Lecture $\# 1:$ Questions
Cuprate phase diagram (hole doped)

(1) Why is T_{c} so large?
(2) Why (and how) is it associated with antiferromagnetism?
(3) Why is it d-quave SC?
(4) What is a pserdo-gap? What, if any, is its relation to fluctuation SC?
(5) What other orders are intertwined with SC.? Why.
\{will not cover this, but will post draft review colloquium $\}$
a) CDW SRO.
b) SDW SRO.
c) "Nematic" (point group symmetry, preaching
electronic vs structural.
LRO US SRO
"Vestigial" vs. primary"
d) Spin glass
e) Pair-density-wave (PDW)?
f) Orbital current order ?
g) Some form of topological order?
7) What are the "universal" aspects?
a) Compare different hole doped curates
b) Compare election k hole doped curates

News! CDW order found in NCCO

$$
\left.Q_{\text {Ncco }}(x=-0.15) \approx Q_{B_{i, 2212}}(x=+.13)\right\}
$$

c) Cuprates le Fe based SC 's
d) Other unconventional SC's
e) Other SC's with high TC's
6) What is the nature of the various prominent $Q \subset P$'s

$$
x_{A F}, x_{-}, x_{1}, x_{2}, x_{t}, \ldots
$$

8) How can we change T_{c} ?
including natter remarkable insensitivity to most forms of disorder 3
9) Can theory provide any guidance in the search for new HTC superconductors?
** 10) What is the had metal?
c) Ubiquitous in (many)
hishly correlated electrons systems
b) It is not a FL.
c) It is largely incoherent.

The pros $\&$ con's of controlled solutions of simple models.

1) The Holstein model \Leftrightarrow the electron -phonon problem.
a) Wear coupling by RC.

BCS instability
Effect of retardation. u^{*}
b) Strong coupling

Bipolarons \& CDW.
Breakdown of Eliashberg
theory.
C) Optimal T_{c} at pairing to place coherence crossover.
d) Why is T_{c} low for conventional SC DS?
2) What do we know about

2d Hubbard model?

* a) Werle coupling limit
\Rightarrow origin of dware SC.
(M band structure consideration
some inferences about pisoudo-g qp
b) Absence of SC in the strong coupling limit.
c) Intrinsic frustration at intermediate confolic;
d) A little about numeries.

3) Quasi -1D models.
a) A solvable problem with a MFL "normal" state
b) A solvable problem with a psende-gap regime
c) Again - Max t_{e} as a dimensional crossover.
4) Some thoughts about some of
the QCP's

Molstein model

$$
\begin{aligned}
& H=-\sum_{\substack{\langle i\rangle \\
\sigma}}\left[c_{i \sigma}^{*} c_{i \sigma}+4 . c\right] \\
& +\sum_{i}^{1}\left\{\frac{p_{j}^{2}}{2 M}+\frac{k}{2} x_{j}^{2}\right\} \\
& -\alpha \sum_{j}^{1} x_{j} \hat{e}_{\dot{j}} \\
& +\bar{v} \sum_{j}^{i} \hat{e}_{j}\left[\hat{e}_{j}-1\right] \ll \text { (Hoistein-Hebbere) } \\
& \hat{p}_{j}=\sum_{\sigma} c_{i \sigma}^{+} c_{j \sigma}
\end{aligned}
$$

wean-coupling: $\frac{\text { step\#1: }}{\text { integrate olet phoners. }}$

$$
\begin{aligned}
& S=S_{e 1}+S_{p h}+S_{e l-p h .} \\
& \left.S^{\mu / 1}[\bar{c}, c]: e^{-S^{e l l}}=e^{-S_{e l}}<e^{-S_{e 1-p h}}\right\rangle_{p h}
\end{aligned}
$$

$$
\begin{aligned}
& \hbar=1 \\
& S^{\text {ett }}=S_{e l}+\left\langle S_{\text {et-ant }}\right\rangle_{\text {h }} \\
& -\frac{1}{2}\left\langle\left[S_{e_{1-p}}-\left\langle S_{e-\infty}\right\rangle\right]^{2}\right\rangle_{p} \\
& =s_{01}-\frac{\alpha^{2}}{2} \int d \tau d \tau^{\prime} \tau_{j}^{1} P_{j}(\tau) \theta_{j}\left(\tau^{\prime}\right) G\left(\tau-\tau^{\prime}\right) \\
& \text { t... } \\
& G\left(\tau-\tau^{\prime}\right)=\left\langle T_{\tau}\left\{x(\tau) x\left(\tau^{\prime}\right)\right\}\right\rangle \\
& \nu=\frac{2 \pi n}{\beta} \\
& S_{p k}=\sum_{\nu}^{\prime}\left\{\frac{m}{2} \nu \nu^{2}+\frac{k}{2}\right\}\left|x_{\nu}\right|^{2} \\
& G(\tau)=\frac{1}{\operatorname{H\beta } \sum_{\nu}^{1} \frac{e^{i \nu \tau}}{\nu^{2}+\omega_{0}^{2}} \quad 0 \leqslant \tau \leqslant \beta} \\
& K / M \\
& =\frac{-1}{M} \int \frac{d \nu}{2 \pi i}\left[\frac{1}{e^{\beta \nu}-1}\right] \frac{e^{\nu \pi}}{\nu^{2}-\omega_{0}^{2}} \\
& =\frac{1}{2 M \omega_{0}}\left\{\bar{n}\left(\omega_{0}\right) e^{\omega_{0} \tau}+\left[1+n / \omega_{0}\right] e^{-\omega_{0} \tau}\right.
\end{aligned}
$$

For $\beta \omega_{0} \gg 1$

$$
\begin{gathered}
G(\tau) \approx \frac{1}{2 M \omega_{0}} e^{-\omega_{0}|\tau|} \\
S^{e \ell}=\ldots+\int d \tau d \tau^{\prime} \sum_{j}^{\prime} \rho_{j}(\tau) \rho_{j}\left(\tau^{\prime}\right) \forall^{2 d}\left(\tau-\tau^{\prime}\right) \\
v^{\text {ell }}(\tau)=U \delta(\tau)-\frac{\alpha^{2}}{2} G(\tau)
\end{gathered}
$$

Case 1: $\omega_{0}>E_{p} \quad$ (anti-adiabatic)

$$
\begin{aligned}
& \int d \tau \int d \tau^{\prime} P_{j}(\tau) e_{0}\left(\tau^{\prime}\right) \tau^{e l l}\left(\tau-\tau^{\prime}\right) \\
& \quad \approx \int d \tau e_{j}(\tau) e_{0}(\tau) \int d \tau^{\prime} \tau^{e l l}\left(\tau^{\prime}\right) \\
& \int d \tau^{\prime} V^{e l l}=\tau-\frac{\alpha^{2}}{2 M \omega_{0}^{2}}=\tau-\frac{\alpha^{2}}{2 k}
\end{aligned}
$$

"Megative $\tau^{\text {ell" }}$ if $\alpha^{2} / 2 u>v$

$$
\left.\tau^{\text {lll }}=\tau-\frac{\alpha^{2}}{2 k} \right\rvert\, \text { indep of } M
$$

Case \#2 $\quad \omega_{0} \ll E_{F}$
\Rightarrow retardation is significant
Can get S.C. efen if

$$
\alpha^{2} / 2 v<\tau!
$$

Step 2 : integrate out "fast"
fermion modes.

$$
\begin{aligned}
& \psi(\vec{R}, \tau)=\psi_{f}(\vec{R}, \tau)+\psi_{s}(\vec{R}, \tau) \\
& \Psi_{f_{+}}=\sum_{\substack{\left|\epsilon_{\vec{k}}\right|>\Lambda \\
|\nu|>\Lambda}} e^{i \vec{h} \cdot \vec{R}-i \nu \tau} C_{\vec{k} \nu \sigma}^{N \beta a^{d}} \\
& \psi_{S}=\psi-\psi_{f} .
\end{aligned}
$$

$$
\begin{gathered}
\tilde{S}\left[\bar{\psi}_{s}, \psi_{s}\right]=\left\langle S^{\text {ell }}\right\rangle_{f} \\
\pm \frac{1}{2}<\left[S^{e l l}-\left\langle S^{e l l}\right]_{f}^{2}\right\rangle_{f} \\
+\cdots \\
=S^{e d}\left[\bar{\psi}_{s}, \psi_{s}\right]+\text { covet. } \\
\int d \tau d \tau^{\prime} \int d \vec{R}^{\prime} \bar{\psi}_{s}(\vec{R} \tau) \Psi_{s}\left(\vec{R} \tau^{\prime}\right) \\
\left.V^{e l l}\left(\tau-\tau^{\prime}\right)<\bar{\Psi}_{f}(\vec{R} \tau) \Psi_{f}\left(\vec{R}, \tau^{\prime}\right)\right\rangle_{f}
\end{gathered}
$$

Diagrams.

This gives us a QFT
The result is \tilde{S}
Narrow haw of "slow" fermion.
with cuttoft $\quad \Lambda \ll E_{F}$
θ weak interactions Δ weakly rehormaliz of parameters

$$
\text { Require }\left|V \rho\left(E_{F}\right)\right| \ln \left[\frac{E_{F}}{-h}\right] \ll 1
$$

$$
\begin{aligned}
& \tilde{V}=\widetilde{V}+V K(\Lambda) V+\ldots \ldots \\
& x=\int_{\text {defend on band structure }}^{x} \sim P\left(E_{F}\right)^{x} \\
& P(\Lambda)=\Longleftrightarrow \quad \Longrightarrow\left(E_{F}\right) \ln \left[\frac{E_{F}}{\Lambda}\right]+P_{0}
\end{aligned}
$$

\tilde{S} is a problem that has been heavily analyzed.

Forwand seatering terms are marginel \Rightarrow F.l. paramoters
(but sive they are small, we can ignove them.)
Step\#3 Peturbetive RG.
Scattering in Cooper channal is revelant even though \tilde{V} is sinall.

R.G. tran, fometion

Cuse \#1: $\quad g_{0}=v^{\text {M }} \rho\left(E_{F}\right)$

$$
\begin{aligned}
& +()\left[\tau \tau^{\mu} \rho\left(E_{F}\right)\right]^{2} \\
& -\left[U^{\mu / V} \rho\left(E_{F}\right)\right]^{2} \ln \left[E_{F} / \Omega\right]
\end{aligned}
$$

Reluce $\Lambda \rightarrow \Lambda^{\prime}=\Lambda^{\prime} e^{-l}$ a rescale.

$$
\begin{aligned}
& \frac{d g}{d l}=-g^{2} g^{2}+\ldots \\
& \dot{l} g_{0}>0 \quad g \rightarrow 0 \quad \text { as } l \rightarrow \infty . \\
& g(l)= \frac{g_{0}}{1+g_{0} l}=\frac{g_{0}}{1+g_{0} \ln \left[\Omega / \Lambda^{\prime}\right]} \\
& \frac{d g}{d l}=-\frac{g_{0}^{2}}{\left(1+g_{0} l\right)^{2}}=g^{2}
\end{aligned}
$$

it $\quad g_{0}<0 \quad g \rightarrow-\infty$ an $l \rightarrow \infty$

$$
\begin{aligned}
& g\left(l^{*}\right)=-1=-\frac{\left|g_{d}\right|}{1-1 g_{0} \ell^{*}} \\
& 1+\left|g_{0}\right| l^{*}=\left|g_{0}\right| \\
& l^{*}=\frac{1-\left|g_{0}\right|}{\left|g_{0}\right|}=\frac{1}{\left|g_{0}\right|}-1 \\
& \Lambda^{*}=\Lambda e^{-l^{*}}=\Lambda \exp \left\{-\frac{1}{\left|g_{0}\right|}+1\right\}
\end{aligned}
$$

This seems to depend on Ω.
Let $\lambda=-V^{\text {er p }} \rho\left(E_{+}\right)$

$$
\begin{aligned}
& g_{0}=-\lambda-() \lambda^{2}-\lambda^{2} \ln \left[\frac{E_{F}}{\Omega}\right] \\
& \frac{1}{\left|g_{0}\right|}\left.=\frac{1}{\lambda\left[1+() \lambda+\lambda \min \left(E_{F}\right)\right.}\right] \\
&=\frac{1}{\lambda}-()-\ln \left[\frac{E_{F}}{\Lambda}\right] \\
& \begin{aligned}
\Lambda^{*} & =\Lambda \exp \left\{-\frac{1}{\lambda}+1-()-\ln \left[\frac{E_{F}}{\Omega}\right]\right\} \\
& =E_{F} \exp \left\{-\frac{1}{\lambda}+1-()\right]
\end{aligned}
\end{aligned}
$$

Attractive T Mubbind.

$$
T_{c} \sim E_{F} e^{-1 / \rho\left(E_{F}\right)\left|v^{\mu \mu}\right|}
$$

Case \#2 Retarded $E_{F} \gg \Omega \gg \omega_{0}$

$$
\begin{aligned}
& g_{0}= v \rho\left(E_{F}\right)-()\left[v \rho\left(E_{F}\right)\right]^{2} \\
&-\left[v \rho\left(E_{F}\right)\right]^{2} \ln \left[E_{F} / \Omega\right] \\
&+\cdots \\
& \tilde{g}_{0}=-\frac{\alpha^{2}}{2 k} \rho\left(E_{F}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d g}{d l}=-g^{2}+\ldots \\
& \frac{d \tilde{g}}{d l}=0
\end{aligned}
$$

Integrate until $\quad \Lambda^{\prime} \sim \omega_{0}$

$$
g\left(\omega_{0}\right)=\frac{g_{0}}{1+g_{0} \ln \left[\Lambda / \omega_{0}\right]} \equiv x^{*}
$$

$$
\begin{aligned}
& \mu^{*}= \frac{U P\left(E_{N}\right)}{1+U P\left(E_{F}\right) \ln \left[E_{F} / \omega_{0}\right]} \\
&+\cdots \\
& \approx \frac{1}{\ln \left[E_{F} / \omega_{0}\right]}
\end{aligned}
$$

Now we have reached a case with non-retarcled int.

$$
\hat{\lambda}=\frac{\alpha^{2}}{2 k}-\mu^{*}
$$

Step \# 4 R.G again.

$$
\begin{aligned}
& \text { is } \lambda>0 . \\
& T_{c} \sim \omega_{0} e^{-1 / \lambda} \\
& \text { is } \lambda<0 \\
& v \rightarrow 0
\end{aligned}
$$

False Stitem ents about Eliashberg theory: $\{$ ignore UT\}

$$
\begin{aligned}
& \Longrightarrow=\rightarrow+\square \\
& >\sum \rightarrow+\square
\end{aligned}
$$

Claim can ignore ... il
$\omega_{0} \ll E_{F}$ regardless of 1

$$
\lambda=\frac{\alpha^{2}}{k} \rho\left(E_{F}\right)
$$

This is wrong.
\ldots is non singular as $\omega_{0} / E_{F} \rightarrow 0 \quad$ [Misdal's theorem] but not small if λ not small.

Eliasbherg theory implies
$T_{c} \rightarrow \infty$ ar $\lambda \rightarrow \infty$.
\{i.e. for targe enough λ

$$
T_{c}>\omega_{0}
$$

This would be great. But it is false.

Strong Coupling limit. $\lambda \gg 1$.

$$
\begin{aligned}
& H_{0}=\alpha \sum_{j}^{\prime} \hat{\rho}(j) x_{j}+\frac{1}{2} \sum_{j}^{\prime}\left[\frac{P_{j}^{2}}{M}+k y_{i}^{2}\right] \\
& H^{\prime}=-t \sum_{\langle i j}^{1}\left[c_{i \sigma}^{+} c_{j o}+h . c .\right]
\end{aligned}
$$

$$
\begin{aligned}
H_{0}= & \underline{K}+\sum_{j} \frac{K}{2}\left[x_{j}+\frac{\alpha \hat{\rho}(j)}{K}\right]^{2} \\
& {\left[U-\frac{\alpha^{2}}{2 K} \sum_{j} \hat{F}_{j} \hat{\rho}(j) \hat{\rho}(j)\right.}
\end{aligned}
$$

Diaganize H_{0}

$$
\begin{aligned}
& \tau=\prod_{i} e^{-i \hat{P_{i}} \alpha \hat{\rho}(i) / k} \\
& U^{+} P_{j} \tau=P_{j} \quad U^{+} \hat{\rho}(i) \tau=\hat{\rho}(i) \\
& \tau^{+} x_{j} \tau=x_{j}-\frac{\alpha \hat{\rho}(i)}{k} \\
& \mho^{+} H_{0} U=\frac{I}{2} \sum_{j}^{1}\left[p_{j}^{2}+u x_{j}^{2}\right] \\
& +v^{e l t} \sum_{j}^{\prime} \hat{e}(j) \hat{e}(i) \\
& \tilde{U}^{+} H_{i}^{\prime} U=-t \sum_{\sigma i j\rangle}^{\langle }\left[C_{i \sigma}^{+} c_{j v} e^{+i \frac{\alpha}{k}\left(P_{i}-P_{j}\right)}+h . c\right]
\end{aligned}
$$

Unperturbed problem

$$
\begin{array}{ll}
\mho^{\text {Ul }}>0 & \Rightarrow \text { polarons } \\
\tau^{\text {Ill }}<0 & \Rightarrow \text { bipolarons. }
\end{array}
$$

Degenerate $1^{\text {st }}$ order P.T.
plotaras:

$$
\frac{\left\langle p^{2}\right\rangle}{2 m}=\frac{\omega_{0}}{4}
$$

$$
\begin{aligned}
t^{\mu l} & =t\left\langle e^{i\left(p_{1}-p_{2}\right) \alpha / k}\right\rangle_{0} \\
& =t \exp \left[-\frac{\alpha^{2}}{2 k^{2}}\left(\left\langle p_{1}^{2}\right\rangle+\left\langle p_{2}^{2}\right\rangle\right)\right] \\
& =t \exp \left[-\frac{\alpha^{2}}{2 k^{2}} M \omega_{0}\right] \\
& =t \exp \left[-\frac{\alpha^{2}}{2 k \omega_{0}}\right]
\end{aligned}
$$

$E_{p} / \hbar \omega_{0}$
"Self-localized " in limit $\frac{\alpha^{2}}{\kappa}>\hbar \omega_{0}$!
bipolarons $\quad t^{\text {ell }}=0$.
must go to second order.
degenerate P.T. (line Her supercexchange.)

Result of 2 2d order desen. P.T

$$
\begin{aligned}
& H_{b_{i-P}}=-t^{e l l} \sum_{\langle i i\rangle}^{1}\left[b_{i}^{+} b_{j}+\text { h.c. }\right] \\
& +V^{\text {elt }} \sum_{\langle i j\rangle}^{\prime} b_{i}^{+} b_{i} b_{j}^{+} b_{j} \\
& +[\infty] \sum_{j}^{1} b_{j}^{+} b_{j}\left[b_{j}^{+} b_{j}-1\right] \\
& t^{\mu t}=\frac{2 t^{2}}{1 \tau^{e l l} \mid} F_{+}\left(\left|v^{\mu /}\right| / \omega_{0}\right) \\
& \nabla^{\text {elt }}=\frac{4 t^{2}}{\left|\sigma^{\text {el }}\right|} E\left(\mid \tau^{\text {ell }}\left(/ \omega_{0}\right)\right. \\
& F_{ \pm}(\bar{I})=\int_{0}^{\infty} d t \exp \left\{-t-\bar{X}\left[1 \pm e^{-t / \Sigma}\right]\right\} \\
& F_{+}(X) \rightarrow e^{-2 I} \quad \text { as } \quad I \rightarrow \infty \text {. } \\
& F_{-}(\mathbb{X}) \rightarrow 1 \text { as } X \rightarrow \infty
\end{aligned}
$$

Why is T_{c} small?
Table of S.C's from Allen a Dynes.

$$
T_{c} \ll \omega_{0} \ll E_{F}
$$

Because weak induced int.
acidly $\quad \lambda \approx 1 \quad \mu^{*} \approx 0.12$

$$
T_{c} \sim \omega_{0} f \quad f \sim \frac{1}{5}-\frac{1}{20}
$$

2d Hubbard model. $\quad T=0$

(we will imagine $0<|t| \ll t$
for amusement Senthil land?
$1^{\text {st }}$ order land (me \& Vic)?

Weak coupling. $\quad r / t \ll 1$
Step I: integrate out down to cut off Ω
Λ is again unphysical
it is where we define oar QFT.

Must make sure nothing depends on our choice of Ω.

$$
\begin{aligned}
V^{\mu}\left(k \mu^{\prime}\right)=U & +U^{2} P(\Omega) \\
& \left.+U^{2} X\left(k+k^{\prime}\right) \Omega\right) \\
& +\ldots
\end{aligned}
$$

$$
\begin{aligned}
& P(\Omega)=P\left(E_{F}\right)\left\{h\left[\frac{E_{F}}{\Lambda}\right]+\alpha\right\} \\
& X\left(h+\alpha^{\prime}, \Omega\right)=\underbrace{X\left(h+\alpha^{\prime}, 0\right)}_{X\left(n+\mu^{\prime}\right)}+\theta(\Omega)
\end{aligned}
$$

Choose 1 sit

$$
f(\overline{\bar{F}}) v^{2}>\Lambda>E_{F} e^{-\frac{1}{\rho\left(E_{F}\right) V}}
$$

We thus acheive a QFT with. weak int. and linearized dispersion.
The interactions are sol repulsive (dominated by $1^{\text {st }}$ order or) but k dependact.

Step II Perturbative RC

$$
g_{\hat{L_{k}} \hat{k}^{\prime}}=\sqrt{\frac{V}{V_{\hat{k}}}} V^{e l l}\left(\vec{k}, \vec{k}^{\prime}\right) \sqrt{\frac{V}{V_{k^{\prime}}}}
$$

Fermi surtax)

$$
\begin{aligned}
\Lambda^{\prime} & =1 e^{-l} \\
\frac{d g_{\hat{k} \hat{t}^{\prime}}}{d l} & =-\prod_{\hat{p}}^{H} g_{\hat{k} \hat{r}} g_{\hat{k} \hat{k}^{\prime}}+\ldots \\
\frac{d g}{d l} & =-\underline{g} \cdot \underline{g}+\ldots
\end{aligned}
$$

Not sure why the re is no hastuic

$$
\frac{d g_{\hat{k}} \hat{k}^{\prime}}{d \boldsymbol{l}}=-g_{\hat{k} \hat{p}} \beta_{\hat{p} \hat{p}^{\prime}} g_{\hat{p}^{\prime} \hat{k}^{\prime}}+\ldots
$$

contrast quadratic band touchily problem \Rightarrow Vafen why is $\beta_{\hat{p} \hat{p}^{\prime}}=\delta_{\hat{p} \hat{p}^{\prime}}$?

$$
\begin{aligned}
& \underline{g}^{(0)}=\underline{g}(\Lambda) \\
& g_{\hat{k} \hat{k}^{\prime}}^{(0)} f_{\hat{k}^{\prime}}^{\alpha}=\lambda_{\alpha}^{(0)} f_{\hat{k}}^{\alpha} \\
& g_{\hat{k} \hat{k}^{\prime}}^{(0)}=\sum_{\alpha}^{\prime} \lambda_{\alpha} f_{\hat{h}}^{\alpha} f_{\hat{h}^{\prime}}^{\alpha}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d \lambda_{\alpha}}{d l} & =-\lambda_{\alpha}^{2}+\ldots \\
\lambda_{\alpha} & =\frac{\lambda_{\alpha}^{(0)}}{1+\lambda_{\alpha}^{(0)} \ln \left[\Omega / \Lambda^{\prime}\right]}
\end{aligned}
$$

each chanel is independent
Find most negative $\lambda_{\alpha}^{(0)}$

$$
T_{c} \sim \Lambda e^{-1 /\left|\lambda_{\alpha}^{(0)}\right|}
$$

§Home-worn prove that for N is the sited range, this result is independery of 13

Only 1 channel gets large

$$
\Rightarrow \quad \Delta_{\hat{k}}(T)=\Delta_{0}(T) f_{\hat{\imath}} \text { ! }
$$

$$
\begin{aligned}
g_{\hat{\lambda} \hat{h}} \sim V^{N}(\hat{h}, \hat{h})= & {\left[U+V^{2} P(\Omega)\right] } \\
& +V^{2} X(\hat{\varepsilon}+\hat{k})+\ldots
\end{aligned}
$$

$1^{\text {st }}$ term is large a positive

$$
\Rightarrow \text { need } \quad \sum_{\hat{k}} \frac{1}{V_{\hat{r}}} f_{\hat{k}}=0
$$

$\Rightarrow d$-wave, P-wave, g-wave
or very complicated extended s-wave.

Subject to this.

$$
\underbrace{V^{2} \frac{x\left(\hat{h}+\hat{h}^{\prime}\right)}{\sqrt{V_{k} V_{h^{\prime}}}}} f_{k^{\prime}}=\lambda f_{A^{\prime}}
$$

For circular F.S. in $2 d$.

$$
\begin{aligned}
& X(k)=\text { Consta } R_{r} \quad|k| \leqslant 2 R_{F} \\
& V_{h}=\text { const. }
\end{aligned}
$$

\Rightarrow No solution with nee. eigenvalue!

Band structure effects.

$$
\begin{array}{ll}
\max [x(\vec{k})] \Rightarrow \vec{k} \sim(\pi, \pi) \\
\min [x(\bar{\pi})] \Rightarrow \vec{k} \sim 0 .
\end{array}
$$

perfect for d-wave.
(Short-rany AF. fluctuation,

$$
X(\vec{h}) \Rightarrow \frac{X(\vec{h})}{1-J X(\bar{h})} \text { or some } \begin{gathered}
\text { such } \\
\text { thing, }
\end{gathered}
$$

This enhances pairizy
Other bad things happen, however, if ω_{0} small or ξ_{0} large.

What is missing?

$$
T_{c} \sim E_{F} \exp \left[-\frac{\alpha}{\left|p\left(E_{F}\right) \tau\right|^{2}}\right]
$$

Very small!

Normal state is good F.L.
No pseudo - sap
Mo intertwined orders.

