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Abstract 

We numerically investigate the Anderson transition in an effective dimension d (3 < d < 11) for one particle propagation 
in a model random and quasi-periodic potential. The found critical exponents are different from the standard scaling picture. 
We discuss possible reasons for this difference. 

PACS." 71.55.Jv; 05.45.+b 

The Anderson transition has been intensively in- 

vestigated during last years. According to the scal- 

ing theory for spinless particles all states are local- 

ized for dimension d < 2, while a transition from lo- 

calization to diffusive propagation occurs for d > 2 

when a certain hopping parameter k crosses a crit- 

ical value kcr (see reviews [1,2]). The one parame- 

ter scaling theory predicts that in the localized phase 

(k < kcr) the typical localization length of wavefunc- 

tions diverges at the critical point as l ~ Ik - kcrl -v.  

Above the critical point the dynamics is diffusive and 

the D C  conductivity cr which is proportional to the 

diffusion rate D is assumed to approach zero at the 

critical point as ~r c~ D ~ bk - kcrl s. Scaling argu- 

ments give the following relation between the expo- 

nents: s = ( d -  2)v. For dimension d = 2 + E the E 

expansion theory predicts s ----- v = 1 + O(e 4) [3]. In  
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higher dimensions the problem was studied by many 

authors [4-6]. According to the results presented there 

v = 1/2 for d --+ ec while for the delocalized phase 

s ~ d / 2  [6] or o- decreases exponentially near the 

transition [4]. 

Numerical investigations of the exponents has been 

restricted to d = 3 where it was found s = v = 1.5 4- 

0.1 ([2] and reference therein) in agreement with the 

scaling relation between v and s. However, the applied 

numerical methods were quite heavy and did not allow 

to obtain a better accuracy in the determination of 

the exponents or to increase the dimension. For 2 < 

d < 3 and d = 4 there are only recent results for v 

[7] obtained by transfer matrix technique. While the 

results there seem to be in agreement with the scaling 

theory the system size was so small that the question 

if the thermodynamic limit had been reached remains 

open. 

An effective way to increase the number of dimen- 

sions was proposed in [8] and applied for investigation 

of transition in d = 3 [9] where it was also found s 

1.25 and v ~ 1.5. The method consists in the inves- 

tigation of the well-known model of quantum chaos 
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namely the kicked rotator model with a frequency- 

modulated amplitude of  kicks. The time-dependent 

Hamiltonian of  the model is given by 

H = H0(fi) + V(O, t)31(t), (1) 

where 31 (t) is the periodic delta function with pe- 

riod 1 between kicks, h = - iO/O0 and 0 is a peri- 

odic angle variable. H0 determines the spectrum of 
unperturbed energies En chosen randomly distributed 
in (0, 27r). The perturbation V depends on time in a 

quasi-periodic way: 

V(O, t) = - 2  tan -1 

2k cosO + E cos(Oj + cojt) (2) X 

j = l  

with d - 1 incommensurate frequencies coj. Here Oj 

are initial phases and the time is measured in num- 
ber of  kicks. The Hamiltonian (1) can be re-written 

in the extended phase space by letting fij = - i 3 / 3 0 j .  

After that the problem becomes periodic in time and 
the eigenvalues equation for the quasi-energy eigen- 

functions can be mapped to the usual solid-state form 

[9,10]: 
! 

Tnu n + k Z U n - r  = 0 ,  (3 )  
r 

where the Y~/indicates a sum over the nearest neigh- 

bors to n on a d-dimensional lattice and the diagonal 
term at the site n = (n, nl . . . . .  nj . . . . .  na-~) is 

r n  = - - t a n  En-[ -Z f / ; j -+- ) .  . (4) 
j = l  

Here ~bj = njcoj and ). is the quasi-energy. If  ~bj are 
randomly distributed in (0, 2zr) then Eq. (3) becomes 

equivalent to the Lloyd model at the center of  the band 
(E = 0). The parameter ). determines only the phase 
shift and it is clear that the physical characteristics are 

independent on its value. Since the mapping between 
(1) and (3) is exact, it is possible to study the Anderson 
transition in d-dimensions by investigating the dynam- 
ics of  the one-dimensional system (1). This gives an 
effective gain of  order N a-1 in numerical computa- 
tions if N is the system size. Finally, discussing the 

model, we should mention that the presence of  disor- 

der in the expression for Tn is crucial. Indeed, accord- 

ing to the exact mathematical results [11] in the case of  
pure quasi-periodic potential when in (4) En = con all 

states for typical irrational frequencies are exponen- 

tially localized for any d (for 1D case see also [12]). 
The physical meaning of this result is quite clear: the 

classical dynamics in this case is integrable and vari- 

ation of  unperturbed actions (levels n) is restricted by 

invariant curves. However, even if only in one direc- 
tion the dispersion becomes nonlinear (e.g. En c< n 2) 

then the classical dynamics can become chaotic with 

diffusive spreading in all n directions. In this paper we 

investigate how this diffusion is affected by quantum 
effects. For simplicity we study the case with random 

variation of  En with n, which is also nonlinear. 

Using the above approach we studied numerically 
the Anderson transition for integer 3 < d < 11 in the 

model (1) and (2). The choice of  frequencies was the 

following: for d = 3 we fixed col,2/27r = 1/)-, 1/). 2 

with ). = 1.3247, . . .  being the real root of  the cubic 
equation x 3 - x -  1 = 0 which gives the most irrational 

pair [9]; for d = 4 we added co3/2~r = l / v / 2  and 
for d > 4 we chose all frequencies randomly in the 

interval (0, 2re). The size of the basis N was between 

1024 and 4096. The total number of  iterations (kicks) 

was usually around 106 but in some cases close to 
the critical point the evolution was followed up to 107 

kicks. We used from 10 to 100 realizations of  disorder 
to suppress statistical fluctuations. 

A typical example of  diffusive spreading over the 

lattice for d = 4 is shown in Fig. 1. Here k > kcr 

and the second moment of  the probability distribution 
grows linearly with time. At the same time the prob- 

ability distribution over levels has the gaussian shape 
(see Fig. l(b)). This allows to determine the diffusion 

constant D. Usually, we extract it from the probabil- 
ity distribution since here the statistical fluctuations 
are lower than for the value obtained from the second 
moment D = n2/t. However, both methods give quite 

close values. The value of  D found in this way is then 
averaged over different realizations of disorder. For 
k < kcr the probability distribution averaged in time 
reaches a stationary exponentially localized form and 
at the same time the growth of  the second moment n 2 
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Fig. 1. (a) Behavior of the second moment on time for k = 0.33, 
d = 4 (diffusive side). Dashed line is the fitted diffusion coeffi- 
cient D = 0.0205. Fourier basis is N = 1024. (b) Logarithm of 
the averaged dislribution function between t = 0.995 x 106 and 
t = 106 (t = number of kicks). Full line is the best fit gaussian 
which gives a diffusion coefficient D = 0.0229. On x-axis we 
put n 2. 
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Fig. 2. (a) Behavior of the second moment on time for k = 0.24, 
d = 4 (localized side). Basis is N = 1024. (b) Logarithm of 
the averaged distribution function between t ---- 0.3995 × 107 
and t ---- 0.4- 107. On x-axis we put n. Line represents the fitted 
localized distribution with 1 = 15.4. 

is saturated (Fig. 2). F r o m  the obtained stationary dis- 

tribution the local iza t ion  length  is de te rmined  in two 

ways.  One  is by the square list fitting o f  In 17tnl 2 = 

- - 2 g n  + b wi th  the local iza t ion length be ing  I = 1 / F  

and b some constant.  2 Ano the r  defini t ion is v ia  the 

par t ic ipat ion ratio so that Yi = Z n  1~ [tn 14 / ~ n  laPn 12. 

Af te r  that both  values F and Fi were  averaged over  dif- 

ferent  real izat ions o f  disorder. The  inverse part icipa- 

t ion ratio 1/Yi determines  another  length scale which  

in pr inciple  can be  parametr ica l ly  different  f rom 1. 

The  numer ica l  results for the dependence  o f  D,  V 

and Fi on parameter  k for  the effect ive d imens ion  d ---- 

2 Let us mention that in [9] it was chosen b = In g tO have 
normalization .equal to one. This choice enhances the contri- 
bution of the states near the maximum at n = 0 so that g 
defined in this way becomes close to the definition of g via 
the participation ratio Yi. For d = 3 our data for v(Fi) defined 
via Yi give (see Table 1) v(Fi ) = 1.71(6) to becompared with 
v ~ 1.5 from [9]. The fit without fixing b stress more the con- 
tribution of far exponential tails where according to our data 
the exponent is larger v(y) = 2.37(1). 

3 are presented in Figs. 3 and 4. To determine the scal- 

ing near  the crit ical  point  we  used the three parameter  

fit o f  the type ~'(i) ~--- Yolk--kcr] v and D = Dolk-kcr] s. 
The results o f  the fitting are g iven in the figure cap- 

tions (see also Table 1) as wel l  as the parameters  o f  

X 2 test. Formal ly  the statistical error  of  the exponents  

s, v found in this way  is rather small  (less than 1% 

of  the value).  However ,  the es t imate  of  non-stat ist ical  

errors is quite  difficult  s ince the fitting procedure  is 

rather sensit ive to the value  o f  kcr. F r o m  compar i son  

of  kcr values  obtained f rom diffusive and local ized  

phases it can be es t imated on the level  o f  5%. The  val-  

ues o f  the exponents  for  D and gi are in good  agree-  

ment  wi th  the results o f  [9] (see also footnote  2). Our  

data indicate  significant  di f ference for  the exponents  

v def ined v ia  F and Yi for  d = 3. To demonstra te  the 

dependence  n e a r  the critical point  we  fixed the value  

o f  kcr def ined f rom Fig. 3 and show the behavior  in 

l o g - l o g  scale near  kcr in Fig.  4. The two parameter  fit 

wi th  fixed kcr shown in Fig. 4 gives s imilar  values o f  

the exponents  s, v as in the case o f  Fig. 3. The  l inear 
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Fig. 3. Inverse localization length (left side) and diffusion 
rate (right side) for d = 3. Lines are the separate fits: 
Y = y 0 ( k c r - k )  v with Y0 = 8.01 (1), kcr = 0.509 (1) 
and v = 2.37 (1) with X 2 = 10.5 and D = D o ( k - k c r )  s 
with DO = 2.56 (2), kcr = 0~479 (1) and s = 1..25 (1) 
w i t h  X 2 = 32.6. A similar fit for Yl = )/0i(kcr - - k )  vi gives 
)'0i = 3.7 (3), kcr = 0.489 (4), vi = 1.71 (6) and X 2 = 15.4. 
Here 10-100 random configurations have been iterated up to 
107 kicks. Data errors are within the symbol size. 
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d e p e n d e n c e  o f  In y,  In D o n  ln l l  - k /kcr l  desc r ibes  

qui te  we l l  the  va r i a t ion  o f  loca l i za t ion  l e n g t h  and  dif-  

fus ion  in o n e / t w o  orders  o f  m a g n i t u d e .  

The  case  w i th  the  d i m e n s i o n  d = 4 was  inves t iga t ed  

in a s imi l a r  way. T h e  resul t s  are p r e s e n t e d  in Figs.  5 

and  6. T h e y  def in i te ly  show s t ronge r  dev ia t ion  f r o m  

the  sca l ing  re l a t ion  b e t w e e n  e x p o n e n t s  v, s. Espec ia l ly  

p r o n o u n c e d  is the  smal l  va lue  o f  s w h i c h  r e m a i n s  less 

t han  2. 

Insp i te  o f  this  dev i a t i on  f r o m  the  sca l ing  re l a t ion  

the  b e h a v i o r  at  the  cr i t ica l  p o i n t  is c lose  to the  s tan-  

da rd  expec ta t ions  [1 -6 ] .  Indeed ,  a t  kcr the  c o n d u c -  

t ance  ha s  a f ini te  cr i t ica l  va lue  g*. F r o m  a n o t h e r  side 

g ~ E c / A  w h e r e  Ec ~ D / L  2 i s  the  T h o u l e s s  en-  

ergy, D the  d i f fus ion  coef f ic ien t  and  A ~ B / L  d is 

the  leve l  spac ing  i n a b l o c k  o f  s ize  L w i th  B ~ 1 

b e i n g  the  b a n d  width .  There fo re ,  at  kcr one  has  D 

B g * / R  d -2  w h e r e  R ~ L is a typ ica l  l e n g t h  scale.  A t  
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Fig. 4. d = 3. (a) Logarithm of diffusion rate vs. ln(k/kcr - 1) 
where kcr is extracted from the separate fit (Fig. 3). Straight 
line is the best fit line with slope s ---- 1.248 (5) and X 2 = 10.6. 
(b) Logarithm of the inverse localization length vs. ln(1 -k /kcr)  
where kcr is extracted from the separate fit (Fig. 3). Straight 
line is the best fit line with slope v = 2.374 (9) and X 2 = 33.8. 
(c) Logarithm of the participation ratio Yi vs. ln(1 - k/kcr) 
where kcr = 0.489 (4) is extracted in a similar way from a three 
parameter fit. Here the slraight line has slope vi = 1.71 (6) 
and X 2 -- 16.3. Here 10-100 random configurations have been 
iterated up to 107 kicks., Errors are within the symbol size. 

the  s ame  t ime  D = R 2 / t  so tha t  f inal ly  R d ~ Bg* t .  

O u r  n u m e r i c a l  da ta  for  the  va lues  o f  k c lose  to kcr 

(Figs.  7 and  8 show tha t  this  r e l a t ion  works .  F o r m a l  

fits give R d ~ t ~ w i t h  ~ = 1 . t 3  (d  = 3),  1.12 (d  = 

4) c lose  to the  expec t ed  value.  W e  also a n a l y z e d  the  

decay  o f  the  ave rage  p robab i l i t y  to  Stay at  the  o r ig in  
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d s v(yi) (d - 2)v(yi )  - s v (y )  (d - 2 ) v ( y )  - s 

3 1.25 (1) 1.71 (6) 0.46 2.37 (1) 1.12 
4 1.52 (5) 2.59 (2) 3.66 2.53 (1) 3.54 
5 2.04 (3) - - 2.32 4.92 

11 1.87 (1) - - 2.55 21.0 
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Fig. 5. Inverse localization length (left side) and diffusion 
rate (right side) for d = 4. Lines are the separate fits: 
g = y 0 ( k c r - k )  v with Y0 = 66 (10), kcr = 0.306 (2) 
and v = 2.53 (1) with X 2 = 10.2 and D = D o ( k - k c r )  s 
with D O = 2.29 (2), kcr = 0.283 (3) and s = 1.52 (5) 
with X 2 = 111. A similar fit for Yi = Yoi (kcr -  k) vi gives 
Y0i = 85 (28), kcr = 0.305 (5), vi = 2.59 (2) and X 2 = 4.5. 
Here 10-100 random configurations have been iterated up to 
107 kicks. Data errors are within the symbol  size. 

no:Po(T) = ( i / T )  f o  dtl~n0 (t)12" As can be seen in 
Figs. 7(b) and 8(b) it is characterized by a power law 
decay. The numerically obtained values of  the power 
are not far from 1/d (Figs. 7 and 8). This indicates 
that multifractal exponents are relatively small. This 
fact is also confirmed by the rescaling of  the proba- 
bility distribution fn = Igr~l 2 at different moments  of  
time (Fig. 9)! It shows that after rescaling tl/df, and 
n/t lid the distribution remains approximately station- 
ary in time. 
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Fig. 6. d = 4. (a) Logari thm of diffusion rate vs. ln(k/kcr - 1) 
where kcr is extracted f rom the separate fit (Fig. 5). Straight 
line is the best  fit line with slope s = 1.519 (4) and X 2 = 115. 
(b) Logari thm of the inverse localization length vs. ln(1 - k / k c r )  
where kcr is extracted f rom the separate fit (Fig. 5). Straight line 
is the best fit line with slope v = 2.534 (5) and X 2 = 91.81. 
(c) Logari thm of  the participation ratio Yi vs. ln(1 - k / k c r )  
where  kcr = 0.305 (5) is extracted in a similar way f rom a three 
parameter  fit. Here the straight line has slope vi = 2.59 (2) 
and X 2 = 4.5. Here 10-100 random configurations have 
been iterated up to 107 kicks. Errors are within the symbol  
size. 
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Fig. 7. d = 3. Study near the critical point at k = 0.48. (a) 
Behavior of R d = Y~n lnldl(tnl2 in time. Best fit (dashed 

line) gives R d ~ t 1"13(3). (b) Behavior of the logarithm of 
the integrated probability to stay Po(T) as a function of the 

logarithm of time T. Here is Po(T) = ( 1 / T )  f T dt[~no(t)l 2 
and the initial state vector is Vt(t = 0) = 8n,no. Best fit (dashed 

line) gives Po(T) ~ T -0"28(3). One random configuration has 
been considered. Basis is N = 4096. 

i 

We also investigated the delocalization transition for 
d ---- 5, 11 (Figs. 10 and 11. From the localized side the 

transition was very sharp (very large Y0) and it is not 
clear how accurate are the critical exponents obtained 

in this region even if the formal statistical error is quite 

small. Namely,  the fits for  F in the localized phase 

give Y0 = 257 (28), kcr ---- 0 .214 (1), v = 2.32 (4) 

wi th  X 2 ---- 0.18 at d ---- 5 and F0 ---- 2115 (181),  kcr = 

0.107 (2), v ---- 2.55 (2) with X 2 = 0.04 at d = 11. 

However, from the diffusive side the transition is go- 
ing in a rather smooth way with  the exponent s close 
to 2 being quite different from the expectat ions  of  

scaling theory (see Figs. 10 and 1i) .  The values of  
the exponents for different dimensions are presented 
in Table 1. It definitely shows that the scaling relation 
s ---- (d - 2) v does not work at all. Contrary to that our 
numerical data indicate that for d >> 1 the exponent s 
approaches to its limiting value s ~ 2. 
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Fig. 8. The same as Fig. 7 but for d = 4 near the critical 
point at k = 0.27. Results from fit gives R d ~ t 1"12 (3) and 
Po(T ) ~ T-0.26 (3) 
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Fig. 9. Rescaling of the distribution ftmction in the critical 
region (k = 0.271 for d -- 4. (a) The averaged (over 104 kicks) 
probability distribution over the unperturbed basis fn taken at 
t h r e e  different times tl, 2tl, 3tl where tl = 106. shows that as 
the time goes on the distribution increases its size. (b) The same 
as (a) but in the r e s c a l e d  v a r i a b l e s  t l / d fn  and n / t  1/d (since at 
the critical point in d ~ r with" d '---- 4). 
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Fig. 10. d = 5. tap Diffusion rate vs. k. three parameters fit 
(full line) gives: D = 2.56 (6) ( k -  0 .180 (2)) 2.04 (3) with 
X 2 -=- 36.1; (b) logarithm of diffusion rate vs. ln(k/kcr 1) 

where kcr is extracted from (a). Best fit (full line) has the slope 
s = 2.039 (9). 
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Fig. 11. d = 11. (a) Diffusion rate vs. k, three parameters fit 
gives: D = 1.35 (1) (k - 0 .0924 (5)) 1"87 (1) wi th  X 2 = 310; 

(b) logarithm of diffusion rate vs. ln(k/kcr - 1) where kcr is 
extracted from (a). Best fit (full line) has the slope s = 1.99 (5). 

In Fig. 12 we-show the dependence of  kcr on d 

which scales approximately as 1/d in high dimen- 

sions. This type of  behavior can be expected since in 

the kick potential all frequencies are mixed only if  

k Y-~ff=l c o s ( o ) j t )  ~ kcrd ~ 1. 

In conclusion, we studied the Anderson transi- 

tion in a model random and quasi-periodic potential 

with effective dimension d > 3. This model demon- 

strates quite many features which are the same as for 

the standard Anderson transition in a disordered d- 

dimensional potential. For d = 2 all states are local- 

ized and the localization length grows exponentially 

with the decrease of  disorder [8]. For d = 3 the model 

has a transition from localization to diffusion with 

the critical exponents close to expected [9]. However, 

for higher dimensions the exponents strongly deviate 

from the expected scaling relation s = (d - 2)v. Con- 

trary to that our numerical data show that for d >> 1 

one has s ~ 2. it is possible to give the following ar- 

gument supporting s = 2. For d >> 1 the critical value 

of  the coupling goes to zero kcr ~ 1/d. Therefore, 

the change of  action is governed by the equation 

d 

On/Ot ~ k c o s 0  Z c o s w j t .  ( 5 )  

j = l  

For d going to infinity this sum gives the real diffu- 
sive process in which n 2 ~ k2t ~ Dt .  Due to that it 
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is in some sense natural to expect that asymptotically 

for d >> 1 the exponent s approaches to 2. This is 

in agreement with our numerical data where D var- 

ied by 2-3 orders of magnitude near the critical point 

(see e.g. Figs. 10 and 11). However, further investiga- 

tions are required to conclude whether the behavior of 

the scaling exponents is a peculiarity of the model un- 

der investigation. Indeed, in our model there are some 

correlations between hyperplanes with the same value 

of n. However, in our opinion for the classical model 

chaos and diffusion in all directions can appear even 

if the motion is nonlinear only in one direction (En 

changes with n in a nonlinear way or randomly). Due 

to that we think that the quantum dynamics of the 

above model should be quite similar to a real disor- 

dered system in dimension d. 
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