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1 Build intuition about low Re hydrodynamics
2 Introduce the theoretical framework for studying
swimming at Re O

3 Review some classic calculations
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1 Properties of Stokes flow linearityreversibility
singular solutions

2 Hydrodynamic forces on a flagellum RFT SBT



ooo The Reynolds number in the context of

cis time
swimming

teamscales

How longbefore we can detect a change in the
body shape a distance h away To see howthis
timescale depends on h idealize and solveStokes
problem

Eid Fox v24ox
impulsive

oxcy t

t diff L Lif

Iif Phd Re Bacterium 1 1039m3helium
10pmISM 103Pas
Re 10 5 4

Re o the flow instantly adjusts to changes in
boundaries such as the deformation of
a swimmer The transfer of information
at low Re is fast becausethe shearstresses
are large relative to inertial terms
such as pv

Re 0 Vp MT's 0 Stokes

equationsF I 0

Not Fa O where y FYI is the vorticity
The vorticity adjusts instantaneously in Stokesflow
of courses we know that it takes a certain time



for vorticity to spread so the Stokes equations

are only valid for length scales Nut

ii stopping distance
Ma n y uh

viscous
drag

an

d I VIII Ep g h
freh

At low Re the stopping distance is a small
fraction of the body length

of large scale using Bernoulli for drag
man putti at

Pip

d n I n Psg h

0000 Properties of Stokes flow
cis stokes equations force balance

E NEVE FIT PII
I ij 2 2jn I Ux I try Wadi

ON XI oxyITtoyxyxtREYF Et text O Gjéiéj

man Inyano S E Tda J T Edu
O in the absence of external

forces but see Volvox
The hydrodynamicforces torques generallyvanish at 2 0



Cii Uniqueness the stokes equations have
a unique solution for a given boundary
condition

This fact can be proved using the
reciprocal theorem Given two solutions

to Stokes equations for the same

geometry but different boundary
conditions the mixed rates ofworking
are the same

we'll
comeback J E Qin da Sez Ein dato tins

Cf Greens theorem in electrostatics the
Maxwell Betti theorem in linear elasticity

From the reciprocal theorem are

can show that stokes flow is the
flow with minimum dissipation for
given bounding conditions And from

the principle of minimum dissipation
we can deduce that the solution
to Stokes equations is unique see
the stokes flow references listed above



ciii linearity superposition is valid we can

get new solutions by adding up solutions
Example drag on a sphere

a
v what force is required to

my
steadily move the sphere at
velocity V

As in electrostatics we put singular solutions
inside the sphere and adjust their strengths
to satisfy the no slip BC Icar VI

If te t stokestet Vp MFI Esc 0

atorigin
dimensional or experience with
analysis electrostatics

To EI
But I Ij is not incompressible

The full calculationyields Est te Ey 14 E

the flow field falls off slowly as Yr This
slow fall off is the origin of the hydrodynamic
interaction

The stolustet velocity is not constant at ra

We add another singular solution the potential

dipole We can get potential multipolesolutions

by differentiating the potential source

Ea PIE EI eéÉ É



I doublet de EQ a

Ep 375J Qé
The potential dipole also called the sourcedipole or doublet

makes no contribution to the pressure at Re 0

any potential flow yields zero pressure gradient
7 1 0 TXCF XI 0

i e VI TCF 11 0 Incompressibility 72 0

stokes equations Up 0
Adding the stolusht and the doublet yields

1 3 1 4 7,1 1 1 14 3
Exercise calculate the pressure the stress and

integrate to find I Gamal
not e Ey 14 4,1 2 CY

3

Ist as a o

civ kinematic reversibility
Tp t m FI tf Q

F I 0

I Is on boundaries

Reversing Is and I reverses I and Fp
The streamlines of the flow stay the same
only the direction of flow changes



See G I Taylors demonstrations in the Low

Reynolds Number Flow movie at ne fmf html
National Committee for Fluid Mechanics Films

13 40 concentric cylinder demonstration of
kinematic reversibility

16 45 model swimmers ET

The principal of kinematic reversibility is

useful in situations with high symmetry
Exampled

the forces required
to keep the object
fixed in the flow

111 are the same TheHittite
streamlines are the same
withoppositedirection

a sedimenting Ojt

gg
two sedimenting

a wall falls
spheres is
maintained

a sedimenting

JOE III lateralg
rod falls Poiseuille flowwithout
rotating drift



Purcell's scallop theorem A reciprocal stroke
leads to no net progress in one cycle

ButseeLudwig
ITIL Egging In The hinge oscillates back and
1930 It

forth but makes no netprogress
during the return stroke each

É particle retraces thepath it took
I on the power stroke

One way to see if a stroke pattern is reciprocal is
to imagine taking a movie of it and thenplaying
the movie backwards if you can'ttellif the movie is
playing backward you are allowed to speedupand
slow downthemovie then the stroke is reciprocal

i e you pass through the same sequence of shapes
in the opposite order EEE EE 4544
Purcell proposed an idealized non reciprocal sequence
of shapes for the minimal swimmer

Y em t t EE E
It's easier to analyze a variant that doesnt
rotate as it goes through its cycle

H H H H
The key to deducing the direction the swimmer
advances is that the drag on a thin rod is
roughly twice as big if it is moved 1 to its



alis compared to maring 11 to its axis

thesecondsegmentofthe

f Ey É If strokemorethanrecovers
thedistancelostantrefirst
segment sincethedragF Bothious are 4h resistingthe motionis

movingwith smaller Likewisethe
speed V ye distance lost onthe4th

segment is smallerthanProofofscalloptheorem for a
ft

thedistancegainedon
singlehinge foot YA x the thirddue tothe

I Oflo I by linearity If difference indrag
Me netprogressIdt f datdo I o forperfidy

or models for notating and beating flagella
Biological microswimmers evade the scallop
theorem with non reciprocal flagellum motions

Note that prokaryotic flagella and eukaryotic
flagella are so different that they shouldhave
different names

jÉeeÉt É coli prokaryoteIamslightly albundle offlexible notating helices is not reciprocal

trawave ofbending is notreciprocal

Digi sperm cell eukaryotic

zoom in to beatpattern
amman is rear ae



To calculate how fast a microorganism swims

given its sequence of flagellum shapes requires
us to calculate the hydrodynamic forces on a

thin filament We'll start with dimensional
analysis
Stokes drag on a sphere

Is V F stress x area

MI a
f r m Va the drug force a linear site notlength

Aside We get the same result for a perfectly absorbing
sphere in a field of diffusingmolecules
uptake rate flux x area

D a Dana
see Berg Randan walks in biology Priyagton

Drag on a thin ellipsoid

y
F n my ab nm Va

b

When Real the drag on a rod of length za
is the same order of magnitude as the
drag on a sphere of diameter 2a O f
we can be a bit more quantitative by
replacing the ellipsoid with a line of



Stoheslets Note that there is a factor of

2 enhancement of flow along the axis of
a stoheslet relative to flow at the equator

Tver O a I E tr F 5 2

ftp.T E.coItrr E l

very roughly the velocity of a rod subject
to force F along its axis is given by

FIE z Pakistan

ozcei EEmtz S.az nEnz EalogFYEe
Likewise for dragging the rod along the 1

m

direction the mobility is half as big
ta a

ve S.iqEntz Enalos

more careful calculations for a thin

ellipsoid

E 5 51 5111 Za

31 logging b a

5 Ight



These results are for a thin ellipsoid which

approximates a straight rod We want the

hydrodynamic forces on a curved or

deforming nod Simplest approach use the

coefficients we just derived as the farce

per unit length f on a curved rod

Gray Hancock
µ Resistiveforcetherg

dragtheory
ffcs Is

5 11 Su In
We can use resistive force theory to calculate
the thrust induced by a rotatinghelix

Random
walksin

We have shown that a left handedhelixrotating
counterclockwise when viewed outside thecell
delivers a positive thrust



Comments resistive force theory is ok

for developing intuition and determining
scaling relations See the slides and
Qian Powers Breuer Phy Rev Lett 2008
for a table top elastohydrodynamics experiment
that is accurately describedby resistive
force theory Another interesting example
is the migration of helices in the
vorticity direction of a shear flow with
the sign given by the handedness of
the helix Marcos Fu Powers Stocker

Phy Rev Lett 2009

But when the nod does not havegentle
curvature RFT becomes inaccurate A

better approach is slender body theory
Just as we did for the sphere we can

add a line distribution of doublets to
the line of stokeslets at the center of a
nod and adjust the relative coefficient
to enforce no slip BE

Ics EMI EE Ecs ftp.M.EE kids

to



See Langas book and references therein

especially Lighthill 1976 for thederivation

Slender body theory is more accurate than
resistive force theory but we need to
solve an integral equation to get
Ics given Ics Once we have Ics
we can calculate the flow anywhere

In the slides we show a couple
examples of the comparison between
RFT SBT experiments Lice Powers Breuer
for a swimming helix PNAS 20

s BT t experiment for
Park Powers Breuera rotating helical bundle Ip's zoo

APYdiytg.ge igetg.slignt
sshana wave

way to derive the resistance coefficients for

First assume a uniform distribution of Stoheslets

of unknown strength along the rod centerline
We don't expect this assumption be valid
near the ends but if the rod is



long and thin we expect a small

error For a point x on the rod
surface a

force length

ICI In SEC x Edy

where Giger Sij FiR
since the nod is slender we may take

REI Then since I is constant

Ico bio gym
in f fig

But
J.in fy.wIezarctanhgtE22arctanh

l 8 2 since beta
I log 11,154112210925

Since Ico b o must be the velocity of the
rod we have I WIFE II

i e 3 452 4 350



cecturez.IE
es

giIYE.sjIpm
outline for today
1 Taylor sheet Lighthill squirmer two classic
models

2 The reciprocal theorem
3 More singular solutions
4 swimmer contribution to stress

model for
cis undulating swimmers Étygmis

cir transport of fluid by

Taylors question can we see in a simplemodel

now drag leads to propulsion

t.FIXs X undulations
Ys B sin Chx wt

material points on thesheet move up anddownin the swimmer frame



swimmingsimpose no slip BC on the

solve the Stokes equations
If y ly a 0 in the frame of the swimmer
the frame in which material points on thebody
move up and down then the sheet swims in
the lab frame where Icy a Q

Note that a shift in the origin of time
is equivalent to a shift in the origin for
x Since the length is infinite we conclude
IV O Also replacing the amplitude B
by B is a shift by onehalf wavelength
which should not affect the speed Thus

VC B VCB

Although the stokes equations are linear
the boundary conditions are nonlinear
we have to solve a nonlinear problem to
determine the swimming speed U This
situation is reminiscent of finding the eigenvalues
of a matrix To make analytic
progress Taylor expanded in powersof Bk



Linearity Vow or Voc c talk

Dimensional analysis V a CBE The

viscosity has dropped out because we
assumed that the swimmer gait is
prescribed independent of the load

sidecommentiwecanusetinearity
to see why swimming speed doesnt
depend on viscosity in the prescribed

swimmer problem Let us consider

a swimmer of finite size We

can find the swimming speed at
an instant in time by adding
two flows
c thrust flow Eaff
Facts is the anchoring
force required to keep Is
the swimmer from moving at this
instant



2 drag flow Off CYED Y drag force
required to drag frozen swimmer with

velocity Y Add the flows and forces

demanding Eales Folkswim O
to find I swim Both Ea and Ed are
proportional to M so viscosity drops out
If we accounted for the drivingmotors or the

É É ld CÉ
to expand the boundary condition 1 14 14
I x hs E th JyE to ex o

t

solving U swim Ic BW Cuswit
If you think the direction of
swimming opposite the direction of usain
propagation of the transversewave is obvious note
that a longitudinal swimmer swims in the

same direction as the propagating wave

Tee slides the swimming direction is determined

by the 2nd order disturbance flow requiredto
correct the error induced by the 1storder no shpBC



comments

ooo the Taylor sheet is useful studying how
various physical effects alter the swimming
speed

Laugh 2007 viscoelasticeffects
Leshansky2009 colloidal nature
Tuck 1968 inertia slowsthe swimmer

YEA't
Energy dissipated area of shat garble
This value is less than the value found
by Tuck at finite Re Recall that
for given boundary conditions Stokes flow
is the flow with minimum dissipation rate

We need both the longitudinal and transverse
waves to model the motion of thetips
of cilia in the ciliary envelope Demanding

the greatest flow for a given dissipation
rate yields two solutions

i



Lighthill squirmer 1952 Blake 1971

aim É Ienvelope

Replacing the ciliary envelope with a sphere
with slip BC is not such a big change
since shape does not matter much at low Re

simplest case I B sino Basinocoso 8

I d I Y Orender

Y o d

t t i IIe
pusher

I id

we can solve the problem as lighthill t
Blake did by solving the Stokes equations
in spherical coordinates by separation
of variables Or we can take a

shortcut using the reciprocal theorem
Stone t Samuel PRL 1996



S I Ez in da Sez Ein da

Problem 1 Stolus drag

a Yilmaz I constant

The fraction Eintra is

also constant Need to calculate to see this

G a
force the fluid
exerts on thesphere

3Mall
Problem 2 swimmer problem

Iii Eat I swim tes

f Ea a da O

Thus

I f Ea n da fC swim s E da

I swim Gamal Mea f Is I da



True for any Il I

I swim atar f Es da

Iswim3B.TW
We found the swimming speed without

calculating the entire flow field
It is also instructive to calculate the flow field
directly the key step in determining the coefficientsof the fundamental solutions is to demand that
the total force vanishes with no slip we find

É É gIÉiÉ É
There is no stokeslet

B aye p Caso to sinocosobecause the force
vanishes

potentialquadrapoletT
As we saw last time we get the potential
multipoles by differentiating the source

Lets verify that the terms above come from
differentiating the source and the Stoheslet



I find this easiest to do in Cartesian coordinates
See Pozrikidis Boundaryintegraland singularitymethods for
linearized viscous flow Cambridge 199.2
source Ua YI N ly É

potential
upon

é Toi r gift
ej2jY ej IF 341

potential
quadrupole

d VL E Toi r afteiduanl TIF
ejda 541

4
38ikxjt3117 it 8ijx

In our problem the swimmer is axi symmetric so

E d E Thus the potential dipole is

doublet
1 375 E L E 35050 ÉÉÉ

I cosof Sino E 35050

IGosoitzsinOE
Likewise
quad

15,5 cost 362,65022
so F Imad I cos20 3 6,0520 945,201

E 220520 2 EPzccoso
also g found

cecosq.si O E Sino

i e Emad Era Paccoso i cososino



The remaining term the stresslet is part of
the Stokeslet dipole

T Fé at E Ent t

I Fé

then on
stokesdipole gs ldn2nGijFej

I IF G jhej du
where Giii EyCI YIH 1 9 xisigy.se

3

7,11318 M
a i s

em

in jh
stress let not let

Examine the not let first consider the case I 1é

ITE Fé This is a point torque with
moment If dxé The corresponding flow is

Lyfe Jinx Sista Effdie z en d E at
But dx e xx de at é d I
so I t.EE EIIt
Note Icr a ftp.t wasino satisfies no slipfor a rotatingsphere



Imaginary torque required to rotatea sphere at rate w

The notlet the flow induced by a point force
is thesameas the flow inducedby the rotation of a sphere
Thetorque on our squirmer vanishes sothenotlet doesnotenter
Now turn to the symmetric part

IstessWIEEte.CI 3EyJ.d

Iet Ei Réd I fédttdé x

or Istres't Jem 1151 where IFIedEdtdef
is the stresslet tensor we'll see in a

moment that is the contribution of a

swimmer to the average stress

First check that it gives the term we found
in the squirmer flow Again I E E for our

squirmer
stresslet

Iggy
1 300520

Ifm F Paccoso

Summarize We found that the Stokes dipole
can be written as



by a rotating
spheresubjecti

Infé
where If II dye féeéd stets

M ed x Fe

In our case d GE and the leading
term in the far field is the stresslet

ooo see the slides for the measurement of the

far field flow of a swimming E coli

bacterium and the comparison with a

stresslet flow Drescher Dunkel Cisneros

Ganguly Goldstein PNAS 2011

they used non tumbling bacteria

they looked for events where bacteria swam
in the focal plane

n they tracked fluid tracers and averaged
over many bacteria to get the time
averaged flow
I 12 pm f I 0.4 PN

Near a surface there is an image
stresslet below the surface altering the
form of the flat lines



volvox is not neutrally buoyant its flow
field is given by a stoheslett stresslet
potential dipole The stokeshtdominates
the far field and the potentialdipole
is yore dominant then the stresslet
Drescher Goldstein Michel Polin Tuval PRL2010

we close this lecture bysketchingBatchelori
1970result that the particle contribution to
the mean stress in a suspension is given
by the stresslet volume

dilute solutionof swimmers

Eij I foij du u

includes the cell volumes

steps See Langa's bookfor details
write the volume as U V Uswimmerst Vswimmers

use Stohest integration by parts to write

Eiji tf.figijtmaivjt2juiJdvttfoijdv
m

stress

let Vo Vswimmers



Here we summarize the main steps from Langa 2020

Suswimmigidu fufucoin 5 Wii j dv Sggiuxids
hardtoknow If'Enstefferstasiertoknow

Next write the integral over V Vo in terms of

Ojai 12111 volume I gjaidu t Sutjuidu
TEFgradient

I Suppuidutffquinjds

Eiji If pSijdV
t y la dit 2 Ui Ej

with Ei IS Oi ax nu moving tojniffds

Ej I Sij a t t.si Eu
degiviftoric

I E t'z8ijEIn

Efd fgfiaxjna tgaxenkfij gcvinjtujn.IS
Batchelor 1970

Eij RSijtm jttitJa.ttj 259 I Ipdv s Eu

key step for a sufficiently dilute suspension
we may replace the integrals over the surfaces
with integrals over large spheres one surrounding



each
swimming

n

surface and its
y father
I lid4 Is I we assume the
1 On dominant componentof
1 fluidonly the flow at asphere

tidy is the stresslet flow of
the swimmer at the center of the sphere and we
disregard the contributions from swimmers outside
a given sphere Calculate Starting from
Ui Em show p Exi.si i and

Gj 3
5xiy.IE siuxexpIfihtexJ

Then use Batchelors formula to get

it Ej SijEii EE Saiswimmers

n swimmer concentration
or E I Emmsi N swimmers

orBatchelor formula applies to passive and
active suspensions As an

apg.ge
ia

consider a dilute suspension of spheres
in a shear flow and calculate



shear flow rotation t extensional flow

É n If
ii

a 8 711 8,2 74 61 11s
solve flow around a sphere with It In
as r co The rotating part does not
lead to a stresslet and i does not

contribute to the mean

f f stress Solve for a

sphere in an extensional

f y
flow to find

1 10 a 74111 Bhati
p

where EE EE It

of É t.EE Ea3E I

I GIMME



The contribution to the stress is

therefore E 231 man É
Defining the volume fraction as

43 93 n we find 2 5270

totalviscosityy tf.iq yatsin tridentata
Einstein 1908

only accurate for
PE 0.03



Lecture 3 interactions collective motion at Re O

Thuvsdayllam 12 30pm2022 07 2

outline for today
l swimmers in an external flow
2 interaction between swimmers dilute case
3 linear stability analysis of isotropic state

or How does a squirmer swim in an externally imposed

flow

ÉÉm
v

sphere

a ÉÉÉ II now
swimmer

I Is If
we've onlylooked at t Ifswimmers thatdon'trotate

as they swim but in general
there could be rotation say if one side beatsmorethantheoff
Last time I just stated the solution to the
problem of a force free and tongue free
sphere in a Clinear external flow It
turns out that the reciprocal theorem



leads to simple formulas for the linear
and angular velocity of a rigid sphere
in flow These formulas are called Faxon's

laws To derive then take problem 1

to be a translating rotating sphere with

a o as r 00 Let problem 2 be the

disturbance fly I Io of the problem
we want to solve Then we can showthat

If In Q Ileselenter

If I TXEat see any of the
Stokesflow books

The background flow In adverts the sphere
like a point particle at the center of
the sphere with a finite size correction
whenever the background streamlines are sufficiently
curved If the scale of variation I of

Iw is large compared to the swimmer size a

then we may neglect the correction Indeed
all is typically small for swimmers Not
that V21 0 for linear flows shear

rigid bodynotation and pure extension Note
also that a sphere in steady linear flow rotates
at a constant rate half the vorticity



We can use these results to solve far
deterministic swimmer trajectories

É 1st Yal IF'al
É fast I Exeal xp

These trajectories can be found analytically for
some simple flows such as simple shear

mys
cycloid

8,8
note noise alters the trajectory damping

out the oscillations e.g tenHagen
Wittkoski t Lowen 2011

Poiseuille flow
upstream swinging

f É p oscillates between
two extremes

p IE
downstream tumbling

t maggots zittl stark
2012



Rusconi et al 2012 Noise a single E coli
can switch between upstream
anddownstream trajectories

see Junot Figueroa Morales et al 2019 EPL
3D fracking of E coli in Poiseuille
flow E coli are more like rods
than spheres role of Jefferyorbits

Spheres rotate steadily in constant shear

dirt o

Rods have a time dependent rotation rate

a f 2 fast p d slow

or The orbit of a rod in shear is called
a Jeffery orbit
Exercise using resistive force theory with

51 2511 impose zero total hydrodynamic
force and torque on a thin rod in



a linear flow I I I Ai constant

and show that yejuttivutoura Txu

pi Cat xp Cij Pip Ejupu

pit Wijpj Sij Pip EjkPu
a

Wig avi Jiu

É EH
Tamponent Fcmponent
of rotation is time dependentis like fax in
for a sphere

1922Jeffery exact result for an ellipsoid

a Pi Wijpj BCSij Pip Ejupu

B III ng
rel sphere
r I nod

this formulas have many applications
see Cangas book We'll use it to

study the linear stability of a collection

of swimmers



o Last topic a minimal continuum model

for a dilute suspension of swimmers

I i
E

We'll use distribution functions as is commonly

done in polymerphysics e.g Doit Edwards theory

of polymer dynamics 1988

Dilutedit each swimmer sees only
the stresslet of theother
swimmers leading to
reorientation as well as
an active stress that
drives flow

ECE p t d'x dr
swimmers in volume

d3x about y and solid
angle dr about pnotmomentum

density net t SE de

É Yy Jan f Epi
O



Ep Sii Pip Ep
I can change because particles mare due to

swimming flow or Brownian motion

Ix VP I Eat I DE I
likewise I can change due to

rotational swimming motions flow or Brownianmotion

Ip L xp LI BCI FP E PE D Ept

We neglect notationfromswimming and Brownian
motion 1 0 D D Dr O for illustration

purposes

Recall ur Em tight
pullerssis PC Sij pi p pyo
pushers

j.de S CI p t Sijds fromBatchelor

P J Elp p I Sipdr
I Pn Qi Qi Scpipj t8ij

nematic order parameter
tensor for theswimmers



The flow obeys nematic symmetry E M E

near
paigighttionnas

assume uniform concentration for today

FI Mt's at 0 a P n

HE Ex up Eton E a a ijpjtBGijpipjttjupn.it
o

the swimmers
are advected Forintsbytheflowsfromtheotuns we we treat theflowinduced
neglect thefinite by the swimmers assizecorrectionslikewhat
we saw in Faxéns a linear flow
law

Linear stability analysis of the isotropic
state with zero mean velocity sidtifit
E If I yet k eik a

tot

I I CK eik z tot

linearize

ZE VE ZEE 3BPE PI O

TI Mt's P V S E p Pdr 0

we absorbed the isotropic part
of Q into P



Now use the elk tot dependence

F 11 0 Ps PR Ep p'dr I
solve Stokes to get

a indult hit fÉp p'd k
calculate ET LIKE IIE
and find

Gtik.ph 3BIp.kp I II JEp'pidrk
Fish

This suggests É p.kp.ksflk.pl
Lets just get the boo limit of the
growth rate 6 IE p ti p Itt
where t is a constant

Thus
0 71,14

in the limit of
k 70



a spherical swimmers 13 0 are neutrally stable

elongated swimmers B S O are

IEEE stable if they are pullers Pco

unstable if they are pushers Poo
0th o is independent of swimming velocity
U so active extensile nematics undergo are
also unstable as we saw in the complementary
approach dynamics of I and E taken by Julia Yeomans
and Suzanne Fielding in their lectures See e g
the supplementary material to SoniPelcovitsPowers PRL 2018
or the more completetreatment in Santhosh et al JStatPhys2020

Interpretation
k o I a p I p Isoc sin 20

take tell Pz axis I 11 px axis

f E and É have a

relative factor of a
they are out of phase by 12

i
pushers

y alignment

Fear
3 no alignment

pullers alignment
dampen

spherical swimmers don'talign



conclusions

We developed the physical framework for
studying the hydrodynamics of propulsion
mechanisms used by microorganisms
including the basics of how flow
affects swimmers and how they affect
each other through hydrodynamics

There simple calculations can be extremely

helpful before any attempts of doingnumerical
computation which is inevitably required
because of nonlinearities

There is still plenty of room to apply
these approaches to problems in marine

biology reproduction and infectious
diseases


