Landau Fermi Liquid and Heavy Fermion [Coleman]

Overview

Increasing localization: 5d 4d 3d 5f 4f

- Interesting physics occur at the crossover between itinerant and localized system.
- f-spin are always localized
 \[\begin{align*}
 \text{high-T: local moment metal} \\
 \text{low-T: spins "quench" to form heavy fermions.}
 \end{align*} \]
- Spin \(\equiv \) localized moment, when \(e^- \) lost all its charge degree of freedom
 e.g. Ce\(^{3+}\) (4f\(^1\)): \(L = 3, S = \frac{1}{2}, J = L - S = \frac{5}{2} \)
 At high-T, \(\chi = \frac{\eta M^2}{3T} \), \(M^2 = g_f^2 \mu_B^2 J(J+1) \).
 \[S_0 = k_B \ln (2J+1) \] [unquenched \(\equiv \) all states equally occupied]
- Under crystal field, 4 \(\rightarrow 2 \) Kramers degenerate

At low-T, these materials form Fermi liquid:

\[E_F = \frac{p_F^2}{2m^*} \] \(N(0) = \frac{m^* p_F^2}{2 \pi^2 \hbar^3} \)

\[\chi = \frac{\alpha N^*(0) / T}{1 - F_0^2} \] \(T_{\text{tr}} = \frac{2 \hbar^2}{3N^*(0)} \)

\[W = \frac{\chi}{\chi} = 3 \left(\frac{4e^2 \hbar^2 k_B}{2 \pi^2 \hbar^3} \right) \frac{1}{1 + F_0^2} \]

Although 4f/5f metals vary 3 order of magnitudes in both \(\chi \) and \(N^*(0) \), the ratio \(W \) seems to fit on a line

most effects are accounted for by \(N^*(0) \)

NOTE: actual material below the ideal line

because of correction by \(g_f \) and \(F_0 \)

Local moment interact with itinerant \(e^- \) to form resonant states
- Possible Phases of heavy fermion system
 - metal, superconductor, Kondo insulator, quantum critical pts, "others"
 - UBe$_1$_$_3$: local moment \rightarrow metal \rightarrow superconductor
 - But traditionally (~BCS) local moment is thought to destroy SC.
 - Ce$_3$Pt$_4$Bi$_3$: Kondo insulator
 - Ce(Co, Rh, Ir) In [Pagliuso et al.]
 - YbRh$_2$Si$_2$: QCP
 - UPd$_2$Al$_3$: SC + AF coexistence

- Landau Fermi Liquid
 - Turn on interaction adiabatically: Pauli exclusion \rightarrow Fermi surface robust. Excitation spectrum preserved.
 - Hence, $\left\langle \frac{e^{-}}{m} \mid \frac{1}{q} \right\rangle = \frac{n_{q}^{1}}{m} = \frac{N(q)}{N(0)} = 1 + \frac{F_{s}}{3}$

 - From 1950 to 1960, it is realized that one can drop the long-ranged part of Coulomb and capture the essential physics by remaining short-ranged interaction (e.g. Hubbard model, Anderson model, etc.)
 - This is facilitated by discovery/experiments on 3He.

- By Pauli exclusion, phase space restriction
 $\Rightarrow T^2(\varepsilon) = (\varepsilon^2 + T^2)$
\[\Delta \text{ Thus, we have Landau energy functional:} \]
\[\mathcal{E}_1 = \mathcal{E}_0 + \sum_{p, \sigma} (E_{p, \sigma}^{(0)} - \mu) \delta n_{p, \sigma} + \frac{1}{2} \sum_{p, p', \sigma, \sigma'} f_{p p' \sigma \sigma'} \delta n_{p, \sigma} \delta n_{p', \sigma'} \]

\[\Delta \text{ Landau energy functional \sim "fixed point" Hamiltonian} \quad (\text{Shankar, RMP, 94'}) \]

\[\Delta \text{ Warning: } \epsilon_{p, \sigma}^{(0)} = E_{p, \sigma}^{(0)} + \sum_{p', \sigma'} f_{p p' \sigma \sigma'} \delta n_{p, \sigma} (E_{p', \sigma'}^{(0)} - \mu) \neq \epsilon_{p, \sigma}^{(0)} \]

This is a feedback (aka self-consistent) condition & lead to renormalization \& excitation energy.

\[\Delta \text{ Entropy: } S = -k_B \sum_{p, \sigma} \left(n_{p, \sigma} \ln n_{p, \sigma} + (1 - n_{p, \sigma}) \ln (1 - n_{p, \sigma}) \right) \]

\[\Rightarrow \quad n_{p, \sigma} = \frac{\epsilon_{p, \sigma}^{(0)}}{e^{\epsilon_{p, \sigma}^{(0)} / k_B} + 1} = f(\epsilon_{p, \sigma}^{(0)}) \quad \text{renormalized energy} \]

As \(T \to 0 \), \(\delta n_p \to 0 \), \(n_{p, \sigma} = f(\epsilon_{p, \sigma}^{(0)}) \)

\[v_p = \frac{\partial \mathcal{E}_1}{\partial p} = -\frac{\mu}{m^*} \]

\[\Delta \text{ This give rise to linear heat capacity.} \]

\[\Delta \text{ By rotation invariance,} \quad \{ f_{p p' \sigma \sigma'} = f_{p' p \sigma' \sigma} \}

\[f_{s a} = f_{s a} (\cos \theta) = \hat{p} \cdot \hat{p}' \]

\[\Rightarrow \quad f_{s a} (\cos \theta) = \frac{1}{N_{s a}^{(0)}} \sum_{l=0}^{\infty} (2l+1) F_{s a}^{s a} P_{l} (\cos \theta) \quad \text{landau parameters} \]

\[\Delta \text{ Let } \delta E_{p, \sigma}^{(0)} = \beta E_{p, \sigma} \]

\[\Delta \text{ From this we find} \]

\[\xi_s = \frac{\mu \beta}{1 + F_{s}^{s a}} = \mu \beta N_{s a}^{(0)} (1 - A_{s}^{a}) \]

\[\xi_c = \frac{N_{c}^{(0)}}{1 + F_{c}^{s a}} = N_{s a}^{(0)} (1 - A_{c}^{s}) \]

\[\text{large in heavy fermion} \]

where \(A_{s}^{a} = \frac{F_{c}^{s a}}{1 + F_{s}^{s a}} \)

(The \(A_s \)'s can be interpret as T-matrix amplitude for s-wave scatter)

\[\Delta \text{ Since } \xi_s \text{ large while } \xi_c \text{ unrenormalized, } 1 - A_{s}^{a} \approx 0. \]
Heavy Fermion & Local Landau Fermi Liquid

$$\Delta A_{\text{pop}} = \frac{1}{N^{(0)}} (A_0^2 + A_0 \sigma \sigma')$$

$$A_0^{(0)} = A_0^2 + A_0^a \approx 0 \quad \text{and} \quad \kappa \phi \approx 0$$

$$\Rightarrow A_0^a = - A_0^a \approx 1$$

$$\Delta \langle p(T) \rangle = p_0 + A T^2 \quad ; \quad \frac{A}{\phi} = \text{approx. const.} \quad \& \quad \text{is universal}$$

$$\langle C(T) \rangle = T^2$$