Magnetization in Vortex-Liquid State in Cuprates

Lu Li, J. G. Checkelsky, N.P.O. *Princeton Univ.*
Yayu Wang, *Princeton U., U.C. Berkeley*
M. J. Naughton, *Boston College*
S. Ono, S. Komiya, Yoichi Ando, *CRI, Elec. Power Inst., Tokyo*

1. Vortex Nernst effect
2. Diamagnetism
3. Phase diagram
4. Low-temp. Vortex Liquid State

Supported by NSF-MRSEC, ONR
Boulder School July 2008
Pseudogap state in hole-doped cuprates

Phase rigidity

\[|\Psi| = e^{i\theta(r)} \]

Pairing anomalously strong

Phase rigidity soft

Spontaneous vorticity destroys rigidity and Meissner state
Phase diagram in H-T plane

Mean-field phase diagram

- $2H$-NbSe$_2$
- H_{m}
- H_{c1}
- H_{c2}
- Normal
- Liquid
- Vortex solid
- Meissner state

Cuprate phase diagram

- H_{c2}
- H_{m}
- Vortex solid
- Vortex liquid
- T_{c}
- T_{c0}
- 7 K
- 100 K
- Vortex unbinding in $H = 0$
Magnetization in Abrikosov state

\[M = - \left[H_c^2 - H \right] / \beta (2\kappa^2 - 1) \]

In cuprates, \(\kappa = 100-150 \), \(H_{c2} \approx 50-150 \) T

\(M < 1000 \text{ A/m (10 G)} \)

Area = Condensation energy \(U \)
Phase rigidity \rightarrow uniform phase θ

$$|\Psi| \ e^{i\theta(r)}$$

$$H_\rho = \frac{1}{2} \int d^3 r \ \rho_s (\nabla \theta)^2$$

phase rigidity measured by ρ_s

But phase coherence destroyed by mobile vortices

$$\Delta \theta = 2\pi$$
Contour Map of Nernst Signal in Bi 2201

![Contour Map](image)

- **Bi-2201 (La:0.4), $T_c=28K$**
- **$e_y (\mu V/K)$**
- **$\mu_0 H (T)$**
- **$\mu_0 H (T)$**
- **$T (K)$**
- **H_{c2}**
• Condensate amplitude persists to $T_{\text{onset}} > T_c$
• Nernst signal confined to SC dome
• Vorticity defines Nernst region
Implications of Nernst signal

1. Vorticity persists high above T_c

2. Confined to SC “dome”

3. Loss of long-range phase coherence at T_c
 by spontaneous vortex creation (not gap closing)

4. Vortex-liquid state persists deep into pseudogap State

5. Pseudogap state distinct from phase fluc in Lightly-doped regime.

Thermodynamic evidence from diamagnetic response
Supercurrents follow contours of condensate

\[\mathbf{J}_s = -(e\hbar/m) \nabla \mathbf{x} |\Psi|^2 \hat{\mathbf{z}} \]
Micro-fabricated single crystal silicon cantilever magnetometer

- Si single-crystal cantilever
- Capacitive detection of deflection
- Sensitivity: \(\sim 5 \times 10^{-9} \) emu at 10 tesla
 \(\sim 100 \) times more sensitive than commercial SQUID
Torque magnetometry

Torque on moment: \(\tau = m \times B \)

Deflection of cantilever: \(\tau = k \phi \)
Torque magnetometry

Spin moment m_p

$$\tau = m_p \times B + MV \times B$$

2D supercurrent

$$\frac{\tau}{V} = \chi_c H_x B_z - \chi_a H_z B_x + M B_x$$

$$M_{\text{eff}} = \frac{\tau}{VB_x} = \Delta \chi_p H_z + M(H_z)$$

Exquisite sensitivity to 2D supercurrents
Mysterious $A_1\sin2\theta$ term!

FIG. 4. Typical angular dependence of the torque density for the crystals investigated in this work. In all cases, $T/T_c=0.85$ and $H = 5$ T. The solid curves are the fits according to Eq. (3).
• In underdoped Bi-2212, onset of diamagnetic fluctuations at 110 K
• diamagnetic signal closely tracks the Nernst effect
Torque Signal in underdoped Bi 2212

Wang et al.
PRL 2005
Paramagnetic van-Vleck background in Bi 2212 and LSCO
Magnetization curves in underdoped Bi 2212

Wang et al.
PRL 2005
At high T, M scales with Nernst signal e_N

Confirms vortex origin of Nernst signal
Comparison of M vs H with Nernst signal in OP and UD Bi 2212
Above T_c, M/H is singular

$M \sim -H^{1/8}$ (χ divergent as $H \to 0$)
$M \sim H^{1/6}$

M non-analytic in weak field
Non-analytic magnetization above T_c

$M \sim H^{1/\delta}$

Fractional-exponent region

LuLi et al. EuroPhys 2005
Fit to Kosterlitz Thouless theory

\[\chi = -(k_B T/2d\phi_0^2) \xi_{KT}^2 \]

\[\xi_{KT} = a \exp(b/t^{1/2}) \]

Strongly H-dependent Susceptibility \(\chi = M/H \)
H_{c2} is not linear in $(1-t)$, not BCS scenario
Calculated diamagnetic response of Kosterlitz-Thouless superconductor

Wang et al., PRL '05
\[M = - \frac{[H_{c2} - H]}{\beta(2\kappa^2 - 1)} \]

Lu Li et al., unpubl.

Hc2 nearly T independent
The graph shows the magnetization M (A/m) as a function of the magnetic field $\mu_0 H$ (T) for different temperatures: 40 K, 50 K, 60 K, and 70 K. The material is Bi 2212, with a transition temperature $T_c = 87.5$ K.
Problems with Flux-flow Resistivity

Resistivity does not distinguish vortex liquid and normal state

Bardeen Stephen law (not seen)
Wang, Li, NPO PRB '06
H_{c2} vs T_{onset} in single-layer cuprates

H_{c2} torque magnetization scales linearly with T_{onset}

Fit to

$$2\left(\frac{g}{2}\right)\mu_B H_{c2} = k_B T_{onset}$$

gives $g = 2.2$

Clogston limit determines H_{c2}

Lu Li et al., unpubl.
In hole-doped cuprates

1. Large region in phase diagram above T_c dome with enhanced Nernst signal

2. Associated with vortex excitations (not Gaussian)

3. Confirmed by torque magnetometry

4. Transition at T_c is 3D version of KT transition (loss of phase coherence)

5. Depairing field H_{c2} anomalous in T dependence,

6. Scales linearly with T_{onset}
Very lightly doped limit in LSCO

The phase diagram in x-H plane at low T?
As-observed torque magnetization results in 6 LSCO xtals

Lu Li et al., unpubl.
Magnetization in lightly doped La$_{2-x}$Sr$_x$CuO$_4$

Lu Li et al., Nature Phys

Evidence for robust diagmagnetism for $x < x_c$
Magnetization curves in very lightly-doped LSCO

Diamagnetism persists to 3 percent doping
Vortex liquid stable at 0.3 K
Cooper pair competes with local moment formation
M_{obs} is comprised of diamagnetic and paramagnetic terms

Lu Li et al., unpubl.
Ground state
Comparison between $x = 0.055$ and 0.060

Lu Li et al., Nature Physics ‘07

Pinning current reduced by a factor of ~100 in ground state
Vortex solid-to-liquid transition for $x < x_c$

Debye Waller dependence

$$H_m(T) = H_0 \exp(-T/T_0)$$
Low-Temperature H-x Phase Diagram

Lu Li et al., Nature Physics ‘07
T-H-x phase diagram of LaSrCuO in UD regime
d-wave duality near Mott limit

\[L_{QQL}^d = \gamma_t |\dot{\Psi}|^2 + \gamma |(\nabla - i(2e)A)\Psi|^2 + \alpha |\Psi|^2 + \frac{1}{4} |\Psi|^4, \]
Low-temperature vortex liquid

1. Vortex solid surrounded by vortex liquid at 0.35 K

2. Sharp quantum transition at $x_c = 0.055$. Quantum vortices destroy phase coherence

3. At 0.35 K, pair condensate survives without phase rigidity even for $x = 0.03$

4. Melting of vortex solid appears to be classical at 0.35 K (Debye-Waller like).
Other Experimental Techniques

1. Kinetic inductance at THz freq in Bi 2212 (Orenstein, Nature ‘99)
2. Thermal expansion YBCO (Meingast, PRL ‘00)
3. Magnetization Bi 2212, LSCO, Bi 2201 (Wang, Li, PRL, EPL ‘05)
4. STM above Tc Bi 2212 (Yazdani, Nature ‘07)
5. ARPES?

Other Superconductors

1. CeCoIn$_5$ (Matsuda-Behnia, PRL ‘05), corrected (Onose, NPO, Petrovic EPL ‘07)
 Large Nernst signal 13 K above Tc (2.3 K)

2. Organic superconductor κ-(BEDT-TTF)$_2$-X
 (Nam, Ardavan, Blundell, Schlueter preprint ‘07)
 Nernst signal 6 K above Tc (12 K) near Mott trans.

3. Nb$_{1-x}$Si$_x$ (Behnia et al, NaturePhys 06), 2D Gaussian fluct.?
References (Talk 3)

Summary

1. Nernst region is suffused with vorticity, enhanced diamagnetism and finite pairing amplitude

2. Extends from T_c to $T_{\text{onset}} < T^*$

3. Nernst region *dominates* lower temp part of Pseudogap state

4. Depairing field H_{c2} and binding energy are very large

 Pairing (diamagnetism) persists to 0.03

5. Vortex-liquid state is ground state below x_c
<table>
<thead>
<tr>
<th>Pre- and Post-amble</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Baskaran, Zou, Anderson (Sol. St. Comm. 1987)</td>
</tr>
<tr>
<td>• Doniach, Inui (PRB 1989)</td>
</tr>
<tr>
<td>• Uemura plot (Nature 1989)</td>
</tr>
<tr>
<td>• Emery, Kivelson (Nature 1995)</td>
</tr>
<tr>
<td>\textit{low hole density and high Tc}</td>
</tr>
<tr>
<td>cuprates highly susceptible to phase fluctuations</td>
</tr>
<tr>
<td>• Corson, Orenstein (Nature 1999)</td>
</tr>
<tr>
<td>\textit{Kinetic inductance meas. at THz freq extends above Tc}</td>
</tr>
<tr>
<td>KT physics in ultra-thin film BSCCO</td>
</tr>
<tr>
<td>• M. Franz and Z. Tesanovic (1999)</td>
</tr>
<tr>
<td>\textit{Vortex-charge duality, QED3 model}</td>
</tr>
<tr>
<td>• A. Vishwanath, Raghu (2006) \textit{Simulation 2DXY}</td>
</tr>
<tr>
<td>• Sachdev (2007) \textit{AdS-CFT duality technique}</td>
</tr>
<tr>
<td>• Tesanovic (2007) Quantum vortices</td>
</tr>
</tbody>
</table>
Vortex-liquid state at limit $T \to 0$

1. Large diamagnetism ($0.03 < x < 0.06$)

2. Electrically insulating (in LSCO)

3. Pairing energy (H_{c2}) very large

4. Pairing coexists with
 weak background paramag. moment ($0.01 \mu_B$/cell)

5. Long-range phase coherence transition vs x very sharp

6. Incompatible with cluster of supercond. droplets
M vs H below Tc

Lu Li et al. Europhys Lett 2005

Strong Curvature!

Full Flux Exclusion

Hc1
Meissner curves measured after zero-field cooling

- M_d (A/m)
- T_c for $H = 10$ Oe
- $x = 0.070$
Strong correlation in CuO$_2$ plane

\[H = -t \sum_{i,j,\sigma} c_{i\sigma}^+ c_{j\sigma} + U \sum_i n_{i\uparrow} n_{i\downarrow} \]

\[t = 0.3 \text{ eV}, \quad U = 2 \text{ eV}, \quad J = 4t^2/U = 0.12 \text{ eV} \]
Onset of diamagnetic signal at 5 Tesla
Strong correlation in CuO$_2$ plane

\[\text{Cu}^{2+} \]

Large U

charge-transfer gap $\Delta_{pd} \sim 2$ eV

Mott insulator

best evidence for large U

antiferromagnet $J \sim 1400$ K

doping

\[
H = -t \sum_{i,j,\sigma} c^+_i \sigma c_{j\sigma} + U \sum_i n_{i\uparrow} n_{i\downarrow} \quad \text{Hubbard}
\]

\[
t = 0.3 \text{ eV}, \quad U = 2 \text{ eV}, \quad J = 4t^2/U = 0.12 \text{ eV}
\]
$M(T, H)$ matches e_N in both H and T above T_c
Non-analytic magnetization
M vs H below Tc

Full Flux Exclusion

Strong Curvature!

Hc1

- M

H

(a)

(b)
$H = 14 \ T$

$M_{\text{tot}} (\text{A/m})$

$T (\text{K})$

UD, OD, OP

T_{onset}

T_c
Direct measurements of uniform susceptibility χ_c and χ_{ab}
Torque \(\tau = A' H^{1+\alpha}, \) \((\alpha < 1) \)
Strong correlation in CuO$_2$ plane

$\begin{align*}
 H &= -t \sum_{i,j,\sigma} c_{i\sigma}^+ c_{j\sigma} + U \sum_i n_{i\uparrow} n_{i\downarrow} \\
 t &= 0.3 \text{ eV}, \quad U = 2 \text{ eV}, \quad J = 4t^2/U = 0.12 \text{ eV}
\end{align*}$
Selective gap suppression in d-wave

At field H_{c2} (or T_{onset}), pairs in dispersive region destroyed. Gap in antinode region survives.