 〈δρ−qδρq(t)〉 〈δρ−qj
L
q (t)〉

〈jL
−qδρq(t)〉 〈jL

−qj
L
q (t)〉

]
. (31)

For the purpose of this demonstration, we will concentrate on the element in the lower
left corner of the matrix, which is in this case (N/iq)(d2F (q, t)/dt2). At t = 0, the matrix
reduces to

C(0) =

[
NS(q) 0

0
NkBT

m

]
. (32)

Also,

iΩ = 〈A∗Ȧ〉 · 〈A∗A〉−1,

=




〈δρ−qδρ̇q〉

〈
δρ−q

djL
q

dt

〉

〈jL
−qδρ̇q〉

〈djL
−q

dt
δρ̇q

〉



 · 〈A∗A〉−1,

=




0 i

NqkBT

m

i
NqkBT

m
0



 ·





1

NS(q)
0

0
m

NkBT



 ,

=

[
0 iq

i
qkBT

mS(q)
0

]
. (33)

To obtain the last two equations, we used integration by parts, the property that
the correlation of an observable and its derivative is always zero, and the statistical

doi:10.1088/1742-5468/2005/05/P05013 8
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thermodynamics result that follows:

〈jL
−qδρ̇q〉 =

i

m2

∑

i,j

〈(q̂ · pi)e
−iq·ri(q · pj)e

iq·rj〉,

=
iq

m

∑

i

〈mv2
i 〉 = i

NqkBT

m
. (34)

The random force f(0) is expressed as

f(0) = (1 −P)Ȧ,

=




δρ̇q

djL
q

dt



−




0 iq

i
qkBT

mS(q)
0



 ·
[

δρq

jL
q

]
,

=




0

djL
q

dt
− i

qkBT

mS(q)
δρq



 ≡
[

0
Rq

]
. (35)

We will now look at the equation of motion term by term. First,

dC(t)

dt
=





d

dt
〈δρ−qδρq(t)〉

d

dt
〈δρ−qj

L
q (t)〉

d

dt
〈jL

−qδρq(t)〉 d

dt
〈jL

−qj
L
q (t)〉



 . (36)

Note that the lower left corner term equals (N/iq)(d2F (q, t)/dt2). Second,

iΩ · C(t) =

[
0 iq

i
qkBT

mS(q)
0

]
·
[ 〈δρ−qδρq(t)〉 〈δρ−qj

L
q (t)〉

〈jL
−qδρq(t)〉 〈jL

−qj
L
q (t)〉

]
. (37)

Notice the lower left corner term is −(qNkBT/imS(q))F (q, t) this time. Lastly, the
memory matrix is

K(t) =

〈[
0

R∗
q

]
· [ 0 Rq(t) ]

〉
· 〈A∗A〉−1,

=

[
0 0
0 〈R−qRq(t)〉

]
·





1

NS(q)
0

0
m

NkBT



 ,

=

[
0 0

0
m〈R−qRq(t)〉

NkBT

]
. (38)

Concentrating on the lower left corner, using the equation of motion from equation (27),
we find [1]–[3], [5]

d2F (q, t)

dt2
+

q2kBT

mS(q)
F (q, t) +

m

NkBT

∫ t

0

dτ 〈R−qRq(τ)〉 d

dt
F (q, t − τ) = 0. (39)

doi:10.1088/1742-5468/2005/05/P05013 9
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This equation is exact, but impossible to solve. To make approximations, we will look
at 〈R−qRq(t)〉 using some intuition. Recall that

Rq =
djL

q

dt
− i

qkBT

mS(q)
δρq (40)

and that

djL
q

dt
=

d

dt

{
1

m

∑

i

(q̂ · pi)e
iq·ri

}
,

=
1

m

∑

i

(
q̂ · dpi

dt

)
eiq·ri +

i

m2

∑

i

(q̂ · pi)
2eiq·ri. (41)

Also, note that in this last equation dpi/dt is a force and therefore

dpi

dt
∼ −

∑

i�=j

∇φ(|ri − rj |) =
∑

k

ikφkδρkδρ−k, (42)

where we made the momentum space transformation φk =
∫

dr eik·rφ(r). We then see
that hidden in the fluctuating force is a pair of densities. This illustrates an important
point: at first, we may have suspected that the fluctuating force is a fast variable and
that it decays on a short timescale because we removed the slow modes δρk from it—but
we see that it contains, at leading order, a slow character (at least if δρk is slow) from
the product of slow modes δρkδρ−k! Overall the time derivative of the current has the
symmetry of δρkδρq−k, where the q factor comes from

∑
i e

iq·ri that multiplies the force
in equation (41).

We will now approximate 〈R−qe
iQLtRq〉. As a convention, note that Q ≡ 1 − P.

(1) Make the replacement eiQLt → P2e
iLtP2, where we define the new projection operator

P2 ≡
∑

k1,k2,k3,k4

Ak1,k2〈A∗
k3,k4

. . .〉〈A∗
k1,k2

Ak3,k4〉−1 (43)

and where Ak1,k2 = δρk1δρk2 . The P2 operator simply projects Rq onto its dominant
slow product mode. We neglect the Q in the exponent, simply because it is hard to
compute anything keeping it there. However, to O(q2), it may be shown that this
neglect has no consequences.

(2) Factorize four-point density terms into products of two-point ones.

Using this algorithm, we get

P2Rq =
∑

k1,k2

Vq(k1,k2)δρk1δρk2 , (44)

where

Vq(k1,k2) ≡
∑

k3,k4

〈δρk1δρk2Rq〉 · 〈δρk1δρk2δρk3δρk4〉−1. (45)
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The denominator has a product of four density variables that will be factorized into
products of two structure factors. The numerator has terms like〈

δρ−kδρk−q

djL
q

dt

〉
= −〈δρ̇−kδρk−qj

L
q 〉 − 〈δρ−kδρ̇k−qj

L
q 〉, (46)

where the result was obtained by integration by parts, and

− iqkBT

mS(q)
〈δρ−kδρk−qδρq〉. (47)

Let us calculate one of the terms in equation (46),

−〈δρ̇−kδρk−qj
L
q 〉 = i

〈
∑

i

(k · pi)e
−ik·ri

∑

j

ei(k−q)·ri

∑

l

(q̂ · pl)e
iq·rl

〉
,

= i
∑

ij

〈ei(k−q)·rjei(q−k)·ri〉kBT

m
(k · q̂),

= i(k · q̂)
kBT

m
NS(|k − q|), (48)

where we used the result of equation (34), to complete the calculation. The other term
similarly gives

−〈δρ−kδρ̇k−qj
L
q 〉 = i(q̂ · (q − k))

kBT

m
NS(k). (49)

The term in equation (47) is hard to compute directly, but within the convolution
approximation, it can be reduced as follows [1, 5]:

〈δρ−kδρk−qδρq〉 ≈ NS(k)S(q)S(|k − q|). (50)

After treating all static density fluctuations within the Gaussian (and convolution)
approximations, we find that the vertex Vq(k1,k2) can be expressed as a function of
only two wavevectors. As a consequence of translational invariance, we would be left only
with terms involving the difference of wavevectors k ≡ k1 − k2, which allows us to write
Vq(k1,k2) = Vk,q−k. Also note that the summation is now only over k. Combining all
terms gives

Vk,q−k =
ikBT

2mN

{
(q̂ · k)

S(k)
+

q̂ · (q − k)

S(|k − q|) − (q · q̂)

}
,

=
iρkBT

2mN
{(q̂ · k)c(k) + q̂ · (q − k)c(|k − q|)}, (51)

where we have rewritten the result using the direct correlation function c(k) ≡ (1/ρ)(1−
1/S(k)). So, piecing this together,

〈(RqP2)
∗(P2Rq(t))〉 


∑

k,k′

|V ∗
k,q−kVk′,q−k′|〈δρ−k′δρk′−qδρk(t)δρq−k(t)〉,



∑

k,k′

|V ∗
k,q−kVk′,q−k′|N2F (k, t)F (|q− k|, t)(δk,k′ + δk′−q,k),

=
ρ2(kBT )2

2m2

∑

k

|Ṽq−k,k|2F (k, t)F (|q− k|, t), (52)
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Φ

Figure 5. Left: Φ(t) decay in the ergodic (supercooled) case. The correlation
vanishes on a finite timescale. Right: in the non-ergodic (glassy) case, that same
function remains finite even for infinite times.

where we used Wick’s factorization and where

Ṽq−k,k ≡ {(q̂ · k)c(k) + q̂ · (q − k)c(|q − k|)}. (53)

We need to convert the discrete sum to the continuous integral,
∑

k → (V/(2π)3)
∫

dk,
and multiply by the m/NkBT prefactor as obtained in equation (39), to get the final MCT
equation:

0 =
d2F (q, t)

dt2
+

q2kBT

mS(q)
F (q, t) +

∫ t

0

dτ K(q, t − τ)
∂F (q, t)

∂τ
(54)

with

K(q, t) =
ρkBT

16π3m

∫
dk |Ṽq−k,k|2F (k, t)F (|k− q|, t). (55)

2.2. Some properties of the solution(s) of the MCT equation

2.2.1. Schematic MCT. Via the approximation discussed by Bengtzelius et al we can
reduce our MCT equation to a schematic form,

∂2Φ(t)

∂t2
+ Ω2

0Φ(t) + λ

∫ t

0

dτ Φ2(t − τ)
∂Φ(τ)

∂τ
= 0, (56)

where Φ(t) ∼ F (k, t), before we neglect the coupling wavevectors. The solutions of
equation (56) have been discussed by Leutheusser [7] and Bengtzelius et al [8]. The most
striking feature of this equation, and of the full MCT equation from which we ‘derived’
it, is that there is a transition to a completely non-ergodic phase for particular Ω2

0 and λ
(or T and ρ for the real MCT equation). The two cases are depicted in figure 5.

The transition from ergodic to non-ergodic at a sharp, well-defined set of parameters
may be interpreted as the transition from a liquid to a solid. The fact that correlations
do not decay as t → ∞ is indicative of this. However, no information of an ordered state
was used or imposed. Thus, the solid could only be a disordered one, i.e. a glass.
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2.2.2. Solutions of full MCT equations. If we denote by Tc the temperature where MCT
predicts a glass transition, the relaxation time τ scales as [5]–[8]

τ(q, T ) ∼ Aq(T − Tc)
−γ, (57)

which means that when T → Tc, τ diverges as a power law with a universal exponent γ.
This form may fit data, but only over a limited temperature range.

Also, the decay in the β-relaxation regime is indeed given by [5]–[8]

early β: f + At−a,

late β: f − Btb,

with

Γ(1 − a)2

Γ(1 − 2a)
=

Γ(1 + b)2

Γ(1 + 2b)
, (58)

at least for T very close to Tc, i.e. when (T − Tc)/Tc � 1. This is a great triumph
of the MCT equations and is fully consistent with simulations and experiments [5, 6].
Furthermore, the power γ is related to the exponents a and b as

γ =
1

2a
+

1

2b
. (59)

For the α-relaxation regime, an approximate solution of the full MCT equations is
indeed approximately given by

F (k, t) ∼ e−(t/τk)βk , (60)

and this stretched exponential function describes well experiments and simulations. The
schematic equation, however, only exhibits exponential decay.

More generally, MCT predicts that for a correlator at temperature T a time–
temperature superposition holds [5, 6]:

C(t, T ) = Ĉ(t/τ(T )), (61)

where C(t, T ) is a correlation function, Ĉ is some master function and τ(T ) is the α-
relaxation time. This is also generally consistent with experiments and simulations.

2.2.3. Redux: an assessment of the successes and failures of MCT. Even a scientist who is
opposed to the spirit and approximations that go into MCT ought to be impressed by its
success, where it succeeds. Furthermore, it is essentially the only first-principles theory of
glassy liquids. That is, from the structure of the liquid alone (S(k), the structure factor)
a detailed set of dynamical predictions emerge. We will now spell out where MCT works
and where (we think) it does not.
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Successes

(1) MCT makes some remarkable predictions that are correct. For example, the
remarkable scaling properties in the β-relaxation regime that are predicted are
essentially correct and so is the time–temperature superposition in the α-relaxation
regime. This is similarly accurate for other predictions that we will not discuss
here [5, 6].

(2) MCT has predicted novel relaxation patterns correctly. One recent striking example is
the behaviour of colloidal suspensions with induced short-ranged attractions [9]. Here,
MCT has predicted that adding attractions may melt the glass from hard spheres, and
that for certain parameters, logarithmic relaxation may be observed. Both predictions
have been confirmed again by computer simulations and experiments.

(3) Although we will not discuss this here, there exist models with quenched disorder
(spin-glass models) for which the schematic MCT is exact [10, 11]. These models
make connections between MCT and energy landscape theories possible, as well as
extensions of the MCT approach to situations that are out of equilibrium (ageing).
This has been very fruitful and has led to new insights into glassy systems.

Failures

(1) The best-known failure of MCT is that it predicts a sharp glass transition at a
temperature Tc, but Tc > Tg. This means that MCT predicts kinetic arrest to a
non-ergodic phase at temperatures where the system is still ergodic and liquid.

(2) MCT also predicts power-law divergence of transport coefficients and relaxation times
as in equation (57), but this is less accurate over a wide range of temperatures than
the temperature dependence of transport coefficients given in equation (9) [4]. It is a
reasonable fitting form over several decades of relaxation time for mildly supercooled
liquids. In addition, the parameters β, a, b, . . . are predicted to be constant in MCT,
at least for temperatures for (T − Tc)/Tc � 1. But in actuality, they are mildly
temperature dependent. One should be careful, however, not to take asymptotic
predictions of MCT and apply them to cases where (T − Tc)/Tc is not small [5].

(3) Another failure of MCT is in the prediction of certain indicators of collective
relaxation. In general, timescales and length scales of such heterogeneous motion
can be probed by multi-point correlations. A simple, non-multi-point function that
seems to correlate crudely with the timescale of such motion is the non-Gaussian
parameter

α2(t) =
3〈r4(t)〉
5〈r2(t)〉2

− 1, (62)

where

〈r2(t)〉 = 〈[r(t) − r(0)]2〉 (63)

for a tagged particle and similarly for the other term. Usually, the behaviour of
〈r2(t)〉 is similar to what is depicted in figure 6. However, MCT predictions of α2(t)
are quite inaccurate. In general, MCT fails to accurately depict properties such as
the non-Gaussian parameter and the breakdown of the Stokes–Einstein relation.
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One may take from this last result that MCT is not capable of saying anything about
dynamically heterogeneous motion in supercooled liquids [12], but perhaps this statement
is too strong. We will explore this further in the next section.

2.3. Field-theoretic description

Before finishing this section, we provide a sketch of the field-theoretic approach to
schematic MCT [10, 11]. In some sense, the memory function approach can be thought of
as arising from coupled Langevin equations for the modes δρq and jL

q . For example,

δρ̇q = iqjL
q (t), (64)

∂

∂t
jL
q (t) = − iqkBT

mS(q)
δρq(t) −

kBT

m

∫
dk (iq̂ · k)c(k)δρq−k(t)δρk(t)︸ ︷︷ ︸

from the fluctuating force

− ζ0

m
jL
q (t)

︸ ︷︷ ︸
viscosity term

+ ηq(t)︸ ︷︷ ︸
noise term

. (65)

As a toy model for this (forgetting vector labels and wavevectors), we get

φ̇(t) = −µ(t)φ(t) − g

2
φ(t)2 + η(t) (66)

with 〈η(t)η(0)〉 = 2Tδ(t). We also define

G0(t, t
′) ≡ exp

(
−
∫ t

t′
dt̃ µ(t̃)

)
(67)

and

(G
⊗

f)(t) ≡
∫ t

0

dt′ G0(t, t
′)f(t′), (68)

where G0 is the bare response function, or propagator. It must be zero if t < t′. The
solution for φ(t), with φ(0) = 0 is, in graphical terms,

φ(t) = + + + · · · , (69)

where an arrow represents G0, a × represents the noise, and a factor of g/2 is associated
with each branching point. These terms are simply obtained as a solution from integrating
equation (66). In a more compact notation,

φ(t) = G0

⊗
η − g

2
G0

⊗{
G0

⊗
η · G0

⊗
η
}

+ · · · , (70)

where ‘·’ is a simple product.
We define two kinds of functions,

C(t, t′) ≡ 〈φ(t)φ(t′)〉 (71)
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Figure 6. The non-Gaussian parameter as depicted here is one of the features
that MCT cannot reproduce accurately. The curves increase in magnitude and
spread with decreasing temperature (from left to right).

and

G(t, t′) ≡
〈

∂φ(t)

∂η(t′)

〉
=

1

2T
〈φ(t)η(t′)〉, (72)

where the last equality is true for Gaussian noise. Again, C(t, t′) can be defined on the
entire (t, t′) plane but G(t, t′) only for t > t′. Let us construct a series for the two functions.
The zeroth-order contribution to C(t, t′) is given as follows:

〈 〉 =

〈∫ t

0

dt1 G0(t, t1)f(t1)

∫ t′

0

dt2 G0(t
′, t2)f(t2)

〉
,

=

∫ t

0

∫ t′

0

dt1 dt2 G0(t, t1)G0(t
′, t2)2Tδ(t1 − t2). (73)

The bracket average implies connecting the ×-vertices to form diagrams with none of
these left. Diagrams that do not pair up all noise vertices (i.e. those with an odd number
of ×-vertices) average to zero.

Going beyond zeroth order, we get the following:

C(t, t′) = +

〈 〉
+ · · ·

= + + · · · ,

≡
∫ t

0

dt1

∫ t′

0

dt2 G0(t, t1)D(t1, t2)G0(t
′, t2), (74)

where to obtain the last line we defined

D(t1, t2) ≡ 2Tδ(t1 − t2) +
g2

2
C0(t1, t2)C0(t1, t2) + · · · . (75)

What about G(t, t′)?

G(t, t′) = +

〈
1

2T

〉
+ · · · , (76)
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(t, t1)

(t1 , t2)

(t2 , t ′)

t1 t2

Figure 7. Left: as an exercise, work out the integration limits for this sample
diagram. The time pairings indicate the beginning and end times of a given
segment. There are in this diagram two internal vertices, t1 and t2, and two
external ones, t and t′. Right: a simple tadpole diagram.

where the lone × has to be attached to a × on the tree and then the remaining diagram
is closed. Thus,

G(t, t′) = + + · · · ,

= G0(t, t
′) +

∫ t

t′
dt1

∫ t1

t′
dt2 G0(t, t1)Σ(t1, t2)G0(t2, t

′), (77)

where we similarly defined

Σ(t1, t2) ≡ g2C0(t1, t2)G0(t1, t2) + · · · . (78)

This is an exact, formal representation of the perturbations series. In fact, in some sense
it is simply a definition of the kernels D and Σ. We can appeal to the structure of the
perturbation series to justify this.

Also, the lower limit of the second integration ensures that t2 > t′. In fact, let us
take a closer look at the limits of integration for a sample diagram, the second term
in equation (77), which is reproduced on the left-hand side of figure 7 with additional
labels. The incoming branch imposes t > t1, the central loop t1 > t2, and the outgoing
branch t2 > t′, for an overall t > t1 > t2 > t′. The resulting integration limits are thus∫ t

t′ dt1
∫ t1

t′ dt2.
If you have followed so far, you might be asking yourself what happened to the

diagrams like the one appearing on the right in figure 7. Such closed loops are called
tadpoles. They do not contribute to the time dependence of C or G, and we assume
that their contribution is absorbed into µ(t). The next lowest order terms are then the
diagrammatic forms we last drew in equations (74) and (77).

To make a self-consistent approximation we replace G0 and C0 in our second-
order approximations for D and Σ by G and C. We will call this the mode-coupling
approximation, a name that will be clear in meaning at the end [10, 11]. This is
equations (74) and (77) with

Σ(t1, t2) = g2C(t1, t2)G(t1, t2), (79)

D(t1, t2) = 2Tδ(t1, t2) +
g2

2
C(t1, t2)

2. (80)

These two equations can be further manipulated by noting that

G0 =

(
µ(t) +

∂

∂t

)−1

, (81)
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and so we can multiply both sides of equations (74) and (77) by G−1
0 :

G−1
0

⊗
G = I + Σ

⊗
G, (82)

G−1
0

⊗
C = G−1

0

⊗{
G0 + G0

⊗
Σ
⊗

G
}⊗

D
⊗

G,

= D
⊗

G + Σ
⊗{

G
⊗

D
⊗

G
}

︸ ︷︷ ︸
C

,

= D
⊗

G + Σ
⊗

C, (83)

where I is the identity operator. In other notation,
{

∂

∂t
+ µ(t)

}
G(t, t′) = δ(t − t′) +

∫ t

t′
dt′′ Σ(t, t′′)G(t′′, t′), (84)

{
∂

∂t
+ µ(t)

}
C(t, t′) =

∫ t

0

dt′′ D(t, t′′)G(t′, t′′) +

∫ t

0

dt′′ Σ(t, t′′)C(t′′, t′). (85)

This still does not look like the MCT equations derived before. We will manipulate
the RHS of the second equation to achieve this. Taking the first term, we make the
substitution

∫ t

0

dt′′ D(t, t′′)G(t′, t′′) →
∫ t′

0

D(t, t′′)
1

T

∂

∂t′′
C(t′, t′′). (86)

We can replace t → t′ because of the restriction on time arguments in G(t′, t′′) and we
can substitute G for C as written by using the fluctuation-dissipation theorem (FDT) and
assuming that the system is at equilibrium. The result can now be integrated by parts,

1

T
[D′(t, t′′)C(t′′, t′)]|t′0 − 1

T

∫ t′

0

dt′′
∂

∂t′′
D′(t, t′′)C(t′′, t′). (87)

Note that we can neglect the δ-function part of D here, since it provides no contribution.
So, we denote the regular part of D as D′.

Again, using the FDT, we can make the substitution

∂

∂t′′
D′(t, t′′) → TΣ(t, t′′), (88)

yielding an integral which can be combined with the other term of equation (85) to obtain

−
∫ t′

0

dt′′ Σ(t, t′′)C(t′′, t′) +

∫ t

0

dt′′ Σ(t, t′′)C(t′′, t′) =

∫ t

t′
dt′′ Σ(t, t′′)C(t′′, t′). (89)

Now, using the FDT in the reverse direction and integrating by parts, we get

1

T
[D′(t, t′′)C(t′′, t′)]|tt′ −

1

T

∫ t

t′
dt′′ D′(t, t′′)

∂

∂t′′
C(t′′, t′). (90)

Combining all terms on the right-hand side of equation (85), we get

1

T
[D′(t, t)C(t, t′) − D′(t, 0)C(0, t′)] − 1

T

∫ t

t′
dt′′ D′(t, t′′)

∂

∂t′′
C(t′′, t′). (91)
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Using the fact that, in equilibrium, these functions are time-translation invariant,

D′(t, t′′) = D′(t − t′′),

C(t, t′) = C(t − t′),

C(t′′, t′) = C(t′′ − t′),

C(0, t′) = C(t′),

D′(t, 0) = D′(t),

D′(t, t) = D′(0),

(92)

and making the transformation,

t′′ − t′ ≡ τ ′,

t − t′ ≡ τ,

t′ → ∞,

(93)

we find
(

∂

∂t
+ µ̃(t)

)
C(t) +

1

T

∫ t

0

dτ D′(t − τ)
∂C(τ)

∂τ
= 0, (94)

where

µ̃(t) = µ(t) − 1

T
D′(0), (95)

D′(t) =
g2

2
C(t − τ)2. (96)

This is just the schematic model with

Ω2
0 ↔ µ̃(t), (97)

λ ↔ g2

2T
. (98)

The only difference is that ∂C(t)/∂t appears instead of ∂2Φ(t)/∂t2. This actually makes no
difference as far as the glassy properties are concerned. In fact, for models of overdamped
systems, such as Brownian colloidal spheres, ∂Φ(t)/∂t is what appears naturally in
the reduction of the full MCT equations of the schematic model. This completes the
relationship between the memory function/projection operator MCT derivation and a
field-theoretic approach.

3. Looking ahead: beyond ‘simple’ MCT

In this section we will outline some thoughts on attempts to do better than the MCT
derived thus far. This is not an exhaustive discussion, but is meant to give an idea about
what can be done.
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3.1. Coupling to currents

Götze and Sjögren [13] as well as Das and Mazenko [14] have developed theories that
remove the sharp transition at T = T0. In both cases, it is the couplings to certain current
modes that are ignored in the expressions we have just derived that restore ergodicity
below Tc.

In the theory of Götze and Sjögren, the Laplace transform of our exact equation of
motion for F (k, t) is given as

F (k, z) =
−1

z − Ω(k)2/(z + M(k, z))
, (99)

where Ω(k) = k2kBT/mS(k) and M(k, z) is the Laplace transform of the memory function

M(k, z) =

∫ ∞

0

dt e−ztM(k, t), (100)

and, similarly,

F (k, z) =

∫ ∞

0

dt e−ztF (k, t). (101)

Essentially, within the ‘extended’ MCT of Götze and Sjögren,

M(k, z) ∼ K(k, z)

1 − δh(k, z)K(k, z)
, (102)

where K(k, z) is the ordinary MCT memory function given in equation (39). The
expression for δh(k, z) is complicated, but to see what it does, note that:

(1) If δh = 0, we recover exactly the ordinary MCT that we have derived before. This
can be checked by applying a Laplace transform the old expressions.

(2) If δh(k, z) has no singularities as z → 0, the strict transition at Tc in the MCT that
we have previously derived is removed since relaxation is governed by M ∼ 1/|δh| at
long times and not K(k, z), which yields a pole singularity in z space.

In the theory of Das and Mazenko, a hydrodynamic approach is used. The kinetic
energy of the free energy functional in terms of current j and density ρ has the form

KE[j, ρ] ∼ j2

ρ
. (103)

This is like the usual p2/2m kinetic energy. However, the 1/ρ part coupled to the current
rounds off the strict singularity at Tc, like in the Götze and Sjögren theory.

Note that in both theories, we need currents to restore ergodicity. For some systems,
like (simulated) colloidal hard spheres undergoing Brownian motions, these currents do
not exist! Thus, the Götze and Sjögren and the Das and Mazenko theories cannot be used
to improve ordinary MCT there.
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3.2. New closures

As mentioned above, the extended MCT of Götze and Sjögren and of Das and Mazenko
cannot tell us anything (beyond ordinary MCT) for Brownian hard sphere systems.
An interesting proposal was recently put forward by Szamel [15]. The main idea is
not to factorize the memory function expression leading to the ordinary MCT given in
equation (39), but to write an exact equation of motion for it, and then factorize the
memory function for the new equation. Here is a sketch of the idea.

Recall our old approach to MCT,

∂2F (k, t)

∂t2
+

k2kBT

mS(k)
F (k, t) +

∫ t

0

dτ K(k, t − τ)
∂F (k, z)

∂τ
= 0, (104)

where essentially K(k, t) ∼ 〈δρδρδρδρ〉 is a four-point function of density variables. In
the old approach, the closure involved

K(k, t) ∼ 〈δρδρ〉〈δρδρ〉 =
∑

q

F (q, t)F (|k− q|, t) (105)

and this allowed us to solve for F (k, t).
Instead of factorizing the four-point memory kernel, let us write an exact equation of

motion for it, following the same lines of reasoning as before:

∂2K(t)

∂t2
+ ΓK(t) +

∫ t

0

dτ R(t − τ)
∂K(τ)

∂τ
= 0. (106)

The wavevector indices are suppressed to simplify the notation in order to clarify the idea
behind the manipulations. This has the same form as before, but with new frequencies Γ
and a new memory function R(t − τ).

Schematically, R ∼ 〈δρδρδρδρδρδρ〉 is a six-point function! We can close the equation
for K and F , by making the approximation R ≈ K · F , the product of a four-point and
a two-point function. This yields two coupled sets of integro-differential equations that
may be solved self-consistently yielding a converged F (k, t).

This approach has not been considered for the full dynamics of F (k, t), but yields
a better estimate for Tc (i.e. the Tc that is extracted is closer to the measured glass
transition).

3.3. Four-point correlations and dynamical heterogeneities

It was mentioned in section 2 that MCT does not describe well

α2(t) ≡
3〈r4(t)〉
5〈r2(t)〉2 − 1 (107)

and that α2(t) seems to correlate well with the timescale of maximal dynamical
heterogeneity [16, 17]. It turns out that this timescale is in the late β-regime. This
highlights the fact α2(t) yields information on transiently mobile particles that jump due
to the destruction of cages. It should be noted that there is no length scale dependence
in α2(t).

To gain some information about a growing (dynamical) length scale, a multi-point
dynamical generalization of the static structure factor may be studied [18]–[21]. The
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Figure 8. The non-Gaussian parameter α2(t) (left) and the four-point correlation
function χ4(t) (right) peak at times t∗ where t∗χ4

> t∗α2
.

k → 0 limit of this structure factor, as Sharon Glotzer discusses in her lectures, is the
susceptibility

χ4(t) ∼
∫

dr1 . . .dr4 θa(|r1 − r2|)θa(|r3 − r4|)

× 〈ρ(r1, 0)ρ(r2, t)ρ(r3, 0)ρ(r4, t)〉, (108)

where the function θa(|r1 − r2|) equals one when |r1 − r2| ≤ a, and zero otherwise [18].
The timescale at which χ4(t) peaks is generally in the α-regime. The growing length scale
associated with dynamic heterogeneity is associated with slow moving, transiently caged
particles.

Given the superficial similarity with α2(t), as shown in figure 8, one might conclude
that MCT cannot compute objects like χ4, but this is not the case. Recent work by
Biroli and Bouchaud [19], motivated by the earlier insight of Franz and Parisi [20] and
Kirkpatrick and Thirumalai [21], shows that MCT may make quantitative statements
about the scales of length and time associated with dynamical heterogeneity. So far,
absolute length scales have not been computed, but dynamical exponents z relating
timescales τ and length scales ξ have:

τ ∼ ξz, (109)

where z = 2γ and γ is given in equation (59).
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