Direct Observation of Dynamics in Transcription at the Single Molecule Level

Joshua W. Shaevitz shaevitz@princeton.edu www.princeton.edu/~shaevitz

Collaborators:
Steven Block (Stanford)
Elio Abbondanzieri (Stanford)
William Greenleaf (Stanford)
Kristina Herbert (Stanford)
Matthew Larson (Stanford)
Robert Landick (Univ Wisc) and more ...

The central dogma of molecular biology

Regulation of transcription is the most common form of genetic control

Transcription is a complex process

RNA polymerase (RNAP) carries out transcription

Levitated experiment avoids noise and drift

Massively Parallet Serial Enzymology!
(but very precise ...)

Transcription assay in an optical trap

RNAP motion in the optical trap

60x speed
$1 \mathrm{sec}=1 \mathrm{~min}$

RNAP advances in single bp steps (3.4 Å)

Automated analysis finds same step size

Using single proteins to sequence DNA

Force as a control variable

$$
\begin{aligned}
& k(F)=k(F=0) e^{F \delta / k_{B} T} \\
& v(F)=\frac{v_{\max }}{1+\exp \left[-\frac{\left(F-F_{1 / 2)} \delta\right.}{k_{B} T}\right]}
\end{aligned}
$$

Use force as a control variable like temperature or substrate concentration etc...

Force dependent reactions involve physical motion and are slowed due to the energy required to move against the force.

Three competing models of elongation

a

Phosphate-release power stroke

$$
\begin{aligned}
& k_{p}(F)=k_{p} e^{F \delta / k_{B} T} \\
& v(F,[N T P])=\frac{k_{p} k_{+}}{k_{+} e^{-F \delta / k_{B} T}+\left(k_{-} e^{-F \delta / k_{B} T}+k_{p}\right)\left(1+K_{D} /[N T P]\right)}
\end{aligned}
$$

$$
\begin{gathered}
v_{\max }=\frac{k_{+}[N T P]}{K_{D}+[N T P]} \\
F_{1 / 2}=\frac{k_{B} T}{\delta} \ln \left(\frac{v_{\max }+k_{-}}{k_{p}}\right)
\end{gathered}
$$

Two brownian ratchet models

$$
\begin{aligned}
& K_{\delta}(F)=K_{\delta} e^{-F \delta / k_{B} T} \\
& v_{\max }=\frac{k_{p}[N T P]}{K_{D}+[N T P]} \quad F_{1 / 2}=\frac{k_{B} T}{\delta} \ln \left(\frac{K_{D} K_{\delta}}{K_{D}+[N T P]}\right)
\end{aligned}
$$

$$
F_{1 / 2}=\frac{k_{B} T}{\delta} \ln \left(\frac{K_{D} K_{\delta}+A K_{\delta}[N T P]}{K_{D}+[N T P]}\right)
$$

We remove backwards motion (a separate pathway)

Force data rules out Power Stroke model

Power Stroke Model Brownian Ratchet
Brownian Ratchet with secondary NTP binding site

Pauses occur on many time scales

Pausing occurs on many timescales and is the main method of regulation during elongation.

Pausing:
1.allows for the recruitment of factors (DNA repair etc.)
2.serves as a precursor for termination and arrest
3.used during proofreading
4.couples transcription to translation in prokaryotes
5.couples transcription to splicing and polyadenylation in eukaryotes
6.transcription factors can modulate pausing to control the overall rate of RNA synthesis

Two main mechanisms of pausing

Backtracking Pause

Formed by weak DNA:RNA hybrid (?) Used to allow factor recruitment Example: ops pause in E coli -- Backtracking leads to binding of RfaH factor that suppresses early termination

Hairpin Pause

Secondary structure in RNA strains RNAP causing a pause (not clear?)
Found in leader region of operons in bacteria to synchronize RNAP with ribosomes during attenuation. Modification of secondary structure by factors can regulate this Example: his pause near beginning of histidine operon in E coli

A repeating pause sequence

Repeat pause can be used as fiducial references to study sequence dependance.

Aligned single molecule data shows many sequence dependent pauses and agrees with bulk data

Sequence similarities between the pauses

		Translocation state (bp)
$\underset{\text { (bits) }}{\text { Information }} 1-\square \square$		
Consensus sequence	CGTGTAGCTGCGCT	
	$\begin{array}{rr} 1 \\ \hline-10 & -1 \\ \hline \end{array}$	
a	CGGGTAGATCCGCC	0.70 ± 0.50
b	GGTGAAACCGCAWC	-0.25 ± 0.50
C	GGTAAAGTGTA CGT	-0.20 ± 0.50
d	CGTATCACTGCGCG	0.40 ± 0.50
ops1	CGGTAGTCTGT ${ }^{\text {G/CG }}$	0.75 ± 0.25
ops2	GTAGTCTGTGEGCT	-1.25 ± 0.25
his	CGATGTGTGCTGGA	0.00 ± 0.25

No large displacement forward or backward No pre or post translocation

Pause density varies greatly over the template

All 6 pauses exhibit the same corrected lifetime

D	Pausing kinetics		
	ε	$\tau *(\mathrm{~s})$	$\tau(\mathrm{s})$
a	$55 \pm 3 \%$	2.5 ± 0.2	1.1 ± 0.1
b	$29 \pm 3 \%$	1.7 ± 0.1	1.2 ± 0.1
c	$30 \pm 4 \%$	1.3 ± 0.2	0.9 ± 0.1
d	$74 \pm 3 \%$	6.4 ± 0.4	1.8 ± 0.2
ops	$82 \pm 4 \%$	4.2 ± 0.4	0.8 ± 0.2
his	$76 \pm 4 \%$	4.6 ± 0.4	1.1 ± 0.2

$$
\tau^{*}=\frac{\tau}{1-\epsilon}
$$

Efficiency not 100%-> Pausing must be off pathway!
When corrected for the efficiency, all six pauses have the same lifetime
They may all be the same off-pathway intermediate that leads to the regulatory pauses?

Backtracking pauses

The ops pause data I just showed had no backtracking. Why?

-Error rates in vitro :

$$
10^{-3}-10^{-4}
$$

- Error rates in vivo :

$$
10^{-5}-10^{-6}
$$

Consensus model of RNAP proofreading

Average behavior shows backtracking and recovery

Backtracking is force dependent

At $>7 \mathrm{pN}$, backtracking would have been hard to see in Herbert et al.'s experiments.

ITP increases pause number and duration

Guanine

Cleavage reduces the duration of long pauses

Opalka et al., Cell (2003)

Cleavage removes inosine from the transcript

Eukaryotic RNAP II acts the same way

TFIIS is necessary to sustain high force

Max force doubles with TFIIS

Backtracking limits force in Pol II

The RNA's role in pausing and termination

Models of intrinsic hairpin termination

U-rich ‘slippery’ sequence:

leads to RNAP pausing and/or forms an unstable RNA:DNA hybrid

Forward Translocation Model

hairpin drives RNAP downstream without transcript elongation
RNA stays "in register" with DNA

Allosteric Model
hairpin induces a conformational rearrangement of RNAP

With force you can probe different parts of the system

You can:

1. determine the stability of the RNA:DNA hybrid
2. bias formation of secondary structure in the RNA
3. probe steps that involve enzyme motion along DNA or RNA

Pulling on the DNA tests translocation of the enzyme

Elongation followed by termination

TE independent of force between DNA and RNAP

No forward translocation!

Pulling on the RNA

encodes for his U-tract

Termination occurs at the U-tract, is force dependent

$$
\begin{aligned}
T E(F)= & \frac{1}{1+e^{\left(E_{\text {shear }}-F \delta\right) / k_{B} T}} \\
& \delta=0.6 \mathrm{~nm}=1 \mathrm{bp}
\end{aligned}
$$

We find the same behavior in all 3 terminators

For all three the shear distance is the same, 1 bp
But, the shear energy barrier is different, related to the sequence ...

Pulling on the hairpin

$$
\delta=1.4 \mathrm{~nm} \sim 2 \mathrm{bp}
$$

Unzipping the hairpin lowers the TE.
For these hairpins the last two bases are important for holding it together

Hairpin zipping pulls the RNA out of the enzyme and causes termination...

Simple model predicts TE and effect of load

$$
\Delta E_{\text {total }}=\left[E_{\text {shear }}-F \delta_{\text {shear }}\right]-\left[E_{\text {hairpin }}-F \delta_{\text {hairpin }}\right]
$$

$\delta_{\text {shear }}$	$0.6 \mathrm{~nm} \leftrightarrow 1 \mathrm{nt}$
$E_{\text {shear }}($ his $)$	$2.8 \mathrm{kT}(1.7 \mathrm{kcal} / \mathrm{mol})$
$E_{\text {shear }}(\mathrm{t} 500)$	$3.7 \mathrm{kT}(2.2 \mathrm{kcal} / \mathrm{mol})$
$E_{\text {shear }}(\lambda \mathrm{tR} 2)$	$4.6 \mathrm{kT}(2.8 \mathrm{kcal} / \mathrm{mol})$
$\delta_{\text {hairpin }}$	$1.4 \mathrm{~nm} \leftrightarrow 2 \mathrm{nt}$
$E_{\text {hairpin }}$	$6.5-5.5 \mathrm{kT}$

