2D x-y model

Minimizing free energy (F) determines equilibrium phase

What happens for a system away from equilibrium?

Symmetries in Active Systems

Hydrodynamics?

Active Materials

Image credits [top]: (1) Bo Pardau, Big Island, Hawali, http://www.licke.com/photos/bodiver (2) Wikipedia (3) T. Sanchez et. al. Natura, 491, 431, (2012) (4) J. Palacci et. al. Science 467, 33 (2013). [bottom] (1) http://webodysseum.com/videos/spectacular-starting-flocks-video-murmuration/ (2) R. Harshey, Annual raview of microbiology 57, 249 (2003). (3) A. Kudroll et. al. Phys. Rev. Lett. 100, 058001 (2008). (4) McCandilsh et. al. Soft Matter, 8, 2527 (2012).

Gabriel S. Redner (Brandeis)

Active Nematics

Overview of experiment active matter systems

Different categories of experimental model systems

Synthetic active swimmers – tunable shape and microscopic dynamics very few microscopic mechanism that can power propulsion orders of magnitude less efficient that biological swimmers difficult to achieve long term steady state

Assemblages of Living Organism – robust long lived dynamics evolution ensures high energy efficiency microscopic activity, shape and interactions are not easily tunable reproduction and death – number conservation difficult to achieve long-term steady state dynamics

Biomimetic systems – assemblages of energy consuming biochemical building (molecular motors and microtubules) high efficiency comparable to living organism while also tunable lie synthetic systems

No ideal system of active matter – each one has advantages and disadvantages

1. Isotropic interactions and polar active dynamics

2. Polar interaction and polar active dynamics

3. Apolar interaction and nematic active dynamics

Catalytic Swimmers

Figure 1. Trajectory plots of three 2 im long platinum/gold rods identified in (A) over the next 5 seconds. (B) in 2.5% aqueous hydrogen peroxide.

Sen et. al. JACS 2006

Isotropic synthetic swimmers

Light controlled particle motility – light catalyzes degradation of H_2O_2

advantages – highly tunable microscopy dynamics (light and hydrogen peroxide concentration)

drawbacks – motility produces unwanted gas products – limited lifetime (tens of minutes) complex swimming mechsims

Jeramy Pallaci, Paul Chaikin and others 2013

light catalyzes degradation of H₂O₂ -induced chemical gradient tracer beads swim up along the gradient

 A/r^2 velocity profile is consistent with diffusive concentration gradient

Tunable velocity of motile colloids

What is going on?

Redner, Hagan, and Baskaran PRL (2013) see also: Fily and Marchetti, PRL (2012) Tailleur and Cates, PRL (2008). A. G. Thompson et al. J Stat Mech (2011). Bialke, Lowen, Speck, EPL 103, 30008 (2013). Cates and Tailleur, EPL 101, 20010 (2013). J. Stenhammar et al. PRL 111, 145702 (2013). Redner, Baskaran, and MFH, PRE (2013). T. Speck et al. arXiv:1312.7242(2013) Fily, Henkes, and Marchetti, Soft Matter (2014). J. Stenhammar et al. Soft Matter 10, 1489 (2014). R. Wittkowski et al. arXiv:1311.1256 (2014)

Simulations of Self-Propelled Spheres

Parameters:

- density (ho)
- Pe = $v_p \sigma/D \cong lp/\sigma$

 $Pe=\sigma v_p / D$ Pe=60 Pe=10

Pe=80

Simulations of Self-Propelled Spheres

Stop the presentation now – exit powerpoint

Simulations of Self-Propelled Spheres

- phase diagram analogous to equilibrium system of attracting particles undergoing phase separation,
- Pe playing the role of an attraction strength
- increasing activity induced phase separation
- "effective temperature" does not make sense.

Phase Coexistence

Simulations of Self-Propelled Spheres

Stop the presentation now – exit powerpoint

Simulations of Self-Propelled Spheres

Nucleation and spinodal decomposition of self-propelled spheres

Outline

1. Isotropic interactions and polar active dynamics

Dynamical clustering and phase separation of purely repulsive particles

2. Polar interaction and polar active dynamics

3. Apolar interaction and nematic active dynamics

Vicsek model(s): Two ingredients

Vicsek et al PRL 95

Vicsek dynamical transition

Hallmarks of polar active matter

Bird flocks - to complex to quantitatively test theoretical predictions

Actin-myosin motility

Motility assay at intermediate filament densities – spontaneous clustering

cluster movement

video1 - supplement to Fig. 2A

filament density: $\rho = 5.5 \,\mu m^{-2}$ labeling ratio: R = 1:200

ratio of unlabeled to labeled filaments \rightarrow 1:200

Motility assay at intermediate filament densities – spontaneous clustering

supplement to Fig. 2C

40 x

filament density: $\rho = 25 \,\mu \text{m}^{-2}$ labeling ratio: R = 1:320

ratio of unlabeled to labeled filaments \rightarrow 1:200

Phase diagram of motile 2D actin filaments

polar microscopic dynamics — role of hydrodynamics?

what is the nature of interfilament interactions?

Interactions are very weak – 5% of the collisions results in filament reorientation

Well controlled system – unlike bird flocks

Second example: Synthetic model system of model active polar colloids

Quincke Rotation

G. Quincke, Ann. Phys. Chem. 59, 417 (1896).

 $\mathbf{\Omega} \sim \mathbf{P} imes \mathbf{E}$

Quincke rollers

PMMA colloids Hexadecane oil+AOT salt

Microfluidic channel: ITO coated glass

Colloidal rolling robots

Persistent random walks

Collective motion?

Periodic boundary conditions

Flocking

 $\phi \sim 10^{-2}$

Shape of the colloidal swarms

Phase separation at the onset of collective motion

No intrinsic length scale

Consistent with a phase separation picture

Polar-liquid phase

 $\phi \sim 1.8 \times 10^{-1}$

Spontaneously flowing liquid

Polar liquid: polar gaz...

Polar liquid: Normal Number Fluctuations

No Giant-Number Fluctuations

Phase behavior: Vicsek like

Vicsek like?

Not really...

No intrinsic swarm scale/No multiple-band states

Solon et al PRL 15

No giant-density fluctuation

Open questions: What does set the band shape? Phase separated?

. . .

Outline

1. Isotropic interactions and polar active dynamics

dynamical clustering and phase separation of purely repulsive particles

2. Polar interaction and polar active dynamics

3. Apolar interaction and nematic active dynamics

- complex living organisms (dry)
- simple shaken granular rods (dry)
- active nematics reconstituted from biochemical components (wet)