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Recent experiments on vesicles formed from block copolymers
with liquid-crystalline side chains reveal a rich variety of vesicle
morphologies. The additional internal order (“structure”) devel-
oped by these self-assembled block copolymer vesicles can lead
to significantly deformed vesicles as a result of the delicate inter-
play between two-dimensional ordering and vesicle shape. The
inevitable topological defects in structured vesicles of spherical
topology also play an essential role in controlling the final vesicle
morphology. Here we develop a minimal theoretical model for the
morphology of the membrane structure with internal nematic/
smectic order. Using both analytic and numerical approaches, we
show that the possible low free energy morphologies include
nano-size cylindrical micelles (nano-fibers), faceted tetrahedral
vesicles, and ellipsoidal vesicles, as well as cylindrical vesicles. The
tetrahedral vesicle is a particularly fascinating example of a faceted
liquid-crystallinemembrane. Faceted liquid vesiclesmay lead to the
design of supramolecular structures with tetrahedral symmetry
and new classes of nano-carriers.
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Amphiphilic block copolymers in water, like natural phospho-
lipids, can self-assemble into various monolayer or bilayer

structures, such as micelles and vesicles (1, 2). In particular, rod-
coil block copolymers, with a flexible hydrophilic chain and one
or more rod-like hydrophobic blocks, exhibit a rich morphology
of structures, and therefore have significant potential to advance
fundamental science and drive technological innovations (3–12).
Among these rod-coil block copolymers, we are especially inter-
ested in liquid crystalline (LC) block copolymers in which the hy-
drophobic block is a nematic or smectic liquid crystal polymer
(13–20). The in-plane LC order that results from molecular pair
interactions in these systems, and the associated defect structure,
play very important roles in determining the preferred intermedi-
ate and final shapes of vesicles. The tailor-design of both material
properties and vesicle morphology by controlling the molecular
structures of the block polymers is state-of-the-art research in the
fields of polymer science, materials science, and chemical engi-
neering.

Some of the structures formed by these LC side-chain block
copolymers in aqueous solution are rather counterintuitive, such
as faceted vesicles, nanotubes and compact vesicles with tiny in-
ner space (15, 20). In all these structures, the in-plane smectic
order is clearly visible under Cryo-TEM. In this article we develop
a theoretical explanation of the geometric structures of vesicles
with in-plane nematic or smectic order. We present a simple mod-
el free energy as a functional of both the membrane geometry and
the in-plane nematic order. Using both analytic and numerical
methods, we then analyze the low free energy morphologies in
various parameter regimes.

Results and Discussions
Focusing on their overall shape we first perform a mean-field
analysis of the model free energy of a self-assembled monolayer
as a functional of their shape and nematic order parameters (21,
22):

Hm ¼ 1

2

Z ffiffiffi
g

p
d2x½Kð ~D n̂Þ2 þ κðH −H0Þ2� [1]

Here K is the Frank constant in the one-constant approximation,
while ~D denotes the covariant derivative.H is the mean curvature
and H0 is the spontaneous curvature, which is determined by the
asymmetry in the sizes of the hydrophobic and the hydrophilic
parts of the LC block copolymers. We shall choose the normal
vector of the monolayer to point from the hydrophobic side to
the hydrophilic side. ThereforeH > 0means that the hydrophilic
side is bending outwards.

All three parameters K, κ, H0 depend on the chemical struc-
tures of the block copolymers as well as their interaction with the
solvent in a complicated way. Furthermore, strictly speaking, a
nematic membrane is locally anisotropic. Therefore its Frank free
energy is characterized by two constants: one for splay (K1) and
one for bend (K3). Likewise, the bending energy as well as the
spontaneous curvature should also be generically anisotropic,
characterized by three bending constants and three spontaneous
curvature components. Such a model is characterized by eight in-
dependent parameters and is extremely complicated to analyze.
For the sake of simplicity, we shall focus on the greatly simplified
toy model Eq. 1, which captures the essential physics of nematic
vesicles, which is the competition between the extrinsic bending
energy and the two-dimensional Frank free energy.

A more important, conceptual issue is the following: In what
sense can the vesicle morphology be understood in terms of
minimization of elastic free energy Eq. 1? As is well known, the
formation of vesicles is a complicated nonequilibrium process.
Whether a certain property of a vesicle is distributed according
to Gibbs-Boltzmann depends on the relevant experimental time
scale, and on the time scale at which the given property equili-
brates. At the stage of vesicle formation, individual molecules on
the membrane can diffuse quite efficiently. Motion of liquid crys-
talline defects, however, requires coherent movement of all poly-
mers on the vesicle, and is usually very slow. Hence we expect that
the vesicle morphology achieves a local thermal equilibrium,
where the shape and LC order minimizes the elastic free energy
Eq. 1 (with appropriate parameters corresponding to the physical
conditions under which the self-assembly takes place), subject to
global constraints of given vesicle topology and LC defects dis-
tribution. We shall then enumerate all possible vesicle topologies
and compare these free energy minima. It is interesting to note
that in recent experiments by Jia et al. (13), multiple vesicle topol-
ogies were often observed using a given preparation method, sug-
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gesting that kinetics of self-assembly also played an important
role in the selection of vesicle morphology.

Smectic vesicles can also be viewed as nematic vesicles with
bending constant much larger than splay constant. On a mem-
brane with in-plane smectic order, therefore, the bending defor-
mation of the nematic director field should vanish everywhere.
Mathematically this is equivalent to n̂ · Dn̂ ¼ 0, that is, the ne-
matic director locally follows the geodesics. This is always possi-
ble, for an arbitrary but prescribed membrane shape, except at
the core of nematic disclinations. For these configurations, the
Frank free energy becomes independent of the bending constant.
Hence Eq. 1 is also a toy model for membranes with in-plane
smectic order, with the understanding that K is the splay constant
and the nematic director strictly follows the local geodesics.

Minimization of the Frank free energy in Eq. 1 requires that
the covariant derivatives of the nematic director field vanish
everywhere on the surface. As is well known in differential geo-
metry, this is possible only if the Gaussian curvature vanishes
everywhere; i.e. the surface is a developable surface. The family
of developable surfaces includes planes, cylinders, cones, and tan-
gent developable surfaces*. On the other hand, minimization of
the bending energy in Eq. 1 leads to a constant mean curvature
H0. It is clear that the only geometry minimizing both terms in the
free energy in Eq. 1 is a cylindrical monolayer with a given radius
1∕H0. In the recent example of Jia et al. (13), for example, where
only aqueous solvent is present at the final stage of assembly,
monolayer cylinders with very small radius (nano-fibers) are ob-
served. The inner space of the cylinders is completely filled by the
hydrophobic parts of the polymers. In order to form monolayer
cylinders with larger radius, the inner space has to be filled by
solvents (or other polymers) that are friendly to LC blocks. If
there is only aqueous solvent, and if 1∕H0 is not small, monolayer
cylindrical structures with favorable spontaneous curvatures can-
not pack space and therefore the system should form certain
kinds of bilayer structures, where two monolayers with opposite
orientation stack together.

The free energy of a symmetric bilayer membrane can be ob-
tained by adding up the free energies for two monolayers on both
sides of the bilayer:

Hm ¼
Z ffiffiffi

g
p

d2x½Kð ~D n̂Þ2 þ κH 2� [2]

We shall focus on the morphology of symmetric bilayers in the
remainder of this article. Note that area differences between
the inner and outer layer can lead to nonvanishing spontaneous
curvature (23, 24). These effects will not qualitatively change our
conclusions.

Without considering the boundary effects, a flat bilayer with
uniform nematic order clearly minimizes both terms in Eq. 2.
The energy cost associated with the boundary, however, increases
with the system size, and exceeds that associated with a closed
vesicle with nonzero curvature, for sufficiently large systems
(25). Closed vesicles therefore must form for sufficiently large
bilayer membranes.

The morphology of a bilayer is controlled by the competition
between the extrinsic bending energy and the Frank free energy.
We shall first limit the discussion to closed vesicles of spherical
topology. Since the total Gaussian curvature is nonvanishing,
the system is frustrated and the Frank free energy competes with
the bending energy. First consider the limiting case K ≪ κ. The
dominant contribution to the total energy is then the bending en-
ergy: minimizing this leads to a round spherical shape. For a more

realistic model where the bending energy is not isotropic, how-
ever, the shape will reflect the anisotropy of the bending moduli,
leading to ellipsoidal shapes. The exact form of the shape as a
function of the bending moduli is rather difficult to calculate,
however, and will not be treated in this article. Ellipsoidal vesicles
are frequently observed in the experiments of Jia et al. (14), with
the smectic layers all perpendicular to the long axis of the ellip-
soid. It can be inferred from this observation that the bending
rigidity is higher along the nematic director than perpendicular
to the director.

Let us now consider the opposite regime where K ≫ κ. In this
case, the system should first minimize the Frank free energy,
which leads to developable surfaces with vanishing Gaussian cur-
vature everywhere. This is clearly not possible due to Gauss’ The-
orem Egregium, which states that the total integrated Gaussian
curvature of a surface with spherical topology is a topological in-
variant and equal to 4π. There are faceted polyhedral surfaces,
however, for which the Gaussian curvature vanishes everywhere
but at a discrete number of (singular) vertices. These vertices are
the ideal locations for orientational defects of the LC order (mis-
ery loves company) (26). The total defect strength on a closed
surface is also a topological invariant, according to the Gauss-
Bonnet theorem. For nematic and smectic orders, this theorem
dictates that on a sphere (or any other surface with the same to-
pology), there are three possibilities for the structure of defects:
(i) four disclinations each with strength þ1∕2; (ii) two defects
each with strength þ1; (iii) one strength þ1 defect and two
strengthþ1∕2 defects. Now one needs at least four points to span
a nondegenerate polyhedron; a tetrahedron in the minimal case.
We conclude that in the limiting case K ≫ κ, the ground state
morphology of a vesicle with spherical topology is a faceted tet-
rahedron, with a strength 1∕2 disclination located at each of the
four corners. This structure is indeed observed in recent experi-
ments (15, 20), as well as in our simulation, to be discussed in
detail below. Note that the faceting observed here has a comple-
tely different origin to the well-known buckling of elastic shells
where buckling occurs above a critical size R ∼

ffiffiffiffiffiffiffiffiffi
κ∕Y

p
, with Y

the Young’s modulus. The free energy Eq. 2, on the other hand,
is scale free—the ground states are determined solely by the di-
mensionless ratio K∕κ.

It is important to note that not all tetrahedra support a suitable
nematic defect configuration. To ensure that the director field
has vanishing covariant derivative everywhere except at the four
vertices, but including the six edges, the sum of the three angles
surrounding every vertex of the tetrahedron must be 180°. This
imposes three constraints on the geometry of the tetrahedron†.
Since the set of all tetrahedral shapes (up to scaling the overall
size) forms a five-dimensional space, we see that the set of all
fixed-size tetrahedra with vanishing covariant derivative every-
where except the vertices forms a two-dimensional manifold. Fig. 1
illustrates how these tetrahedra, together with a nematic director
field with vanishing covariant derivative, can be constructed by
folding a parallelogram. These tetrahedra have the special prop-
erty that all four triangular facets are identical. All these struc-
tured smectic vesicles have vanishing Frank free energy. The
degeneracy is lifted by different bending energies. The total free
energy of the system is given by the sum of the bending energies
localized on the six edges and the defect core energies localized
at the four vertices. It is rather easy to see that for a given total
surface area, the regular tetrahedron has a minimal value for the
sum of all edge lengths. Thus the ground state morphology of a
smectic vesicle with spherical topology is a regular tetrahedron when
the bending rigidity is vanishingly small. The transition between dif-
ferent shapes is probably extremely slow, however, as it requires*Surfaces spanned by tangent lines of a spatial curve: a generic tangent developable

surface that is topologically identical to plane is however not expect to be observed
in experiments, because it can easily relax to a plane which has bending energy. It is
not clear to us whether there exists a tangent developable surface that is topologically
different from all the aforementioned structures.

†Naively we see there are four constraints but the condition for one vertex follows auto-
matically from the constraints for the other three.
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coherent motion of all four nematic disclinations together with
the overall smectic layer texture.

The edges and corners cannot be infinitely sharp in a realistic
system. They are rounded by either the membrane thickness, the
core size of a nematic defect, or the small bending rigidity κ. Like-
wise, the bending energy on the edges must be finite. In a realistic
self-assembly process, the bending energy may also be partially

relieved by preferential aggregation of large polymers on the
outside and smaller polymers on the inside of the membrane near
the ridges and corners. Faceted surface structures were studied
previously in large viral capsids (27, 28), which are formed by
crystalline packing of proteins. There the faceting is energetically
favorable because it reduces the in-plane strain energy of the crys-
talline order formed by the constituent proteins. What we have
shown here is that a similar faceting can also be driven by the
Frank free energy of LC order, despite their liquid nature.

Another candidate for a low free energy morphology is a long
cylinder of double layers (nanotube), for which the Frank free
energy also vanishes. The bending energy is approximately given
by

Hnanotube ¼ κA∕a2; [3]

where a is the radius of the cylinder. The total bending free en-
ergy is therefore linear in the membrane area. The faceted tetra-
hedron, on the other hand, has the total free energy

Htetrahedron ¼ 4κL∕b; [4]

where L is the length of ridges and b is the radius of curvature of
rounded out ridges. Since the area of a tetrahedron grows quad-
ratically in L, it follows that the total bending energy for a tetra-
hedron scales as the square root of the membrane area. Large
faceted tetrahedral vesicles thus have lower free energy than na-
notubes. Both morphologies, however, have been observed ex-
perimentally (14, 15, 20). Selection of vesicle morphology is
also affected by kinetics of self-assembly, as we discussed above.

In order to quantitatively investigate the ground state mor-
phology of nematic vesicles, we develop a lattice nematic model
on a deformable surface with spherical topology and perform en-
ergy minimization by the method of simulated annealing Monte
Carlo (MC). Details of the discretized form of the free energy,
whose continuum limit is given by Eq. 2, can be found in Ref. (29)
and the Methods section.

The simulation results for nematic vesicles at various bending
rigidities show remarkable morphological transitions, as dis-

Fig. 1. Top: A tetrahedron compatible withþ1∕2 disclination on each vertex
can be constructed using a parallelogram, by folding along the dashed lines.
A constant nematic director field in the unfold parallelogram is shown by the
array of parallel straight lines. After folding up, the angles with same color
circle around the same vertex. Bottom: The tetrahedron obtained via folding.
There is exactly one þ1∕2 disclination on each vertex of the tetrahedron.

Fig. 2. Morphology of nematic vesicles at different bending rigidities. Left: The local Frank (A)–(C), (G) and bending (D)–(F), (H) energy contour plots; for a case
of K1 ¼ K3 ¼ 1, (A) and (D), κ ¼ 100.0; (B) and (E), κ ¼ 0.3; (C) and (F), κ ¼ 0.05; for a case of K1 ¼ K3, (G) and (H), κ ¼ 0.04. The total Frank free energies (in units
of kBT ) are 62.83, 59.06, 57.1, and 65.27, respectively. The normalized total bending energies (in units of kBT ) are 12.55, 16.0, 18.58, and 50.34, respectively.
Right: Calculated asphericities of nematic vesicles as a function of the inverse bending rigidity of 1∕κ. The inverse triangles are for a case of K1 ¼ K3 and the
triangles are for a case of K1 ≠ K3ðK3∕K1 ≈ 2.0Þ. The empty circles represent locations corresponding to the morphologies of (A)(D), (B)(E), (C)(F), and (G)(H).
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played in Fig. 2. For convenience we set K ¼ 1. This does not
change any essential physics since the vesicle morphology de-
pends only on the dimensionless ratio κ∕K. As the bending rigid-
ity κ decreases, the vesicles with an isotropic Frank elastic
constant undergo substantial shape deformation: (i) the almost
spherical morphology is found to be stable at large κ (Fig. 2 A
and D); (ii) ridges connecting four defects develop as κ becomes
smaller than 1 (Fig. 2 B and E); (iii) a tetrahedral vesicle forms at
a vanishingly small κ ¼ 0.05 (Fig. 2 C and F). The faceting transi-
tion occurs near κ ≃ 1 ‡. The stable morphologies are determined
by a delicate balance between the in-plane Frank energy and the
bending energy as the surface deforms away from round. Indeed,
as κ decreases from 100.0 to 0.05, the Frank free energy falls from
62.83 to 57.1 at the expense of bending energy which increases
from 12.55 to 18.58. The Frank energy is localized near the four
defects, which consequently induce deformation around the ver-
tices. Our simulations are therefore entirely consistent with our
prediction that spherical vesicles are stable in the regime of
K ≪ κ, whereas the faceted tetrahedral vesicles become stable
in the other extreme K ≫ κ.

We also explore the effect of anisotropy in the Frank elastic
constants by studying the regime in which splay dominates over
bend. The smectic regime, as noted earlier, corresponds to the
limit K3 ≫ K1. In the current simulation, the anisotropy is esti-
mated to beK3∕K1 ≃ 2.0 (see Supporting Information). Although
the shape transition trends are qualitatively similar for both the
one-Frank constant and anisotropic cases, the anisotropy leads to
a more dramatic shape transition, resulting in a considerably
more faceted tetrahedral vesicle at a very small κ ¼ 0.04, as dis-
played in Figs. 2 G and H. In fact, the splay dominant nematic
texture enhances the faceting more than the isotropic case does.
This is clearly understood by considering two membranes which
possess aþ1 disclination defect with pure splay and pure bending
nematic textures, respectively. The pure splay always decreases
the Frank energy by buckling out-of plane, because it allows
the defect to escape into the third dimension and thus better align
the nematic directors. On the other hand, such out-of-plane de-
formation of the pure bending does not alter the Frank energy
and therefore, the faceting of pure bending membranes is not fa-
vorable upon deformation. Note that we are restricting ourselves
here to the case of isotropic bending rigidity.

More prominent shape changes for vesicles with the anisotropic
Frank elastic constants are clearly confirmed from a quantitative
measurement of the asphericity (i.e., degree of deviation from the
reference unit sphere geometry), which is defined as follows:

hΔR2i
R2

ref
¼ 1

N∑
N

α¼1

ðRα −RrefÞ2
R2

ref
; [5]

where Rα is the radial distance of vertex α, Rref is the radius of the
reference unit sphere, and N is the total number of vertices. The
asphericities are averaged over 10 simulation runs for each κ and
plotted in Fig. 2 as a function of 1∕κ. The plot exhibits relatively
large deviations from its average values, especially at low bending
rigidity. This is mainly attributable to the differences in the aspheri-
city between the three possible ground state morphologies.
Although faceted tetrahedral vesicles are expected to be the
ground state for large system sizes, we have observed in our simu-
lation three different ground state morphologies, presumably due
to its finite system size: (i) an ellipsoidal vesicle with two closely
bounded disclination pairs; (ii) a flattened (square cushion-shape)
vesicle with four þ1∕2 disclinations located approximately in one
plane; and (iii) a tetrahedral vesicle with four well separatedþ1∕2
defects (see Supporting Information). These three morphologies

seem degenerate as the differences in their total free energies
are within 0.5%. These vesicle shapes can be viewed as the precur-
sors of the extreme morphologies at κ → 0, such as long fibrous
cylinders, double layer sheets, and sharply faceted tetrahedrons,
respectively. Finally, we briefly compare our simulation results with
our recent experimental observations in Fig. 3.

Complex shape phase diagrams are also possible for fluid ve-
sicles with fixed internal volume (30). A feature of these morphol-
ogies is their nonconvex shape. Such nonconvexity has not been
seen experimentally in the block copolymer systems studied here,
leading us to believe that during the formation process solvent
can freely enter and leave the system so that the internal volume
is not conserved.

In conclusion, we have studied the fascinating morphology of
nematic/smectic vesicles, such as the faceted tetrahedron, nano-
fibers, and ellipsoids using a simple toy model free energy§. Our
theoretical and numerical studies provide the fundamental un-
derstanding of formation of these novel structured vesicles and
elucidate the shape-selective mechanisms. It could also pave
the way for formulating guiding principles in designing nanocar-
riers with specific shapes, particularly utilizing the two-dimen-
sional nematic order and the topological defects, which are
ubiquitous in closed vesicles.

Fig. 3. Comparison between experimental observations (A)–(C) and compu-
ter simulations (D)–(F). Left: Experimental results, (A) a tetrahedral smectic
vesicle (20); (B) a fat tetrahedral smectic vesicle (15); (C) an ellipsoidal smectic
vesicle (14). Right: Simulation results for a case of K3∕K1 ≈ 2.0, (D) κ ¼ 0.04; (E)
κ ¼ 0.1; (F) κ ¼ 0.5. The contour plots show the distribution of the local Frank
free energy.

‡We emphasize, however, that these morphological changes are smooth crossovers. There
is no real phase transition in the thermodynamic sense.

§We note that other more complicated shapes may arise if we consider a more general
model free energy where both bending rigidities and Frank constants are anisotropic.
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Methods
To implement a deformable lattice model with spherical topology, we first
introduce a reference sphere and tessellate it with a triangular mesh along
with 12 requisite 5-disclinations. Afterward a dual lattice of the triangular
mesh is constructed, each dual site being the center of mass of each plaquette
formed by the original triangular lattice. The details of the lattice geometry
are illustrated in the Supporting Information. Let m̂α to be the unit vector
normal to the plaquette α. A director n̂α and a projection operator
N̂α ¼ n̂αn̂α are defined on each dual site with a constraint that it must be
perpendicular to the plaquette normal: N̂α · m̂α ¼ 0.

Let dαβ be the bond length connecting two neighboring dual sites α and
β, and Sαβ be the area spanned by the bond αβ. The discretized Frank free
energy is then given by

FFrank ¼ K∑
hαβi

Sαβd−2
αβTr½ðN̂β − N̂αÞ2� [6]

The bond lengths dαβ and the areas Sαβ are introduced to ensure that the
lattice model is a proper discretization of the continuum model Eq. 2. They
insure that, up to errors which scale with the plaquette area Sαβ, the lattice
free energy is invariant under change of triangulation. The discrete repara-
metrization invariance is necessary so that the free energy depends only on
vesicle shape and not on the specific structure of the mesh. This is implemen-
ted for each shape as the vertices are deformed.

The discretized bending energy is given by

Fbending ¼ κ∑
α

SαTrK2
α ; [7]

where Kα is the extrinsic curvature tensor at site α, whilst Sα is the area of the
plaquette α. The curvature tensor Kα of each plaquette α can be calculated
from the following three equations:

e jjαβ ¼ 1

2
~e⊥αβ · Kα · ~e⊥αβ e jjαγ ¼ 1

2
~e⊥αγ · Kα · ~e⊥αγ

e jjαδ ¼
1

2
~e⊥αδ · Kα · ~e⊥αδ;

[8]

where ~eαβ is the vector pointing from vertex α to vertex β, and e jj
αβ and e⊥

αβ are
its components parallel and perpendicular to the plaquette normal m̂α.

In theMC simulations, the deformable surface consists of 300 vertices, cor-
responding to 596 directors in all. The initial shape of the surface is a unit
sphere and the initial director orientations are random. Each MC sweep con-
sists of trial attempts to rotate each director and to move each vertex. The
acceptance or rejection of a MC trial is determined by the standard Metro-
polis algorithm. All vertices are allowed to move along the radial direction
with the angular positions of the vertices fixed. In order to preserve the total
area upon surface deformation, any vertex moves making a total area
change larger than 1% are rejected. Finally, once the surface is deformed
by vertex moves, the orientations of directors are corrected by projecting
them onto the newly deformed plaquette before the new free energy is cal-
culated.

Finally we remark that we have checked carefully that the location of ne-
matic defects is not influenced by the inevitable lattice disclinations asso-
ciated with spherical topology and present in our meshes as described above.
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Here we present the additional information of (i) the detailed
description of the lattice geometry employed in our simulations,
(ii) estimation of the splay (K1) and bending (K3) elastic con-
stants, and (iii) simulation observations presenting three classes
of degenerate morphologies in the lowest energy states.

I. Dual Honeycomb Lattice. During the course of our simulations,
we use the dual honeycomb lattice, which is constructed from
a triangular mesh on a sphere. In Fig. 1, we illustrate the lattice
geometry. The dual honeycomb lattice sites are labeled by Greek
letters and directors are defined on every dual lattice site. The
two-body interaction can be calculated between neighboring di-
rectors, such as α,β, etc., and three body interaction involves next-
nearest neighbor triplet α,β,γ, etc. The extrinsic curvature tensor
Kα can be calculated at every dual lattice α, as discussed in the
main text.

II. Estimation of the Splay (K1) and Bending (K3) Elastic Constants. In
addition to the isotropic case, where the Frank free energy is de-
scribed in one constant limit K as shown in eq. 6 in the main text,
we also studied the anisotropic case, where the splay and bending
elastic constants are different; i.e., K1 ≠ K3. The anisotropy in
the Frank elastic constants can be turned on if we include three
body interactions as following,

FFrank ¼ J2∑
hαβi

Sαβd−2
αβTr½ðN̂β − N̂αÞ2�

þ J3 ∑
hαβγi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SαβSαγ

q
d−1
αβ d

−1
αγ ðêαβ

· N̂α · êαγÞTr½ðN̂α − N̂βÞðN̂α − N̂γÞ�: [S1]

However, in our discretized model above, the relation between
parameters such as, (J2, J3) and the Frank elastic constants
(K1, K3) is not obvious, and also depends on the type of lattice
geometry. Here we estimate K1 and K3 values, by comparing nu-
merically calculated energy for given J2 and J3 from eq. 1 to the
analytic Frank energy calculation in a flat space. We first prepare
a large rectangular system with given lattice type (honeycomb lat-
tice for our case), and apply a twisted boundary condition, in
which the nematic directors at two opposite edges make a small
angle difference Δθ as shown in Fig. 2. The pure splay texture can
be obtained by free energy minimization with the boundary con-
dition as presented in the left in Fig. 2 and be used to determine
K1, while K3 can be estimated from the boundary condition as
shown in the right in Fig. 2. The numerically minimized free en-
ergy cost of eq. 1 is then compared with the following analytic
calculation:

ΔF ¼ Ki

2

Z
d2xð∂xθÞ2 ¼

KiHðΔθÞ2
2L

: [S2]

The estimated anisotropy of K3∕K1 in the honeycomb lattice is
found to be approximately 2.

III. Three Representative Ground State Morphologies. In Fig. 3, we
illustrate three degenerate morphologies at a very small bending
rigidity, which are found in our simulation at finite system size.
The differences in the total free energies are within �0.5%. Such
degeneracy is observed both in isotropic and anisotropic cases.

δ γ

β

α

k

j

i

Fig. S1. A lattice geometry used in our simulations. Roman letters represent the lattice sites in the original triangular mesh, while Greek letters indicate the
dual honeycomb lattice sites. The arrow on the lattice site α represents a nematic director.
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Fig. S2. How to numerically measure Frank constants K1 and K3 using spin wave method. Take a rectangular system and apply twisted boundary conditions on
two opposite sides. The twist angle should be small enough. Left: splay constant. Right: bending constant.

Fig. S3. Three representative ground state morphologies. (A)–(C) show the schematic representation of three degenerate morphologies obtained from si-
mulations in (D)–(F); (A) and (D), an ellipsoidal shape vesicle with two closely bounded disclination pairs; (B) and (D), a flattened vesicle with four well separated
half integer disclinations located in one plane; (C) and (E), a tetrahedral vesicle with four well separated half integer disclinations. All simulation results are at
κ ¼ 0.05 and for the case of K1 ¼ K3.
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