
Hydrodynamics of Equilibrium Systems

1. whether the order parameter is conserved or not, 
2. whether there are the other conserved charges, 

3. whether there exists couplings between these modes. 

Classified different types of dynamics (models A-J) based on the following:   



Equilibrium versus Non-equilibrium hydrodynamics

Equilibrium hydrodynamics: The deterministic part can be written as a gradient descend, i.e., the 
dynamics is trying to minimize some global functional, e.g., the free energy 𝓕 𝒗 . The noise has no 
feature, i.e., it is white in space and time.  --- “Model A” in Hohenberg and Halperin (RMP, 1977)

𝝏𝒗
𝝏𝒕 = −𝜿

𝜹ℱ 𝒗
𝜹𝒗 +𝜼

< 𝜼𝒊(𝒙, 𝒕) 𝜼𝒋 𝒙#, 𝒕# >= 𝟐𝚫𝜿𝜹𝒊𝒋𝜹(𝒙 − 𝒙#)𝜹(𝒕 − 𝒕#)

𝑷(𝒗)~𝒆!ℱ/𝚫 Boltzmann Distribution

Non-equilibrium hydrodynamics: there is NO global functional the dynamics is trying to minimize 

𝝏𝒗
𝝏𝒕 ≠ −

𝜹ℱ 𝒗
𝜹𝒗 +𝜼

e.g., the vector 𝝓𝟒 −theory for XY model:  ℱ 𝒗 = ∫[− 𝜶
𝟐 𝒗

𝟐 + 𝜷
𝟒 𝒗

𝟒 + 𝑫
𝟐 𝛁𝒗 𝟐]d𝒙

𝝏𝒗
𝝏𝒕 + 𝝀𝟏 𝒗 2 𝜵 𝒗 +⋯ = 𝜶𝒗−𝜷 𝒗 𝟐𝒗 +𝑫𝜵𝟐𝒗 +⋯+ 𝜼

𝝏𝒗
𝝏𝒕 = 𝜶𝒗 − 𝜷 𝒗 𝟐𝒗 +𝑫𝜵𝟐𝒗 + 𝜼



One common consequence of Non-equilibrium systems:

It needs continuous dissipation of energy (cost) to maintain
the non-equilibrium steady state  

What is the cost-performance tradeoff in biological systems?
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Schrödinger’s Question

“…life feeds on negative entropy…” – Erwin Schrodinger
(1944)

How are living (biological) systems different from non-living (physical) systems? 

Life costs free energy



Central Question: How do living systems process information accurately 
with noisy components and stochastic interactions?

DNA Replication
Pattern Formation

(drosophila (fruit fly) embryo)

(1) How?  à Mechanisms and Design Principles for Achieving the Biological Functions (Behaviors)

(2) How much? à Free Energy Cost for Biological Functions

• Biological systems are noisy – small # of molecules, stochastic interactions, ….

Learning/memoryCircadian rhythm
(Cyanobacteria)

The energy cost for creating and maintaining order in noisy nonequilibrium systems

Flocking



The Onsager reciprocal relations

Equilibrium versus Non-equilibrium systems

The cycle rule

(Lars Onsager)

Detailed balance (DB)
𝒌𝑨𝑩

𝒌𝑩𝑨



𝑱

Biochemical systems are far from equilibrium

Terrell Hill

𝑘;𝑘<𝑘= ≠ 𝑘>;𝑘><𝑘>=

Thermodynamic force: Δ𝜇 = 𝑘?𝑇 ln
𝑘;𝑘<𝑘=

𝑘>;𝑘><𝑘>=

Persistent current J 
in steady state: J=𝑘<𝑃? − 𝑘><𝑃@ =

A!A"A#>A$!A$"A$#
…CDE FG H (IJ) KLMEC …

The cycle rule (or DB )
is broken: 

Continuous energy dissipation (power consumption) is needed 
to maintain a non-equilibrium steady state (NESS) 

Free energy dissipation rate: �̇� = 𝐽×𝛥𝜇 ≥ 0

ATP

ADP+Pi



Cost-Performance relation in biological systems

Ø Sensory Adaptation

Ø Ultrasensitive Biological Switch The nonequilibrium mechanism for ultrasensitivity in
a biological switch: Sensing by Maxwell’s demons
Yuhai Tu*

T. J. Watson Research Center, IBM, P. O. Box 218, Yorktown Heights, NY 10598

Communicated by Charles H. Bennett, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, May 20, 2008 (received for review
December 19, 2007)

The Escherichia coli flagellar motor senses the intracellular concen-
tration of the response regulator CheY-P and responds by varying
the bias between its counterclockwise (CCW) and clockwise (CW)
rotational states. The response is ultrasensitive with a large Hill
coefficient (!10). Recently, the detailed distribution functions of
the CW and the CCW dwell times have been measured for different
CW biases. Based on a general result on the properties of the
dwell-time statistics for all equilibrium models, we show that the
observed dwell-time statistics imply that the flagellar motor switch
operates out of equilibrium, with energy dissipation. We propose
a dissipative allosteric model that generates dwell-time statistics
consistent with the experimental results. Our model reveals a
general nonequilibrium mechanism for ultrasensitivity wherein
the switch operates with a small energy expenditure to create high
sensitivity. In contrast to the conventional equilibrium models, this
mechanism does not require one to assume that CheY-P binds to
the CCW and CW states with different affinities. The estimated
energy consumption by the flagellar motor switch suggests that
the transmembrane proton motive force, which drives the motor’s
rotation, may also power its switching. The existence of net
transitional fluxes between microscopic states of the switch is
predicted, measurement of these fluxes can test the nonequilib-
rium model directly. Both the results on the general properties of
the dwell-time statistics and the mechanism for ultrasensitivity
should be useful for understanding a diverse class of physical and
biological systems.

signal transduction ! dissipative system ! dwell-time statistics !
energy consumption ! flagellar motor

H igh sensitivity has been observed in many signaling systems
in biology ranging from calcium signaling in skeletal muscle

(1) to chemotaxis response in Escherichia coli (2, 3). One of the
most studied systems is the flagellar motor switch, where the key
component of the switching complex is a ring of around 34
identical FliM proteins (4). The motor switches stochastically
between the CCW and the CW states, with a bias affected by the
binding of CheY-P to FliM. The conventional picture described
the switch by an equilibrium two-state model where the free
energies of the two states depend on the CheY-P concentration,
and the transition is driven by thermal fluctuation (5, 6). The
large Hill coefficient in the motor CheY-P response curve (7) is
then explained in terms of cooperative interactions between the
FliM molecules. Models falling within this equilibrium frame-
work include the classical Monod–Wyman–Changeux (MWC)
allosteric model (8–10) and the Ising-type model (11) with
nearest-neighbor interactions. Indeed, cooperative protein in-
teraction has been proposed as a general mechanism for under-
standing ultrasensitivity in signaling (12). However, most bio-
logical complexes, such as the FliM ring, are embedded in and
could strongly interact with other components in the system. A
fundamental question therefore arises on how good an approx-
imation these equilibrium models are in describing the under-
lying biological processes. Are there any relevant nonequilibrium
effects? If so, how can they be detected and characterized? In
this article, we try to address these general questions while also

focusing on understanding the mechanism for E. coli f lagellar
motor’s ultrasensitive response to CheY-P. Our choice of this
particular system is motivated by the recent experimental mea-
surements of detailed single motor switching statistics (13).

Results
Nonexponential Dwell-Time Statistics and the Breakdown of Detailed
Balance. The observable state of the flagellar motor is repre-
sented by a binary variable s: s " 0, 1 corresponds to the CW and
CCW rotational states of the motor. The internal state of the
switch is described by an integer variable n: n " 0, 1, 2, . . . , N
corresponds to the CheY-P occupancy among the N(" 34) FliM
monomers. The stochastic switching kinetics is determined by
the transition probability rates between these 2 # (n $ 1) states as
illustrated in Fig. 1. The CheY-P binding and unbinding rates for a
given state (s, n) are ks

%(n) and ks
$(n) , which depends on the

CheY-P concentration [Y]. The switching rate from the s state to the
(1 % s) state for a given FliM occupancy n is !s(n). Given these
transition rates, the steady state probability ps

(0)(n) in state (s, n), the
CW (CCW) bias BCW (BCCW), and the distribution function Ps(")
for dwell time " in the s state can be determined either by
numerical simulation or by solving the master equations (see
Materials and Methods for details).

For equilibrium systems, detailed balance is satisfied between
pairs of states, e.g., !0(n)p0

(0)(n) " !1(n)p1
(0)(n), and, equiva-

lently, the transition rates obey thermodynamic relations, e.g.,
k0

$(n)!0(n $ 1)k1
%(n $ 1)!1(n) " k0

%(n $ 1)!1(n $ 1)k1
$(n)!0(n).

By using these relations in analyzing the master equations for
Ps("), we discover that the dwell-time distribution function can
be expressed as a sum of exponential decay functions with
positive definite coefficients [see supporting information (SI)
Text for details of the proof]:

Ps&"' # "
j"0

N

cj exp&%$ j"' , $ j % 0, cj & 0. [1]

We emphasize that this result is valid for any equilibrium model
with detailed balance, including the Ising-type model (see SI Text
and Fig. S1 for details). From Eq. 1, Ps(") satisfies a set of
constraints:

&%1'm
dmPs&"'

d"m % 0, ' " % 0, m # 1, 2, 3, . . . , [2]

in particular, it should be monotonically decreasing (m " 1) and
convex (m " 2). For nonequilibrium systems, some of the
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Ẇ ! kBT !
!AB"

#JAB " JBA$ ln" JAB

JBA
# , [3]

where the sum is over all pairs of states !AB", JAB is the
probability f lux from state A to state B. The net flux from A to
B: %JAB & JAB ' JBA is nonzero only in nonequilibrium systems
because of the breakdown of detailed balance. In fact, measure-
ments of this net flux can be used to directly test the validity of
the nonequilibrium models (see SI Text for a detailed calculation
of these fluxes). The average energy dissipated per switch cycle
(CCW to CW to CCW) is %W ( (#1 ) #0)Ẇ, where #0 and #1 are
the average dwell time for CW and CCW states, respectively. In
Fig. 3B, the energy dissipation %W/kBT and the Hill coefficient
of the corresponding response curve Heff & 2 * d(lnBCW)/
d(ln[Y])$BCW ( 0.5 for given values of $ are plotted together. Our
result clearly shows that in our nonequilibrium model, sensitivity
is powered by energy dissipation, and more energy is needed to
generate higher sensitivity (Heff). Eventually, Heff is limited by
the size of the operation range %n, as shown in Fig. 4, where Heff
is plotted versus the energy dissipation %W/kBT for different
values of %n.

Despite the different origins of the equilibrium ($ ( 1, C +
1) and the nonequilibrium ($ , 1) mechanisms for high sensi-
tivity, they can coexist as shown in Fig. 5A, where Heff is shown
for different values of C and %W (by varying $). For a given C,
Heff increases from its equilibrium value at %W ( 0 ($ ( 1) as
the energy dissipation %W increases. However, although both

mechanisms can generate high sensitivity (black lines in Fig. 5B),
their predicted dependence of average FliM occupancy !n" on
CheY-P concentration differs significantly. The CheY-P occu-
pancy curve for the equilibrium model (C ( 0.25, $ ( 1) has a
steep region in the operating range of the CheY-P concentration,
whereas the FliM occupancy for the nonequilibrium model (C (
1, $ ( 256) follows a gradual binding function [Y]

[Y] ) [Y]1/2
for all

CheY-P concentrations, as shown in Fig. 5B (red lines). There-
fore, careful measurement of FliM occupancy is critical to
distinguish between these two mechanisms. The other significant
difference between the two mechanisms is their opposite de-
pendence between the switching frequency and sensitivity. We
find that increasing $ (,1) in the nonequilibrium model not only
increases the sensitivity (Heff), it also increase the switching
frequencies #0,1

'1. On the contrary, for the equilibrium models,
higher sensitivity (with smaller C) leads to slower switching rates
(11) akin to the well known phenomenon of critical slowing down
for equilibrium systems.

Discussion
The general theory on the properties of the dwell-time distri-
bution obtained in this article holds true for all equilibrium
systems with detailed balance. This theory provides a powerful
tool in detecting relevant nonequilibrium effects in all systems
and should be particularly useful in biology, where most inter-
esting systems operate out of equilibrium. The nonequilibrium
characteristics in the dwell-time distribution function, such as
nonmonotonicity (peak), concavity, and other higher-order be-
haviors, generally appear at time scales much smaller than the
average dwell time. Therefore, high-resolution experiments are
required to unravel these subtle but highly informative features.
Depending on the strength of the nonequilibrium effects, extra
care may also be needed to control the signal to prevent
weakening of these features by averaging over different signal
strengths. For example in the case of the E. coli f lagellar motor
switch, peaks in Ps(#) became visible only when Ps(#) were
determined for fixed CW biases (13). There is a recent report of
a similar peak in dwell-time distribution in the kinesin motor for
its waiting-time (between steps) distribution at low ATP con-
centration (21); it would be interesting to study the implication
of these observations in light of our work. The strong connection
between the dwell-time statistic and the underlying kinetics
established here will hopefully stimulate more such careful
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Fig. 3. The response curves and the energy dissipation. (A) The response
curves for different values of $ ( 1,22,24,26,28,210, with C ( 1 and other
parameters %! ( 0.01, nU ( 22, nL ( 12. The black line ($ ( 1) corresponds to
the equilibrium case with a constant response (zero sensitivity) for C ( 1.
(B)The effective Hill coefficient Heff (red line) of the response curves in A and
the energy dissipation %W/kBT (black line) are plotted for different $ values on
a semilog plot.
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equilibrium cases correspond to %W ( 0. (B) Almost indistinguishable re-
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Ø Biochemical Oscillation

Ø Inverse Power-Law Scaling 
of Dissipation Rate during 

coarse-graining 



Most of the systems studied so far are spatially homogeneous, 
i.e., well mixed biochemical reaction networks

What about systems that consist of strong-interacting subsystems, which exhibit collective behaviors?

Strongly interacting systems

1) Synchronization of molecular clocks

2) Flocking of active spins 

Zhang et al, Nature Phys., 2020

https://arxiv.org/abs/2205.13149
“The energy cost for flocking of active spins”, Qiwei Yu, YT, 2022

3) Reaction-diffusion system (not covered in this talk)

https://arxiv.org/abs/2205.13149


Synchronization of Coupled Molecular Clocks

A finite-state Poisson clock
Coupled clocks -- exchange interactions

𝒌𝒆𝒙((𝝓𝒊 +𝚫𝝓, 𝝓𝒋 −𝚫𝝓) → (𝝓𝒊, 𝝓𝒋)) =
𝛀
𝒎𝒆

!
𝚫𝑬𝒊𝒋
𝟐

𝒌𝒆𝒙((𝝓𝒊, 𝝓𝒋) → (𝝓𝒊 +𝚫𝝓, 𝝓𝒋 −𝚫𝝓)) =
𝛀
𝒎𝒆

𝚫𝑬𝒊𝒋
𝟐

Type equation here.

𝚫𝑬𝒊𝒋 = −
𝑬𝟎
𝟐 cos(𝝓𝒊 −𝝓𝒋)



An analytical solution for the many-oscillator phase distribution

An effective temperature: 𝑇455 = 𝛽!6 = 1 + 𝑘/Ω decreases with exchange frequency  Ω

The phase distribution function of m interacting oscillators 𝑃 𝜙(, 𝜙), … ,𝜙*, 𝑡 satisfies the Fokker-Planck equation:

The processive speed: 𝑣 = 𝑘𝑒+ = −𝑘 lnΓ+/2𝜋 Interaction “energy” 𝐸 𝜑,- 𝑤𝑖𝑡ℎ 𝜑,- = 𝜙, −𝜙-

Exact steady-state solution:



The nonequilibrium phase transition and energy cost of synchronization

Ω
Ω+𝑘𝐸. = 2

Critical line:

𝑟 > 0 when
Ω

Ω+𝑘𝐸. > 2; 𝑟 = 0 when Ω
Ω+𝑘𝐸. ≤ 2

Synchronization order parameter 𝑟 ∈ [0,1]

𝜓 = 𝑣𝑡

𝑊7 = 2𝜋𝑒8 = −lnΓ8𝑊 = �̇�×𝑇 = 𝑊7 +𝑊49

Energy dissipation rate 

procession
energy

exchange
energy

3 4 5 6
E0

-0.5

0

0.5

lg
/k

𝑾𝒆𝒙 𝑬𝟎, 𝜴

𝒍𝒏(
𝛀
𝒌)



Synchronization transition driven by exchange energy dissipation

𝑊[,\]^ = 8𝜋/𝑒_

𝑟!"# 𝑊 = max(𝑟 𝐸$, Ω 𝑊 )

𝑊%#

(𝐸%∗, Ω∗) = argmax
',)!

𝑟 𝐸%, Ω 𝑊

Optimal design 

(Zhang et al, Nature Physics, 2020)



Cyanobacteria is the simplest organism that 
exhibits circadian rhythm (24 hrs)

Cyanobacterial circadian clock and the Kai system

Synechococcus elongatus 

KaiC hexamer S431
T432

(Johnson et al, Ann. Rev. Biophys. 2011)

robust 24-hr oscillation in vivo 

12am

6am
(6Tp)

12pm
(6Tp6Sp)

6pm
(6Sp)

(Nakajima, …, T. Kondo, Science, 2005)

A breakthrough!

KaiA, KaiB, KaiC, +ATP

(Takao Kondō)



How do individual KaiC hexamers synchronize with each other?

KaiC hexamers exchange monomers
(Kageyama et al, …, T. Kondo, Mol. Cell, 2006)



The energy cost of synchronization in the Kai system
An Interesting Puzzle: Only 2 ATP are needed for the P-dP cycle , 16 ATP are hydrolyzed per KaiC per day 

(Terauchi et al, …, T. Kondo, PNAS 2007)

(Zhang et al, Nature Physics, 2020)

Varying 
R– exchange (shuffling) rate
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hexamer -- PdP cycle
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two KaiC hexamers

0 1 2 3 4

R(h-1)

0

5

10

15

d
is

si
p
a
tio

n
 r

a
te

(k
B
T

/h
)

0 1 2 3 4

R(h-1)

0

0.2

0.4

0.6

0.8

1

a
m

p
lit

u
d
e

0

5

10

15

20

25

p
e
ri
o
d
(h

)

A

W
s

k
p

γ
1
k

p

k
dp

γ
2
k

dp

g γ
3
g gγ

3
g

+
Rp

ij→kl
+

B

k
dp

γ
2
k

dp

k
p

γ
1
k

p

P - 

dP - 

H
i

H
j

H
k

H
l

same conformation,

…
k

dp

γ
2
k

dp

k
p

γ
1
k

p

k
dp

γ
2
k

dp

k
p

γ
1
k

p

C

…

16 ATP/day

2 ATP/day

E
s
= 40

E
s
= 80

E
s
= 120

Monomer-shu!ing between

P(       ) or dP(      )      

Our model



The rings of time: KaiC hexamer consists of two rings (KaiCI and KaiCII)

ATPase
(provide energy for synchronization?)



What about the energy cost for flocking?



The dissipation rate depends inversely on the coarse-graining scale 

Coarse-graining can reduce the apparent 
dissipation rate dramatically  

(Qiwei Yu, DL Zhang, YT, PRL, 126 (8), 2021)

To determine the true dissipation rate, 
we need to compute it at the 

microscopic level.



Thermodynamic cost for flocking
of active spins

“Flocking with discrete 
symmetry: The two-dimensional 
active Ising model”
PRE 2015

“Revisiting the flocking 
transition using active spins”
PRL 2013

A. P. Solon and J. Tailleur

The Active Ising Model (AIM)

𝒎𝒊 = 𝒏𝒊: −𝒏𝒊! 𝝆𝒊 = 𝒏𝒊: +𝒏𝒊!

𝒏𝒊𝒔 -- number of spin s(=+, -) at site i
(𝟐×𝑳)𝑵 degrees of freedom



The Active Ising Model (AIM): a lattice flocking model

• 𝑁 particles (Ising spins), 𝐿9×𝐿; lattice, no volume exclusion, continuous-time Markov process.

• State variables: local occupation number 𝑛<,>: , 𝑛<,>! , 𝑖 = 1,2,… , 𝐿9, 𝑗 = 1,2,… , 𝐿;.

• Local density and magnetization: 𝜌<,> = 𝑛<,>: + 𝑛<,>! , 𝑚<,> = 𝑛<,>: − 𝑛<,>! .

• Dynamics (reactions): local alignment + active transport

𝐻1 = −
𝐸.
2𝜌1

∑
,2(

3!
∑

-2(,-5,

3!
𝑆,𝑆- = −𝐸.

𝑚1
)

2𝜌1
−
1
2 Δ𝐸 = ln

1 + 𝜖
1 − 𝜖

Key control parameters: ?
@
, 𝐸7, 𝜖

time scale coupling 
energy 
scale

bias

A. P. Solon and J. Tailleur, PRL 2013; PRE 2015



Phase diagram in parameter space (𝑬𝟎, 𝝐)

N particles undergoing a continuous-time Markov process on a 2D lattice.

𝐻A = −
𝐸7
2𝜌A

∑
<B6

C6
∑

>B6,>D<

C6
𝑆<𝑆> = −𝐸7

𝑚A
E

2𝜌A
−
1
2
.

Gas Phase

Mixed 
Phase

Liquid 
Phase

Gas

Mixed

Liquid



The three phases in AIM: Simulation results:

Gas Phase
(No flocking) (flocking)

Liquid Phase
(flocking)

Mixed Phase

𝑚(𝑥, 𝑦)



AIM breaks the cycle rule (or Detailed Balance)

𝚪 = 𝟐𝒆&𝜷×𝑫 𝟏3𝝐 ×𝒆&𝜷×𝑫(𝟏3𝝐)
𝟐𝑫 𝟏5𝝐 ×𝒆&𝜷×𝑫 𝟏5𝝐 ×𝟏

= 𝒆3𝜷(𝟏3𝝐
𝟏5𝝐

)𝟐≠ 𝟏

Energy is continuously dissipated to maintain the (non-equilibrium) steady state. 

1    2 1    2 1    2 1    2 1    2

𝑫(𝟏 − 𝝐)

𝑫(𝟏 + 𝝐) 𝟐𝑫(𝟏 + 𝝐)

𝟐𝒆$𝜷 𝒆$𝜷

𝒆$𝜷𝟏

Hopping Hopping

𝑫(𝟏 − 𝝐)

Flipping Flipping
The mixed flipping-hopping cycle

Two-site AIM 
with 𝑵 = 𝟐



The active Ising model: thermodynamics

General Theoretical Framework

State variable

Forward Probability

Backward Probability

Finite, vanishes for infinite t Count all transitions

Trajectory

*see book by Peliti & Pigolotti for a comprehensive 
introduction to stochastic thermodynamics.



The active Ising model: thermodynamics

𝜔𝑒*)!
+"
," 𝜔𝑒-*)!

+"
,"

Flipping Hopping

General Theoretical Framework

sum of the entropy terms
vanishes in the steady state

sum of the energy terms

alignment dissipation

motion 
dissipation



The average speed (order parameter) and energy dissipation rate in AIM

𝒗 ≡ 𝒔 (𝑬𝟎, 𝝐)

𝝐 𝝐

Order parameter

𝒗 = 𝟎

Flocking state
𝒗 > 𝟎

Alignment energy dissipation rate
�̇�𝒂 𝑬𝟎, 𝝐

Critical Line



Th alignment energy dissipation peaks at the flocking transition with a cusp



The alignment energy cost peaks at the flocking transition point
with a cusp (discontinuity in first derivative)

𝝐 = 𝟎. 𝟏 𝝐 = 𝟎. 𝟓

�̇�𝒂 𝑬𝟎, 𝝐

𝒗 (𝑬𝟎, 𝝐)

�̇�𝒂 𝑬𝟎, 𝝐 𝒗 (𝑬𝟎, 𝝐)



Understanding energy dissipation using a reduced model

General Theoretical Framework

State variable Number of states ∼ (𝐿m𝐿n)o

Steady-state distribution

Energy dissipation rate

In a small (finite) lattice, we can enumerate all possible states and make analytical progress

Baby step: two sites (minimum system that breaks detailed balance) 



Two-site solution

• Two sites: 𝐿7 = 2, 𝐿8 = 1, 𝑁. = 𝜌.𝐿7𝐿8 particles.

• total: 𝑎. spins up, (𝑁. − 𝑎.) spins down.

• site 1:  𝑎( spins up, 𝑏( spins down.

• site 2: (𝑎. − 𝑎() up, (𝑁. − 𝑎. − 𝑏() down.

• From infinite DOF (field) to 3 DOF (𝑎. , 𝑎( , 𝑏().

• Governed by the Master Equation

• Solution:

• Numerical: 𝑂 𝑁.9 complexity, so ~50 particles.

• Analytical: the limit of infinite particles (𝜌. → ∞)

1 2

+

-

+

-

𝑎(

𝑏(

𝑎. − 𝑎(

𝑁. − 𝑎. − 𝑏(



Solving the master equation

linear operator containing all the terms on the last slide

Marginal distribution

Fast distribution 𝐷 ≫ 𝜔 ⇒ the distribution can be factorized

Master equation for 𝑄(𝑎.)



Solving the master equation

𝑁 → ∞

The free energy landscape
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Ẇtot

0

20

40

60

80
c

v = 0.80
v = 0.90
v = 1.00
v = 1.10

magnetization: 𝑚 = 𝑁(2𝑧 − 1)



The system is non-equilibrium in both the ordered and disordered states
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𝑬𝟎 = 𝟎.𝟔 𝑬𝟎 = 𝟏.𝟒



The energy dissipation (entropy production) rate in AIM

(𝜷 → 𝑬𝟎)

�̇� 𝐸7, 𝜖 = lim
G→I

1
𝑇�7

G
∆𝑊 𝑡 𝑑𝑡

�̇�+ = �̇� 0, 𝜖 = 2𝑁𝐷𝜖𝑙𝑛
1 + 𝜖
1 − 𝜖

Energy cost for motion (𝐸% = 0):

Energy cost for alignment: �̇�/ 𝐸%, 𝜖 = �̇� 𝐸%, 𝜖 − �̇� 0, 𝜖



Computing the free energy cost in 2-site model

Physical observables

Alignment dissipation

(nondimensionlized)

evaluate using the saddle point method
(expansion near the saddle point)



Alignment dissipation

evaluate using the saddle point method
(expansion near the saddle point)

𝑂(1) order: no number fluctuation, no dissipation 

𝑂(𝑁;() order: expansion near the saddle point captures number fluctuation

Computing the free energy cost in 2-site model



Energy dissipation in the 2-site and full AIM
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Cusped maximum at the critical point!

Linear increase in 
the disordered 

phase

Exponential decay in the 
highly ordered phase



The energy-speed-sensitivity tradeoff in flocking
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𝐻A(𝑚A, 𝜌A) − ℎ𝑚A
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A continuous energy dissipation (cost) is needed for creating and maintaining 
order (generally defined) in nonequilibrium systems.

The cost directly constrains the functional performance of the system. 

The cost-performance tradeoff relation provides a new perspective for investigating the
mechanism and/or design principle of the underlying systems (natural or artificial).

Some general take-home messages

Thank you!


