Microswimmers: hydrodynamics theory Tom Powers, Brown University

Lauga and Powers, 2009

Eukaryotic & prokaryotic flagella are very different

Turner, Ryu, & Berg, J. Bacteriology 2000

~10 nm

Yonekura, Maki-Yonekura, & Namba, Nature 2003

Rotating Flexible Rod in a Viscous Fluid: Resistive force theory works well for small curvature

Just belowJust abovecritical torquecritical torque

Qian, TRP, Breuer, Phys Rev Lett 2008

Inspired by Manghi, Schlagberger, & Netz (2006) Rotne-Prager theory for hydrodynamic interaction Transition between high/low drag states Other important work Machin 1958 Wiggins & Goldstein 1998 Yu, Lauga, & Hosoi 2006 Coq, du Roure, Marthelot, Bartolo, Fermigier 2008

Dashed red line: small deflection elastic theory $-EI\frac{\partial^4 \mathbf{r}_{\perp}}{\partial z^4} + \zeta_{\perp}\omega \hat{\mathbf{z}} \times \mathbf{r}_{\perp} = \mathbf{0}$

Solid blue line: large deflection elastic theory

Neat RFT example: a helix in the shear plane moves along or against the vorticity direction in shear flow, with the direction depending on handedness

Marcos, Fu, TRP, Stocker, Phys Rev Lett 2009 ⊠

Bin Liu's experiment: Measure the thrust on a rotating helix

Liu, Powers, Breuer PNAS 2011

(Force-free) speed is linear in rotation rate

Liu, Powers, Breuer PNAS 2011

Ratio of swimming speed to rotation rate depends on pitch angle and slenderness

Liu, Powers, Breuer PNAS 2011

The two slender-body theories make almost indistinguishable predictions (which are very accurate!)

Helical LH filaments bundle when the motors turn CCW when viewed from outside the cell

Turner, Ryu, Berg, J. Bact. 2000

We made a scale model (Kim et al. PNAS 2003) See the movie! https://www.pnas.org/ doi/suppl/10.1073/pna s.2633596100/suppl_f ile/3596Movie1.mov

Comparison of SBT calculations & PIV measurements

The swimming direction is determined by the 2nd order disturbance flow required to correct the error induced by the 1st order no-slip BC

Krieger, Spagnolie, TRP, PRE 2014

The swimming direction is determined by the 2nd order disturbance flow required to correct the error induced by the 1st order no-slip BC

Krieger, Spagnolie, TRP, PRE 2014

The flow field induced by a swimming bacterium is well-approximated by the stresslet

Drescher, Dunkel, Cisneros, Ganguly & Goldstein, PNAS 2011

The flow field induced by a swimming bacterium near a wall is well-approximated by the stressle and its image

Drescher, Dunkel, Cisneros, Ganguly & Goldstein, PNAS 2011

Volvox is not neutrally buoyant; the swimminginduced flow field has a Stokeslet

Measurement

Fit to a Stokeslet + stresslet + potential dipole

Drescher, Goldstein, Michel, Polin & Tuvan 2010

A three-Stokeslet model captures much of the nar field of *Chlamydomonas*

Drescher, Goldstein, Michel, Polin & Tuvan 2010