Direct Observation of Dynamics in Transcription at the Single Molecule Level

Joshua W. Shaevitz shaevitz@princeton.edu www.princeton.edu/~shaevitz

Collaborators: Steven Block (Stanford) Elio Abbondanzieri (Stanford) William Greenleaf (Stanford) Kristina Herbert (Stanford) Matthew Larson (Stanford) Robert Landick (Univ Wisc) and more ...

The central dogma of molecular biology

Regulation of transcription is the most common form of genetic control

Transcription is a complex process

RNA polymerase (RNAP) carries out transcription

Levitated experiment avoids noise and drift

Massively Parallel Serial Enzymology! (but very precise ...)

Transcription assay in an optical trap

RNAP motion in the optical trap

60x speed 1 sec = 1 min

RNAP advances in single bp steps (3.4 Å)

Automated analysis finds same step size

Using single proteins to sequence DNA

Force as a control variable

Use force as a control variable like temperature or substrate concentration etc...

Force dependent reactions involve physical motion and are slowed due to the energy required to move against the force.

$$k(F) = k(F = 0)e^{F\delta/k_BT}$$

$$v(F) = \frac{v_{max}}{1 + exp\left[-\frac{(F - F_{1/2})\delta}{k_B T}\right]}$$

Three competing models of elongation

Phosphate-release power stroke

$$\begin{array}{c} \overbrace{\textbf{K}_{D}} \overbrace{\textbf{K}_{D}} \overbrace{\textbf{K}_{D}} \overbrace{\textbf{K}_{P}} \overbrace{\textbf{K}_{P}}$$

$$v_{max} = \frac{k_{+}[NTP]}{K_{D} + [NTP]}$$
$$F_{1/2} = \frac{k_{B}T}{\delta} ln \left(\frac{v_{max} + k_{-}}{k_{p}}\right)$$

Two brownian ratchet models

$$\begin{array}{c} \overbrace{RNA_{n}}^{\bullet} \overbrace{K_{\delta}}^{\bullet} \overbrace{Post}^{\bullet} \overbrace{K_{D}}^{\bullet} \overbrace{NTP}^{\bullet} \overbrace{K}^{\bullet} \overbrace{PP_{i}}^{\bullet} \overbrace{K_{p}}^{\bullet} \overbrace{RNA_{n+1}}^{\bullet} \overbrace{K_{p}}^{\bullet} \overbrace{RNA_{n+1}}^{\bullet} \overbrace{K_{p}}^{\bullet} \overbrace{RNA_{n+1}}^{\bullet} \overbrace{K_{p}}^{\bullet} \overbrace{K_{\delta}}^{\bullet} \\ K_{\delta}(F) = K_{\delta} e^{-F\delta/k_{B}T} \\ V_{max} = \frac{k_{p}[NTP]}{K_{D} + [NTP]} \quad F_{1/2} = \frac{k_{B}T}{\delta} ln \left(\frac{K_{D}K_{\delta}}{K_{D} + [NTP]} \right) \end{array}$$

We remove backwards motion (a separate pathway)

Force data rules out Power Stroke model

Power Stroke Model Brownian Ratchet Brownian Ratchet with secondary NTP binding site

δ

K_δ

Kδ

RNA_n

 $\overline{\flat}$

RNA_n

pre

RNA_n

post

RNA_n

post

NTP

5

Pauses occur on many time scales

Pausing occurs on many timescales and is the main method of regulation during elongation.

Pausing:

1.allows for the recruitment of factors (DNA repair etc.)

2.serves as a precursor for termination and arrest

3.used during proofreading

4.couples transcription to translation in prokaryotes

5.couples transcription to splicing and polyadenylation in eukaryotes

6.transcription factors can modulate pausing to control the overall rate of RNA synthesis

Two main mechanisms of pausing

Backtracking Pause

Hairpin Pause

Formed by weak DNA:RNA hybrid (?) Used to allow factor recruitment Example: *ops* pause in *E coli* -- Backtracking leads to binding of RfaH factor that suppresses early termination Secondary structure in RNA strains RNAP causing a pause (not clear?) Found in leader region of operons in bacteria to synchronize RNAP with ribosomes during attenuation. Modification of secondary structure by factors can regulate this Example: *his* pause near beginning of histidine operon in *E coli*

A repeating pause sequence

Aligned single molecule data shows many sequence dependent pauses and agrees with bulk data

No large displacement forward or backward No pre or post translocation

Pause density varies greatly over the template

All 6 pauses exhibit the same corrected lifetime

D	Pausing kinetics		
	ε	τ* (s)	τ (s)
а	55 ± 3 %	2.5 ± 0.2	1.1 ± 0.1
b	29 ± 3 %	1.7 ± 0.1	1.2 ± 0.1
С	30 ± 4 %	1.3 ± 0.2	0.9 ± 0.1
d	74 ± 3 %	6.4 ± 0.4	1.8 ± 0.2
ops	82 ± 4 %	4.2 ± 0.4	0.8 ± 0.2
his	76 ± 4 %	4.6 ± 0.4	1.1 ± 0.2

 $\tau^* = \frac{\tau}{1-\epsilon}$

Efficiency not 100% -> Pausing must be off pathway!

When corrected for the efficiency, all six pauses have the same lifetime

They may all be the same off-pathway intermediate that leads to the regulatory pauses?

Backtracking pauses

The ops pause data I just showed had no backtracking. Why?

Does RNAP have a proofreading mechanism?

•Error rates *in vitro* : 10⁻³- 10⁻⁴

•Error rates in vivo : 10⁻⁵-10⁻⁶

Erie et al., Science (1993)

Consensus model of RNAP proofreading

Erie et al., *Science* (1993) Jeon and Agarwal *PNAS* (1996) Thomas et al. *Cell* (1998)

Average behavior shows backtracking and recovery

Backtracking is force dependent

ITP increases pause number and duration

Cleavage reduces the duration of long pauses

RNAP has an intrinsic cleavage ability at the polymerization active site that is stimulated by Gre proteins or high pH

Functional analogs of GreA and GreB have been found in over 60 organisms, including TFIIS in eukaryotes

Cleavage removes inosine from the transcript

Eukaryotic RNAP II acts the same way

TFIIS is necessary to sustain high force

Max force doubles with TFIIS

Backtracking limits force in Pol II

The RNA's role in pausing and termination

Two main features:

RNA hairpin
U-rich section (U-tract)

Models of intrinsic hairpin termination

U-rich 'slippery' sequence:

leads to RNAP pausing and/or forms an unstable RNA:DNA hybrid

Forward Translocation Model

hairpin drives RNAP downstream without transcript elongation RNA stays "in register" with DNA

Allosteric Model

hairpin induces a conformational rearrangement of RNAP

With force you can probe different parts of the system

You can:

- 1. determine the stability of the RNA:DNA hybrid
- 2. bias formation of secondary structure in the RNA
- 3. probe steps that involve enzyme motion along DNA or RNA

Pulling on the DNA tests translocation of the enzyme

Elongation followed by termination

TE independent of force between DNA and RNAP

No forward translocation!

Pulling on the RNA

Termination occurs at the U-tract, is force dependent

We find the same behavior in all 3 terminators

But, the shear energy barrier is different, related to the sequence ...

If shearing causes termination, what is the role of the hairpin?

UUUUUAUU-OH 3'

AAAC

Pulling on the hairpin

 $\delta = 1.4$ nm ~ 2 bp

Unzipping the hairpin lowers the TE.

For these hairpins the last two bases are important for holding it together

Hairpin zipping pulls the RNA out of the enzyme and causes termination...

Simple model predicts TE and effect of load

These values match m-fold predictions