Nonequilibrium dynamics in Coulomb glasses near the metal-insulator transition

Dragana Popović

National High Magnetic Field Laboratory
Florida State University, Tallahassee, FL, USA

Boulder 2009 Summer School

Supported by NSF DMR and NHMFL (NSF and the State of Florida)
Lecture I: Metal-insulator transition and complexity in electronic systems

Lecture II: Studies of the electron dynamics near the 2D MIT: Relaxations of conductivity

Lecture III: Studies of the electron dynamics near the 2D MIT: Fluctuations of conductivity

- Phase diagram and aging in a 2DES in Si – brief summary
- Noise measurements as a probe of glassiness in low- and high-mobility samples: - probability density functions
 - noise power spectrum
 - second spectrum
- Noise measurements in a magnetic field
- Theory, simulations, experiments in other systems
Phase diagram of a 2DES in Si

Glassy Behavior (for \(n_s < n_g \))

- **Insulating**
 \(\sigma(T \to 0) = 0 \)

- **Metallic** (Non-Fermi Liquid)
 \(\sigma(T \to 0) \neq 0 \)

- **Metallic** (FL? NFL?)

Glassy regime:
- slow, nonexponential relaxations
- diverging \(\tau_{eq} (T_g = 0) \)
- aging (change at the MIT)

Waiting time protocol for each density \(n_s \):
- fix \(n_s \) at 10 K
- cool down to meas. \(T \)
- change \(n_s \) to a different value during \(t_w \)
- back to the initial density and measure \(\sigma(t) \)
- warm up to 10 K; repeat for different \(t_w \)

What about aging at lower \(T \)?
Waiting time protocol at $T=0.24$ K

slowly relaxing
$\langle \sigma(t) \rangle$ subtracted
(only top 3 traces)

Much more noise after t_w (during aging) than before

Before: signal **noisier**
at low n_s

Study fluctuations (noise) at low T
provides **complementary information**;
so far, only mean values of conductivity

Popović - Boulder 2009 lectures
Noise in Laponite (colloidal suspension)

Probability density function (PDF)

\[P(V) \]

Age \(t_{w1} < t_{w2} < t_{w3} \)

non-Gaussian \(\downarrow \)
Gaussian

as it ages and approaches equilibrium

(Buisson et al., Proc. SPIE 5469, 95 (2004); edited by Popović, Weissman, Rácz)

Popović - Boulder 2009 lectures
Noise protocol:
- start from a fixed n_s at high T (*e.g.* 10 K)
- cool down to measurement T (< 1 K)
- measure $\sigma(t)$
- warm up to ~1 K; change V_g (density n_s) by a small amount – *no observable relaxations*
- cool down to measurement T (< 1 K)
- measure $\sigma(t)$ for this new density
- repeat (warm up to ~1 K, change n_s in a small step, cool down, measure $\sigma(t)$)

Noise protocol: *density changed in tiny steps at ~1 K (not at 10 K)*
Noise in low-mobility Si MOSFETs

[S. Bogdanovich and D. Popović, PRL 88, 236401 (2002)]

Conductivity

• relative fluctuations are of the order of 100% at low \(n_s \) and \(T \)

• noise decreases with increasing \(n_s \) and \(T \)

• non-Gaussian

• the character of the noise changes dramatically as \(n_s \) is varied: at high \(n_s \), the variance no longer varies with time

\[
\delta \sigma^2 = \langle (\sigma - \langle \sigma \rangle)^2 \rangle
\]

Large, slow, and non-Gaussian at low \(n_s \) and \(T \)!

Popović - Boulder 2009 lectures
\[\delta \sigma = \langle (\sigma - \langle \sigma \rangle)^2 \rangle^{1/2} \]

- a dramatic change of \(d(\delta \sigma)/dn_s \) at \(n_c \) (2D MIT)
- a dramatic increase of noise (\(\delta \sigma/\langle \sigma \rangle \)) at \(n_g \) (glass transition)
- glassy phenomena observed below \(n_g \)

\(T = 0.130 \) K
\(T = 0.196 \) K
\(T = 0.455 \) K
\(T = 0.805 \) K
Probability density functions (PDF) of fluctuations

- PDF: - Gaussian for \(n_s > n_g \)
 - non-Gaussian for \(n_s < n_g \)

Low-mobility sample

\(T = 0.13 \, \text{K} \)

\(n_c < n_s (10^{11} \, \text{cm}^{-2}) = 5.58 < n_g \)

(metallic glassy phase)

Each time interval \(\approx 35 \, \text{minutes} \)

- structure changes with time

Popović - Boulder 2009 lectures
PDF for sixteen different 35 minute intervals:
- broadens with the increasing sampling time but never becomes Gaussian

• nonergodic on experimental time scales

Low-mobility sample

$T=0.13\ \text{K}$

$n_c < n_s (10^{11}\ \text{cm}^{-2}) = 5.58 < n_g$

Each time interval $\approx 35\ \text{min}$
Noise power spectrum (low-mobility samples):

Power spectrum of \[\frac{\sigma(t) - \langle \sigma \rangle}{\langle \sigma \rangle} \]:

\[S_I \propto \frac{1}{f^\alpha} \]

- a sudden and dramatic slowing down of the electron dynamics for \(n_s < n_g \approx 7.5 \times 10^{11} \text{ cm}^{-2} \).
Noise exponent α has a **sudden jump** at $n_s = n_g$!

\[S_I \propto 1/f^\alpha \]

- A sudden shift of the spectral weight towards lower f indicates a sudden (sharp) and dramatic slowing down of the electron dynamics at n_g.
- Observable only at low enough temperatures.

Use noise to identify the glass transition!

[Bogdanovich and Popović, PRL 88, 236401 (2002)]
Resistance noise and power spectra in high-mobility (low disorder) Si MOSFETs

\[S_R \propto \frac{1}{f^\alpha}, \quad 1 \leq \alpha \leq 2 \]

\[T = 0.24 \, \text{K} \]

[Jaroszyński, Popović, Klapwijk, PRL 89, 276401 (2002)]
Noise in samples with low disorder:

- a dramatic increase of the low-frequency noise at low n_s and T
- a rapid increase of the exponent α with decreasing n_s

\Rightarrow Glass transition at $n_g \approx 10 \times 10^{10} \text{ cm}^{-2} \geq n_c$

Glass transition and the MIT almost coincide – no intermediate phase

Popović - Boulder 2009 lectures
Noise in high-mobility Si MOSFETs:

- non-Gaussian at low n_s and T

- variance changes with time

\[\langle \rho - \langle \rho \rangle \rangle \delta \rho \]

\[\delta \rho^2 = \text{variance} \]

$T = 0.24$ K

$n_s (10^{10} \text{ cm}^{-2}) =$

- 8.7
- 9.27
- 9.56
- 9.63
- 9.86
- 10.43
- 11.15
- 11.87

check higher order correlations

[Weissman: Rev. Mod. Phys. 60, 537 (1988); Rev. Mod. Phys. 65, 829 (1993)]
Second spectrum – “noise of the noise”
(Voss & Clarke, Restle & Weissman, Seidler & Solin)

- $S_2(f_2, f)$: power spectrum of the fluctuations of $S_R(f)$ with time
 - i.e. Fourier transform of the autocorrelation function of the time series of $S_R(f)$; fourth-order noise statistic

- probes correlations between fluctuators:
 - uncorrelated fluctuators
 - $S_2(f_2, f)$ white;
 - correlated fluctuators
 - $S_2 \propto 1/f_2^{1-\beta}$ (non-Gaussian)
Second spectrum in a 2DES in Si:

- a dramatic change in S_2 near n_g: S_2 white – uncorrelated at high n_s, S_2 nonwhite – correlated below n_g
- high-mobility samples: $n_c \leq n_g \sim n_s^*$ (no intermediate phase)
- low-mobility samples: $n_c < n_g \approx 1.5n_c < n_s^*$ (wide intermediate phase)

Popović - Boulder 2009 lectures
Scaling of the second spectra

- no systematic dependence on f ⇒ scale invariance
- consistent with the hierarchical picture of glassy dynamics
- rules out interacting two-state systems (droplets, clusters, defects, …) as possible sources of noise

(measured at $f = (f_L, 2f_L)$)

Popović - Boulder 2009 lectures
Noise measurements in parallel magnetic fields:
spin or charge?

- A sufficiently strong magnetic field is expected to destroy the spin glass order; 2DES fully spin polarized for $B \approx 2-4$ T

![Graph showing noise measurements](image)

$S_R \propto 1/f^\alpha$

$\alpha = 1.58$
$\alpha = 1.24$
$\alpha = 0.96$
$\alpha = 0.58$

$n_s = 11.9 \times 10^{11} \text{ cm}^{-2} > n_c(B=0)$

Popović - Boulder 2009 lectures
The same criteria for glass transition:

- a sudden and dramatic increase of S_R, a rapid rise of α, and a change of $(1-\beta)$ at $B_g(n_s)$ at low B and $n_g(B)$ at high B
Phase diagram in B

- glass transition persists in high parallel B, where the 2DES is spin polarized

n_g – glass transition

- charge, as opposed to spin, responsible for glassy ordering

Coulomb glass
Global phase diagram (theory)

- (2D) MIT as a Mott transition with disorder (DMFT picture)
- glass as a precursor of MIT
- melting of glass even at T=0 (by quantum fluctuations)
- Metallic glass phase: $\sigma(T) - \sigma(0) \sim T^{3/2}$
- hierarchical, correlated dynamics

Physical trajectory: $E_F \sim n_s; U \sim n_s^{1/2}; W \sim \text{const.}$

1. High-mobility samples
2. Low-mobility samples

[V. Dobrosavljevic et al.: PRL 83, 4642 (1999); PRB 66, 081107 (2002); PRL 90, 016402 (2003); PRL 91, 066603 (2003); EPL 67, 226 (2003); PRL 94, 046402 (2005)]
Simulations

- **Molecular Dynamics** [C. Reichhardt and C. J. Olson Reichhardt, PRL 93, 176405 (2004): a classical model of interacting electrons in 2D with disorder]

- increase of noise power and α with decreasing density and T

- non-Gaussianity at low n_s and T

Similar to experiments in 2DES in Si

Popović - Boulder 2009 lectures
Popović - Boulder 2009 lectures

Noise power and α maximum

Trajectories change with time: dynamical inhomogeneities

\bullet Monte Carlo [Kolton, Grempel, Dominguez, PRB 71, 024206 (2005)]:
3D Coulomb glass - heterogeneous dynamics

FIG. 5. Electron trajectories for a fixed period of time for fixed $T = 0.09$ at (a)$N_s/N_p = 1.67$, (b) 1.37, (c) 0.5, and (d) 0.3.
Experiments in other systems

- $1/f^\alpha$ noise in 2D holes in GaAs (much less disorder than in Si) – some similarities, but no changes in $\alpha (\approx 1)$ and $(1-\beta) (\approx 0)$
- not low enough p_s, T, f, or disorder?

[Leturcq, L’Hôte, Tourbot, Mellor, Henini, PRL 90, 076402 (2003)]

\[p_c = 1.44 \times 10^{10} \text{cm}^{-2} \]
\[p_s^* = 1.57 \times 10^{10} \text{cm}^{-2} \]
• $1/f^\alpha$ noise in bulk Si:P(B) - a huge increase of noise and the onset of non-Gaussianity at the MIT!!! Similar to 2DES in Si!

Emergence of nanoscale inhomogeneities!

High temperature superconductors

[C. Panagopoulos and V. Dobrosavljević, PRB 72, 014536 (2005)]

Glassy insulator?

Metal-insulator transition?

Inhomogeneous, conducting glassy state?

Homogeneous metal

Quantum glass transition?
High temperature superconductors

Glassy insulator | Metallic glassy phase ($|k_F| < 1$; “bad” metal) | Metal

T_N | Marginal Fermi Liquid | T_m

T^* | Pseudogap | T_c

Antiferromagnet

Spin Glass

Superconductor

SC-Glass

MIT in a 2DES in Si at $T=0$

[Coulomb glass; $T_g=0$]

n_c | metal-insulator transition | n_g | glass transition

Popović - Boulder 2009 lectures
Lightly doped \(\text{La}_{2-x}\text{Sr}_x\text{CuO}_4 \)

\(x \geq 0.02 \): short-range magnetic order for \(T > T_{sg} \)
(\(T_{sg} \) - spin glass transition)

- AF domains; holes along domain walls

3D long-range antiferromagnetic (AF) order:

\(x = 0.03 \) carrier concentration

\(T_{sg} \sim 7-8 \) K

Popović - Boulder 2009 lectures
Resistance fluctuations (noise); LSCO

- noise Gaussian at “high” T (e.g. T > 0.18 K for R_{ab} noise)
- at low T, non-Gaussian noise metastable states (out-of-equilibrium)
Noise in R_{ab}

- Structure depends on the observation time – different states contribute \Rightarrow nonergodic

$T = 0.082 \text{ K}$
$B = 0 \text{ T}$

3 h intervals

$\Delta R / R(10^{-4})$
- increase sampling time to 12 hours, but never becomes Gaussian at low T

- nonergodic, does not reach equilibrium on experimental time scales at low T

Onset of glassiness in transport at $T \ll T_{SG}$: suggests spin and charge glass not directly related.
Noise statistics: T and B dependence

- Power spectrum: $S_R \sim 1/f^\alpha$

\[\alpha \text{ increases as } T \text{ is reduced; no effect of } B! \]

fewer metastable states that dominate at low T in the exp. time window

\[\text{Slowing down of the dynamics as } T \to 0 \]
Second spectrum $S_2(f_2, f)$

- the power spectrum of the fluctuations of $S_R(f)$ with time

1) white ($1-\beta = 0$) for uncorrelated fluctuators (Gaussian)

2) $S_2(f_2, f) \propto 1/f_2^{1-\beta}$ for interacting fluctuators (non-Gaussian)

Increase of correlations as $T \to 0$

Noise statistics independent of both B and magnetic history

Popović - Boulder 2009 lectures
(Partial) summary of noise results in LSCO

- Slowing down of the dynamics as $T \to 0$
- Increase of correlations as $T \to 0$
- Slowing down of the dynamics as $T \to 0$
- Increase of correlations as $T \to 0$

Glass transition at $T=0$

- Noise statistics independent of both B and magnetic history (unlike conventional spin glasses) \Rightarrow charge, not spin!
- Onset of hysteretic and memory effects in magnetoresistance:
 $$T_{\text{onset}} \ll T_{\text{sg}}$$

\Rightarrow Charge glass transition $T_{\text{cg}} = 0$

[I. Raičević et al., PRL101, 177004 (2008)]

Popović - Boulder 2009 lectures
Scaling of the second spectra

- can distinguish between different models:
 - droplet approach
 - hierarchical, tree-like model

S_2 decreases with f for a fixed f_2/f, consistent with droplet picture (short-range interactions)

Spatial segregation of holes as a result of competing interactions on different length scales

Cluster charge glass
Summary of Lecture III

- Noise study in a 2DES in Si:
 - sharp transition to a glassy phase as a function of density
 - glass transition at $T=0$
 - glassy phase: slow, correlated, hierarchical dynamics
 - glassy ordering due to charge, not spin \Rightarrow Coulomb glass

- Noise study in lightly doped $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$:
 - transition to a glassy phase at $T=0$
 - glassy phase: slow, correlated dynamics; clusters
 - glassy ordering due to charge, not spin \Rightarrow Coulomb glass

- Noise as a probe of glassy dynamics in other systems (e.g. doped Si)

Glasses everywhere…