Dynamic of isotropic active gels

Tim Sanchez

J.F. Joanny

Seth Fraden

Spontaneous flow transition in active polar gels

R. Voituriez¹, J. F. Joanny¹ and J. $\mathrm{Prost}^{1,2}$

 Physicochimie Curie (CNRS-UMR168), Institut Curie, Section de Recherche 26 rue d'Ulm, 75248 Paris Cedex 05, France
 ² ESPCI - 10 rue Vauquelin, 75231 Paris Cedex 05, France

Bioinspired soft active matter

Cytoplasmic streaming in *Drosophila* oocyte

goal: use efficient energy transducing proteins to assemble biomimetic non-equilibrium materials from the bottom-up

Building blocks

Microtubules

microns long rigid filaments
stabilized with GMCPP depletion effect: attractive interactions with tunable strength and range

bundling dynamics visualized with darkfield microscopy

Measuring filament cohesion energy

Third component: kinesin motors

kinesin

 kinesin convert energy from ATP hydrolysis to move along MT

bound into multimeric clusters.

Needlec, Surrey, Leibler, 1998, 2001

Third component: kinesin motors

kinesin

 kinesin convert energy from ATP hydrolysis to move along MT

biotin labeled kinesin bound into multimeric clusters.

Needlec, Surrey, Leibler, 1998, 2001

bundle geometry increases filament sliding efficiency

Isolated active MT bundles

Dilute active MT bundle observed with darkfield microscopy in quasi 2D confinement

- isolated bundles are static, locally polarity sorted
- bundle recombination reinitializes polarity sorting

Motor driven bundle extension velocity

buckling and fracture of active MT bundles

motor driven extension drives bundle buckling and fracture

Mechanics of internally driven buckling

Buckle extension speed 0.09±0.04 μm/s

Force generation of a buckling bundle

Outline

1. building blocks of microtubule based active matter

microtubules + kinesin clusters + cohesion \rightarrow extensile bundles

structural motif that drives non-equilibrium dynamics of diverse active soft materials

2. bulk isotropic active gels

3. confined active gels

Active MT bundles at high concentration turbulent like steady state

ATP regeneration – dynamics persist for > 24 hrs

1500 μm=

Microscopic MT dynamics? Macroscopic properties of MT active gels?

Microscopic MT dynamics

extension, polarity sorting and buckling

bundle fracture

bundle merging

isotropic active gels – repeating cascades of bundle merging, extension, buckling and fracture

Spontaneous fluid flow

Enhanced and tunable mixing

Enhanced transport and mixing of passive particles

Tunable mean square displacement from sub-diffusive to ballistic

Particles on average do not go anywhere <x(t)>=0

Spontaneous bend instability

What is the appropriate hydrodynamic description of active isotropic gels?

aligned extensile filaments are unstable against bend fluctuations

 $\Leftrightarrow \Leftrightarrow \rightleftharpoons \bigstar \Leftrightarrow \longleftrightarrow \longleftrightarrow$

Outline

1. building blocks of microtubule based active matter

2. bulk isotropic active gels

3. confined active gels

low ATP – no net circulation currents

Intermediate ATP – large fluctuations in mean angular velocity circulation

Spontaneous fluid flow

ATP dependence

Self-pumping of confined active gels

flow velocity – weak dependence on curvature

Circulation Phase diagram

Donuts

Vorticity Order Parameter vs Time

Shrinking Inner Radii

Flow Profile

Particle Image Velocimetry (PIV)

Seth Fraden Daniel Chen

Disk

Donuts

Donuts

Local Vorticities

 $|C(0)| |C(R)| \sim e^{1-R/l \downarrow R}$

 $\langle |C(0)| |C(\Theta)| \rangle \sim e^{\uparrow} - \Theta / l \downarrow \Theta$

 $\langle |C(0)| |C(T)| \rangle \sim e^{\uparrow} - T/\tau$

Local Vorticity

Lifetime of a local Vorticity

CNC + COC Embossing

Chiral flows

Chiral flows

Chiral flows

Increasing surface roughness decreases efficiency

1 mm

Spontaneous flow in more complex geometries

Spontaneous flow in more complex geometries

