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Introduction

1.1 Closed time contour

Consider a quantum many-body system governed by a time-dependent Hamilto-
nian Ĥ(t). Let us assume that in the distant past t = −∞ the system was in a state
specified by a many-body density matrix ρ̂(−∞). The precise form of the latter is
of no importance. It may be, e.g., the equilibrium density matrix associated with
the Hamiltonian Ĥ(−∞). We shall also assume that the time-dependence of the
Hamiltonian is such that at t = −∞ the particles were non-interacting. The inter-
actions are then adiabatically switched on to reach their actual physical strength
sometime prior to the observation time. In addition, the Hamiltonian may con-
tain true time dependence through e.g. external fields or boundary conditions. Due
to such true time-dependent perturbations the density matrix is driven away from
equilibrium.

The density matrix evolves according to the Von Neumann equation

∂t ρ̂(t) = −i
[
Ĥ(t), ρ̂(t)

]
, (1.1)

where we set ! = 1. It is formally solved with the help of the unitary evolution
operator as ρ̂(t) = Ût,−∞ρ̂(−∞)

[
Ût,−∞

]† = Ût,−∞ρ̂(−∞)Û−∞,t , where the †
denotes Hermitian conjugation. The evolution operator obeys

∂t Ût,t ′ = −iĤ(t) Ût,t ′ ; ∂t ′Ût,t ′ = i Ût,t ′ Ĥ(t ′).

Notice that the Hamiltonian operators taken at different moments of time, in gen-
eral, do not commute with each other. As a result, Ût,t ′ must be understood as
an infinite product of incremental evolution operators with instantaneous locally
constant Hamiltonians

Ût,t ′ = lim
N→∞

e−iĤ(t−δt )δt e−iĤ(t−2δt )δt . . . e−iĤ(t−Nδt )δt e−iĤ(t ′)δt

= T exp
(
−i
∫ t

t ′
Ĥ(t) dt

)
, (1.2)

where an infinitesimal time-step is δt = (t − t ′)/N and to shorten the notations the
infinite product is abbreviated as the time-ordered, or T-exponent.
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2 Introduction

One is usually interested to know an expectation value of some observable Ô
(say density or current operator) at a time t .1 It is defined as

〈
Ô
〉
(t) ≡ Tr{Ôρ̂(t)}

Tr{ρ̂(t)} = 1
Tr{ρ̂(t)} Tr

{
Û−∞,tÔÛt,−∞ρ̂(−∞)

}
, (1.3)

where the trace is performed over many-body Hilbert space and in the last equality
we cyclically permuted the Û−∞,t operator under the trace sign. The expression
under the last trace describes (read from right to left) evolution from t = −∞,
where the initial density matrix is specified, toward t , where the observable is cal-
culated, and then back to t = −∞. Therefore calculation of an observable implies
evolving the initial state both forward and backward.

Such forward–backward evolution is avoided in the equilibrium quantum field
theory with a special trick. Let us recall how it works, for example, in the zero-
temperature equilibrium formalism [2]. The latter deals with the ground state
expectation values of the type 〈GS|Ô|GS〉, where |GS〉 is a ground state of an inter-
acting many-body system. It is obtained from the known and simple ground state of
the corresponding non-interacting system |0〉 by acting on the latter with the evolu-
tion operator |GS〉 = Ût,−∞|0〉. Since we are dealing with the equilibrium situation,
the only time dependence allowed for the Hamiltonian is an adiabatic switching of
the interactions on and off in the distant past and distant future, respectively. The
evolution operator therefore describes the evolution of a simple non-interacting
ground state |0〉 toward |GS〉 upon adiabatic switching of the interactions and thus
〈GS|Ô|GS〉 = 〈0|Û−∞,tÔÛt,−∞|0〉.

Now comes the trick: one argues that

Û+∞,−∞|0〉 = eiL |0〉. (1.4)

That is, evolution of the non-interacting ground state upon adiabatic switching of
the interactions on and subsequent adiabatic switching them off brings the system
back into the state |0〉, up to a phase factor eiL . This statement is based on the belief
that the adiabatic perturbation keeps the system in its (evolving) ground state at
all times. If so, in view of normalization 〈0|0〉 = 1, the only possible change
is the phase of the non-interacting ground state eiL = 〈0|Û+∞,−∞|0〉. Similarly
〈0|Û+∞,−∞ = 〈0|eiL . Accepting this, one proceeds as follows:

〈GS|Ô|GS〉 = 〈0|Û−∞,tÔÛt,−∞|0〉 = e−iL〈0|eiL Û−∞,tÔÛt,−∞|0〉

= e−iL〈0|Û+∞,−∞Û−∞,tÔÛt,−∞|0〉 = 〈0|Û+∞,tÔÛt,−∞|0〉
〈0|Û+∞,−∞|0〉

, (1.5)

1 We work in the Schrödinger picture, where observables are t-independent operators, while the wavefunctions
and the density matrix evolve.
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where in the last equality we used Û+∞,−∞Û−∞,t = Û+∞,t , which is an immediate
consequence of Eq. (1.2). The result of this procedure is that one needs to consider
only the forward evolution. Indeed, the numerator in the last expression (being read
from right to left) calls for evolving the non-interacting ground state |0〉 from the
distant past to the observation time, where the observable operator acts, and then
proceeding towards the distant future, where the overlap with the same known state
〈0| is evaluated.

The similar strategy works in the finite-temperature equilibrium formalism [11,
2, 4]. There, one treats the equilibrium density matrix e−β Ĥ , where β = 1/T is
the inverse temperature, as the evolution operator in the imaginary time τ . The
latter is defined on a finite interval 0 ≤ τ < β. The observables (or correlation
functions) are also evaluated at imaginary time points τ1, τ2, . . . and the result must
be analytically continued back to the real-time axis. One may argue that, since the
adiabatic switching of interactions does not drive the system out of equilibrium, a
statement similar to Eq. (1.4) still holds. As a result one is again left to describe
only the forward evolution, albeit along the finite time interval in the imaginary
direction.

Let us mention that elimination of the backward evolution comes with a price:
the normalization denominator in the last expression in Eq. (1.5). It offsets the
phase accumulation eiL of the non-interacting ground state |0〉. In diagrammatic
language it amounts to subtracting the so-called disconnected or vacuum loop dia-
grams. This denominator is a serious liability in the theory of disordered systems.
The reason is that the accumulated phase eiL sensitively depends on a specific real-
ization of the disorder (which may be thought of as being absent at t → ±∞
and adiabatically switched on and off in the process of evolution). Therefore the
denominator absolutely must be included in any disorder averaging procedure,
which complicates the treatment in a very substantial way.

The much more serious trouble with the outlined procedure is that Eq. (1.4) does
not work in a non-equilibrium situation. If the Hamiltonian Ĥ(t) contains non-
adiabatic time-dependent external fields, boundary conditions, etc., the evolution
drives the system away from equilibrium. Even if all such fields are eventually
switched off in the distant future, there is no guarantee that the system returns to
its ground (or equilibrium) state. Therefore acting with the operator Û+∞,−∞ on
the initial ground (or equilibrium) state results in an unknown superposition of
excited states. As a result, the backward evolution, inherent to Eq. (1.3), can’t be
eliminated.

Nevertheless, it is still convenient to extend the evolution in Eq. (1.3) towards
t = +∞ and then back to t . This is achieved with the help of the trivial identity
Ût,+∞Û+∞,t = 1̂. Inserting it into Eq. (1.3) and using Û−∞,t Ût,+∞ = Û−∞,+∞, one
finds
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t

Ô

Û−∞,+∞

Û+∞,t Ût,−∞ ˆ

+ ∞ − ∞

ρ(−∞)

Fig. 1.1 Closed time contour C. Evolution along such a contour is described by
Eq. (1.6).

〈
Ô
〉
(t) = 1

Tr{ρ̂(−∞)} Tr
{
Û−∞,+∞Û+∞,tÔÛt,−∞ρ̂(−∞)

}
. (1.6)

Here we also used that, according to the Von Neumann equation (1.1), the trace of
the initial density matrix is unchanged under the unitary evolution. Equation (1.6)
describes evolution along the closed time contour C depicted in Fig. 1.1. The
observable Ô is inserted at time t , somewhere along the forward branch of the
contour. Notice that inserting the operator Ût,+∞Û+∞,t = 1̂ to the right of Ô in
Eq. (1.3), one could equally well arrange to have the observable on the backward
branch of the contour. As we shall see, the most convenient choice is to take a half
sum of these two equivalent representations.

Evolution along the closed time contour C is the central subject of this book.
The fact that the field theory can be constructed with the time ordering along such
a contour was first realized by Schwinger [12] and further developed in [24, 25].
About the same time Konstantinov and Perel’ [13] have developed a diagrammatic
technique, based on the time contour containing forward and backward branches
in the real-time direction along with the imaginary time portion of length β. The
formalism was significantly advanced, in particular its utility to derive the kinetic
theory, in the seminal book of Kadanoff and Baym [1]. Independently Keldysh
[14] (for some of the historic context see [26]) suggested a formulation which
does not rely on imaginary time (and thus on the equilibrium density matrix). He
also introduced a convenient choice of variables (Keldysh rotation), which made
derivation of the kinetic theory particularly transparent. The time contour with-
out the imaginary time piece, along with the Keldysh variables (which we call
“classical” and “quantum”) appear to be by far the most convenient choices for
the functional formulation of the theory presented in this book. For this reason
we occasionally refer to the construction as the Keldysh technique (this should
by no way diminish the credit deserved by the other authors). Reformulation of
the theory for the case of fermions, given later by Larkin and Ovchinnikov [27],
became universally accepted. In fact, other theories developed about the same
time, while not using the time contour explicitly, appear to be close relatives of
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the Schwinger–Kadanoff–Baym–Keldysh construction. Among them are Feynman
and Vernon [28], Wyld’s [29] diagrammatic technique for fluid dynamics and Mar-
tin, Siggia and Rose [30] and DeDominicis’ [31] calculus for classical stochastic
systems.

The central object of the theory is the evolution operator along the closed con-
tour ÛC = Û−∞,+∞Û+∞,−∞. If the Hamiltonian is the same on the forward and
backward branches, then the forward–backward evolution of any state brings it
back exactly to the original state. (Not even a phase factor is accumulated, indeed,
any phase gained on the forward branch is exactly “unwound” on the back-
ward branch.) As a result ÛC = 1̂ and the partition function, defined as Z ≡
Tr{ÛC ρ̂(−∞)}/Tr{ρ̂(−∞)}, is identically equal to unity, Z = 1. Nevertheless,
the partition function is a convenient object to develop the functional representa-
tion and the normalization identity Z = 1 is a useful check of its consistency. For
this reason we shall use it widely in what follows.

To insert an observable somewhere along the forward (as prescribed by Eq. (1.6))
or backward branches it is convenient to modify the Hamiltonian Ĥ(t) by adding
the source term Ĥ±

V (t) ≡ Ĥ(t) ± ÔV (t), where the plus (minus) sign refers to the
forward (backward) part of the contour. Now, since the Hamiltonian is different on
the two branches, the evolution operator along the contour ÛC[V ] )= 1̂ becomes
non-trivial and so does the generating function

Z [V ] ≡ Tr{ÛC[V ] ρ̂(−∞)}
Tr{ρ̂(−∞)} . (1.7)

The expectation value of the observable Ô, given by Eq. (1.6) (or rather by a half
sum of the observable inserted along the forward and backward branches) may be
found as 〈Ô〉(t) = (i/2)δZ [V ]/δV (t)

∣∣
V =0. This expression should be compared

with the equilibrium technique [2, 4], where the observables are given by varia-
tional derivatives of the logarithm of the generating (or partition) function. In our
case, since Z = Z [0] = 1, the presence of the logarithm is optional.2 Knowledge
of the generating function allows thus to find observables of interest. Therefore,
after developing the functional formalism for the partition function, we extend it to
include the generating function as well.

2 It is worth mentioning that the denominators in Eqs. (1.5) and (1.7) have very different status. In the latter
case Tr{ρ̂(−∞)} refers entirely to the distant past, when both interactions and disorder are switched off. It
is therefore a simple constant, which may be easily evaluated. In the former case 〈0|Û+∞,−∞|0〉 involves
evolution of the ground state upon switching on and off the interactions and disorder. It thus depends on both
disorder and interactions and requires a separate calculation. The absence of a disorder-dependent denominator
makes the closed time contour formalism especially suitable to deal with the averaging over the quenched
disorder. The fact that observables do not require the logarithm is another manifestation of the absence of the
non-trivial denominator.



6 Introduction

1.2 The outline of this book

Chapter 2 is devoted to a possibly simplest many-body system of bosonic parti-
cles occupying a single quantum state. We briefly develop a second quantization
representation and then proceed towards the functional formalism, based on the
coherent-state functional integral along the contour C. Here we pay close atten-
tion to a fundamental discrete time (see Eq. (1.2)) representation of the evolution
operator. The model allows us to expose explicitly the discrete time structure, to
verify normalization Z = 1 and to explain the meaning and hidden skeletons of
the continuous notation. We then introduce Keldysh rotation, “classical/quantum”
variables and explain the causality structure. Finally we introduce the generat-
ing function in discrete and continuous notations and explain the relation between
them.

In Chapter 3 we exploit the analogy between the toy model of Chapter 2 and
the harmonic oscillator to formulate the single-particle quantum mechanics as a
path integral on the closed time contour. We then use it to investigate a quantum
particle coupled to an equilibrium bath of harmonic oscillators. Integrating out the
oscillators, degrees of freedom, we derive the real-time version of the celebrated
Caldeira–Leggett model. We then use the ideas of time contour to discuss quantum
mechanical tunneling in the presence of an external ac field (both with and without
coupling to the bath).

In Chapter 4 we pick up the discussion of a particle coupled to a bath, introduced
in Chapter 3. In particular we focus on its classical limit, where the correspond-
ing real-time action acquires local (in time) form. We show ultimate relations of
the emerging theory to the physics of classical stochastic systems. To this end
we derive Langevin and Fokker–Planck equations from the time contour action
and explain its connections to the Martin–Siggia–Rose–DeDominicis construction.
We then focus on a few examples, which include escape from a metastable state,
reaction models, fluctuation theorem and time-dependent perturbations acting on a
stochastic system.

All the considerations so far were limited to systems with one (or a few) degrees
of freedom, possibly coupled to an external bath. In Chapter 5 we start general-
izing the formalism to true many-body systems. We introduce free bosonic fields
(both complex and real) and their functional description on the closed contour. We
then add interactions (collisions) between the particles and derive diagrammatic
technique and the Dyson equation. Following Keldysh [14], we show that the lat-
ter contains the kinetic equation for a non-equilibrium distribution function. We
demonstrate then how the collision integral emerges from a perturbative treatment
of the self-energy.
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Chapters 2–5 form the basis of the book. They serve to introduce most of the the-
oretical apparatus, notations and conventions used throughout the rest of the book.
They are absolutely necessary for comprehension of what follows. We then branch
into a number of applications, which are to a large extent logically independent of
each other. Therefore the subsequent chapters may be read (or omitted) in an arbi-
trary order, without much damage to the understanding. Yet they share a number of
common themes and methods which are developed in a certain sequence. The lat-
ter was meant to emphasize the connection between various fields and to reinforce
common techniques at every successive encounter of them.

The first example, Chapter 6, is collisionless (i.e. where the particles inter-
act only with a collective electromagnetic field) dynamics of a classical plasma.
We derive the Vlasov equations, collective excitations – plasmons, and Landau
damping. Though the system is purely classical, we treat it with the quantum
formalism. Besides methodological illustration, it allows us to treat fluctua-
tions of the collective electric potential and derive the so-called quasi-linear
theory. The latter deals with the coupled kinetic equations for particles and plas-
mons (while Vlasov theory treats the electric field as fully deterministic, i.e. no
fluctuations).

We then go to the essentially quantum system: low temperature weakly inter-
acting Bose gas, in Chapter 7. We derive the Gross–Pitaevskii description of the
condensate as a stationary point approximation of the corresponding functional
integral. We then consider small fluctuations on top of the stationary field configu-
ration and show that they bring the celebrated Bogoliubov quasiparticle spectrum.
We then proceed to a description of a non-equilibrium quasiparticle cloud. To this
end we derive a system of equations for the distribution function of quasiparticles
coupled to the (modified) Gross–Pitaevskii equation for the condensate wavefunc-
tion. Following analogy with the collisionless plasma of Chapter 6, we show that
this system contains Langevin forcing of the condensate fluctuations along with
their collisionless damping. We then derive various contributions to the collision
integral and use them to discuss kinetics of the condensate growth upon evaporative
cooling.

Chapter 8 is devoted to the dynamics of phase transitions (mostly classical
and only briefly quantum). Following Langer, we first discuss nucleation dynam-
ics of critical droplets in first order transitions. We then switch to dynamics of
continuous phase transitions, starting from equilibrium transitions and classifica-
tion of their dynamic universality classes given by Hohenberg and Halperin. We
then turn to essentially non-equilibrium phase transitions. The examples include
absorbing state transitions in reaction-diffusion models and Kardar–Parisi–Zhang
consideration of the roughening transition on growing interfaces.
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The rest of the book, i.e. Chapters 9–14, is devoted to fermions. Chapter 9
presents a fermionic version of the one degree of freedom toy model. It uses a
Grassmann functional integral on the closed time contour and is essentially par-
allel to its bosonic counterpart of Chapter 2. We then introduce fermionic fields
and their interactions and derive a diagrammatic technique, the Dyson equation
and finally the kinetic equation, again essentially parallel to their bosonic counter-
parts of Chapter 5. Finally we focus on the spin of the electron and discuss Stoner
ferromagnetic transition and the spin part of the kinetic equation.

In Chapter 10 we use fermionic formalism to discuss non-equilibrium quantum
transport. In particular we derive the Landauer formula for tunneling conductance,
the Lesovik formula for shot-noise, the Levitov’s result for the full counting statis-
tics of transmitted charge, the Brouwer formula for adiabatic pumping of charge
and, following Nazarov and Tobiska, the exact fluctuation relation and its conse-
quences. We also deal with the spin transport, deriving the Slonczewski–Berger
spin-torque term in the Landau–Lifshitz equation along with the spin-torque noise
and associated Gilbert damping.

Chapters 11–14 deal with fermionic systems in the presence of a static
(quenched) disorder potential. We start in Chapter 11 from the kinetic equation
approach, which leads to the diffusive dynamics of density fluctuations and the
concept of transport scattering time. The kinetic approximation misses quantum
interference and mesoscopic fluctuation effects. To improve upon it we develop
a systematic disorder averaging procedure, which takes advantage of the fun-
damental normalization Z = 1 of the closed time contour technique. It leads
to the so-called matrix non-linear sigma-model, which we use to rederive the
kinetic equation and diffusive density response and supplement it with quantum
weak-localization corrections and the scaling theory of Anderson localization.

In Chapter 12 we focus on mesoscopic, i.e. sample-to-sample, fluctuations due to
differences in disorder configurations in small metallic samples. We deal with den-
sity of states fluctuation and its particular limit, known as Wigner–Dyson statistics.
We then proceed to describe universal conductance fluctuations and fluctuations
of current–voltage characteristics. Finally we discuss full counting statistics of a
disordered quasi-one-dimensional wire and the tunneling action.

We then include electron–electron interactions in disordered systems, which lead
to non-trivial singular corrections to the density of states (the so-called zero bias
anomaly) and conductivity (Altshuler–Aronov corrections). They also provide col-
lision terms (and thus finite relaxation time) to the diffusive kinetic equation. These
effects are the subject of Chapter 13.

Chapter 14 is devoted to the physics of disordered superconductors. We gen-
eralize the non-linear sigma-model to include superconducting correlations. Its
stationary state condition yields the Usadel equation, which includes equations
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for the spectrum of the superconductor under non-equilibrium conditions as
well as the kinetic equation for the quasiparticles distribution function. Together
with the self-consistency condition they provide a complete framework to study
non-equilibrium superconductivity. As examples we work out the spectrum of
the collective (Carlson–Goldman) mode of the superconductor, derive the time-
dependent Ginzburg–Landau theory and fluctuation corrections to the conductivity
above the critical temperature.



2

Bosons

The aim of this chapter is to develop a functional integral representation for the
evolution operator along the closed time contour. To this end we use an example
of a single quantized level populated by bosonic particles. Notations and structures
introduced in this chapter are used throughout the rest of the book.

2.1 Bosonic coherent states

We start by considering a single quantum level occupied by bosonic particles.
A many-body state with n bosons is denoted by |n〉. Such pure number states form
a complete orthonormal basis, meaning 〈n|n′〉 = δnn′ and

∑
n |n〉〈n| = 1̂. It is con-

venient to introduce bosonic annihilation and creation operators, b̂ and b̂†, which
operate in the many-body Hilbert space of the system according to the following
rules:

b̂ |n〉 = √n |n − 1〉 ; b̂†|n〉 =
√

n + 1 |n + 1〉. (2.1)

By acting on an arbitrary basis state, one may check the following relations:

b̂†b̂|n〉 = n|n〉 ; b̂b̂†|n〉 = (n + 1)|n〉 ; [b̂, b̂†] = 1̂. (2.2)

An extremely useful tool for our purposes is the algebra of bosonic coherent
states, which we summarize briefly in this section. A coherent state, parametrized
by a complex number φ, is defined as a right eigenstate of the annihilation operator
with the eigenvalue φ:

b̂ |φ〉 = φ|φ〉 ; 〈φ| b̂† = φ̄〈φ|, (2.3)

where the bar denotes complex conjugation. As a result, the matrix elements in the
coherent state basis of any normally ordered operator Ĥ(b̂†, b̂) (i.e. such that all
the creation operators are to the left of all the annihilation operators) are given by

〈φ|Ĥ(b̂†, b̂)|φ′〉 = H(φ̄,φ′) 〈φ|φ′〉. (2.4)

10
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One may check by direct substitution using Eq. (2.1) that the following linear
superposition of the pure number states is indeed the required right eigenstate of
the operator b̂ :

|φ〉 =
∞∑

n=0

φn

√
n!

|n〉 =
∞∑

n=0

φn

n!
(
b̂†)n|0〉 = eφ b̂† |0〉, (2.5)

where |0〉 is the vacuum state, b̂ |0〉 = 0. Upon Hermitian conjugation, one finds
〈φ| = 〈0| e φ̄ b̂ = ∑

n〈n|φ̄n/
√

n! . The coherent states are not mutually orthogo-
nal and they form an over-complete basis. The overlap of two coherent states is
given by

〈φ|φ′〉 =
∞∑

n,n′=0

φ̄nφ′ n
′

√
n!n′!
〈n|n′〉 =

∞∑

n=0

(φ̄φ′)n

n! = e φ̄φ
′
, (2.6)

where we employed the orthonormality of the pure number states.
One may express resolution of unity in the coherent states basis. It takes the

following form:

1̂ =
∫

d[φ̄,φ] e−|φ|2 |φ〉〈φ|, (2.7)

where d[φ̄,φ] ≡ d(Reφ) d(Imφ)/π . To prove this relation one may employ the
Gaussian integral

Z [ J̄ , J ] =
∫

d[φ̄,φ] e−φ̄φ+φ̄ J+ J̄φ = e J̄ J , (2.8)

where J is an arbitrary complex number. As its consequence one obtains

∫
d[φ̄,φ] e−|φ|2 φ̄nφn′ = ∂n+n′

∂ J n∂ J̄ n′
Z [ J̄ , J ]

∣∣∣∣∣
J̄=J=0

= n! δn,n′ . (2.9)

Substituting Eq. (2.5) and its conjugate into the right hand side of Eq. (2.7) and
employing Eq. (2.9) along with the resolution of unity in the number state basis
1̂ = ∑

n |n〉〈n|, one proves the identity (2.7).
The trace of an arbitrary operator Ô, acting in the space of the occupation

numbers, is evaluated as

Tr{Ô} ≡
∞∑

n=0

〈n|Ô|n〉 =
∞∑

n=0

∫
d[φ̄,φ] e−|φ|2 〈n|Ô|φ〉〈φ|n〉 (2.10)

=
∫

d[φ̄,φ]e−|φ|2
∞∑

n=0

〈φ|n〉〈n|Ô|φ〉 =
∫

d[φ̄,φ] e−|φ|2 〈φ|Ô|φ〉,
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where we have employed resolution of unity first in the coherent state basis and
second in the number state basis.

Another useful identity is

f (ρ) ≡ 〈φ|ρ b̂†b̂|φ′〉 = e φ̄φ
′ρ . (2.11)

The proof is based on the following operator relation: g(b̂†b̂) b̂ = b̂ g(b̂†b̂ − 1)

valid for an arbitrary function g(b̂†b̂), which is verified by acting on an arbitrary
basis vector |n〉. As a result,

∂ρ f (ρ) = 〈φ|b̂†b̂ ρ b̂†b̂−1|φ′〉 = 〈φ|b̂†ρ b̂†b̂ b̂|φ′〉 = φ̄φ′ f (ρ).

Integrating this differential equation with the initial condition f (1) = eφ̄φ
′
, which

follows from Eq. (2.6), one proves the identity (2.11).

2.2 Partition function

Let us consider the simplest many-body system: bosonic particles occupying a sin-
gle quantum state with the energy ω0. Its secondary quantized Hamiltonian has the
form

Ĥ(b̂†, b̂) = ω0 b̂†b̂, (2.12)

where b̂† and b̂ are bosonic creation and annihilation operators with the commuta-
tion relation [b̂, b̂†] = 1̂. Let us define the partition function as

Z = Tr
{
ÛC ρ̂

}

Tr{ρ̂} . (2.13)

If one assumes that all external fields are exactly the same on the forward and
backward branches of the contour, then Û C = 1̂ and therefore Z = 1. The initial
density matrix ρ̂ = ρ̂(Ĥ) is some operator-valued function of the Hamiltonian. To
simplify the derivations one may choose it to be the equilibrium density matrix,
ρ̂0 = exp{−β(Ĥ − µN̂ )} = exp{−β(ω0 − µ)b̂†b̂}, where β = 1/T is the inverse
temperature and µ is the chemical potential. Since arbitrary external perturbations
may be switched on (and off) at a later time, the choice of the equilibrium initial
density matrix does not prevent one from treating non-equilibrium dynamics. For
the equilibrium initial density matrix one finds

Tr{ρ̂0} =
∞∑

n=0

e−β(ω0−µ)n = [1− ρ(ω0)]−1, (2.14)

where ρ(ω0) = e−β(ω0−µ). An important observation is that, in general, Tr{ρ̂} is
an interaction- and disorder-independent constant. Indeed, both interactions and
disorder are switched on (and off) on the forward (backward) parts of the contour
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+ ∞ − ∞
t

tN

tN+1 t2N

t1

Fig. 2.1 The closed time contour C. Dots on the forward and backward branches
of the contour denote discrete time points.

sometime after (before) t = −∞. This constant is therefore frequently omitted
without causing confusion.

The next step is to divide the C contour into (2N − 2) time intervals of length δt ,
such that t1 = t2N = −∞ and tN = tN+1 = +∞, as shown in Fig. 2.1. One then
inserts the resolution of unity in the over-complete coherent state basis, Eq. (2.7),

1̂ =
∫

d[φ̄ j ,φ j ] e−|φ j |2 |φ j 〉〈φ j | (2.15)

at each point j = 1, 2, . . . , 2N along the contour. For example, for N = 3 one
obtains the following sequence in the expression for Tr{ÛC ρ̂0}, Eq. (2.10) (read
from right to left):

〈φ6|Û−δt |φ5〉〈φ5|Û−δt |φ4〉〈φ4|1̂|φ3〉〈φ3|Û+δt |φ2〉〈φ2|Û+δt |φ1〉〈φ1|ρ̂0|φ6〉, (2.16)

where Û±δt is the evolution operator (1.1) during the time interval δt in the positive
(negative) time direction. Its matrix elements are given by:
〈
φ j

∣∣∣Û±δt

∣∣∣φ j−1

〉
≡
〈
φ j

∣∣∣e∓iĤ(b†,b)δt

∣∣∣φ j−1

〉
≈
〈
φ j

∣∣∣
(
1∓ iĤ(b†, b

)
δt
)∣∣∣φ j−1

〉

=
〈
φ j |φ j−1

〉(
1∓ iH(φ̄ j ,φ j−1)δt

)
≈ e φ̄ jφ j−1 e∓iH(φ̄ j ,φ j−1)δt , (2.17)

where the approximate equalities are valid up to the linear order in δt . Here we have
employed expression (2.4) for the matrix elements of a normally-ordered operator
along with Eq. (2.6) for the overlap of the coherent states. For the toy example
(2.12) one finds H(φ̄ j ,φ j−1) = ω0φ̄ jφ j−1. However, Eq. (2.17) is not restricted to
it, but holds for any normally-ordered Hamiltonian. Notice that there is no evolu-
tion operator inserted between tN and tN+1. Indeed, these two points are physically
indistinguishable and thus the system does not evolve during this time interval.

Employing the following property of the coherent states (see Eq. (2.11)):
〈φ1|e−β(ω0−µ)b†b|φ2N 〉 = exp

{
φ̄1φ2Nρ(ω0)

}
and collecting all the exponential

factors along the contour, one finds for the partition function, Eq. (2.13),

Z = 1
Tr{ρ̂0}

∫ 2N∏

j=1

d[φ̄ j ,φ j ] exp



i
2N∑

j, j ′=1

φ̄ j G−1
j j ′ φ j ′



 . (2.18)
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For N = 3 (see Eq. (2.16)), the 2N × 2N matrix iG−1
j j ′ takes the form

iG−1
j j ′ ≡





−1 ρ(ω0)

h− −1
h− −1

1 −1
h+ −1

h+ −1





, (2.19)

where h∓ ≡ 1 ∓ iω0δt . The main diagonal of this matrix originates from the
resolution of unity, Eq. (2.15), while the lower sub-diagonal comes from the
matrix elements (2.17). Finally, the upper-right element comes from 〈φ1|ρ̂0|φ2N 〉
in Eq. (2.16). This structure of the iĜ−1 matrix is straightforwardly generalized to
arbitrary N .

To proceed with the multiple integrals appearing in Eq. (2.18), we remind the
reader of some properties of the Gaussian integrals.

2.3 Bosonic Gaussian integrals

For any complex N × N matrix Âi j , where i, j = 1, . . . , N , such that all its eigen-
values, λi , have non-negative real parts, Reλi ≥ 0, the following statement holds:

Z [ J̄ , J ] =
∫ N∏

j=1

d[z̄ j , z j ] e
−

N∑

i j
z̄i Âi j z j +

N∑

j
[z̄ j J j + J̄ j z j ]

= e

N∑

i j
J̄i ( Â−1)i j J j

det Â
, (2.20)

where Jj is an arbitrary complex vector and d[z̄ j z j ] = d(Rez j )d(Imz j )/π . This
equality is a generalization of the Gaussian integral (2.8), used above. To prove
it, one starts from a Hermitian matrix Â, which may be diagonalized by a unitary
transformation Â = Û †*̂Û , where *̂ = diag{λ j }. The identity is then proven by a
change of variables with a unit Jacobian to wi = ∑

j Ûi j z j , which leads to

Z [ J̄ , J ] =
N∏

j=1

∫
d[w̄ j , w j ] e−w̄ jλ j w j +w̄ j I j + Ī j w j =

N∏

j=1

e Ī jλ
−1
j I j

λ j
,

where Ii = ∑
j Ûi j J j . Using

∑
j Ī jλ

−1
j I j = /̄J TÛ †*̂−1Û /J = /̄J T Â−1 /J , along

with det Â = ∏
j λ j , one obtains the right hand side of Eq. (2.20). Finally, one

notices that the right hand side of Eq. (2.20) is an analytic function of both ReAi j

and ImAi j . Therefore, one may continue them analytically to the complex plane to
reach an arbitrary complex matrix Âi j . The identity (2.20) is thus valid as long as
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the integral is well defined, that is all the eigenvalues of Â have non-negative real
parts.

The Wick theorem deals with the average value of za1 . . . zak z̄b1 . . . z̄bk weighted
with the factor exp

(
−∑i j z̄i Âi j z j

)
. The theorem states that this average is given

by the sum of all possible products of pair-wise averages. For example, with the
help of Eq. (2.20) one finds

〈za z̄b〉 ≡
1

Z [0, 0]
δ2 Z [ J̄ , J ]
δ J̄aδJb

∣∣∣∣
J=0

= Â−1
ab , (2.21)

〈zazbz̄c z̄d〉 ≡
1

Z [0, 0]
δ4 Z [ J̄ , J ]

δ J̄aδ J̄bδJcδJd

∣∣∣∣
J=0

= Â−1
ac Â−1

bd + Â−1
ad Â−1

bc ,

etc.
The Gaussian identity for integration over real variables has the form

Z [J ] =
∫ N∏

j=1

(
dx j√

2π

)
e
− 1

2

N∑

i j
xi Âi j x j +

N∑

j
x j J j

= e
1
2

N∑

i j
Ji ( Â−1)i j J j

√
det Â

, (2.22)

where Â is a symmetric complex matrix with all its eigenvalues having non-
negative real parts. The proof is similar to that in the case of complex variables: one
starts from a real symmetric matrix, which may be diagonalized by an orthogonal
transformation. The identity (2.22) is then easily proven by a change of variables.
Finally, one may analytically continue the right hand side (as long as the integral
is well defined) from a real symmetric matrix Âi j to a complex symmetric one.

The corresponding Wick theorem for the average value of xa1 . . . xa2k weighted
with the factor exp

(
− 1

2

∑
i j xi Âi j x j

)
takes the form

〈xa xb〉 ≡
1

Z [0]
δ2 Z [J ]
δJaδJb

∣∣∣∣
J=0

= Â−1
ab , (2.23)

〈xa xbxcxd〉 ≡
1

Z [0]
δ4 Z [J ]

δJaδJbδJcδJd

∣∣∣∣
J=0

= Â−1
ab Â−1

cd + Â−1
ac Â−1

bd + Â−1
ad Â−1

bc ,

etc. Notice the additional term in the second line in comparison with the corre-
sponding complex result (2.21). The symmetry of Â (and thus of Â−1) is necessary
to satisfy the obvious relation 〈xa xb〉 = 〈xbxa〉.

2.4 Normalization and continuum notation

Having established the Gaussian identity (2.20), one can apply it to Eq. (2.18) to
check the normalization factor. In this case Â = −iĜ−1 and it is straightforward to
evaluate the corresponding determinant employing Eq. (2.19):
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det
[
−iĜ−1] = 1− ρ(ω0)(h−h+)N−1 = 1− ρ(ω0)

(
1 + ω2

0δ
2
t

)N−1

≈ 1− ρ(ω0) eω
2
0δ

2
t (N−1) N→∞−→ 1− ρ(ω0), (2.24)

where one used that δ 2
t N → 0 if N → ∞. Indeed, we divide the contour in a

way to keep δt N = const (given by a full extent of the time axis) and as a result
δ2

t ∼ N−2. Employing the fact that the Gaussian integral in Eq. (2.18) is equal to
the inverse determinant of the−iĜ−1 matrix, Eq. (2.20), along with Eq. (2.14), one
finds

Z = 1
Tr{ρ̂0}

1

det
[
− iĜ−1

] = 1, (2.25)

as it should be, of course. Notice that keeping the upper-right element of the
discrete matrix, Eq. (2.19), is crucial to maintain this normalization identity.

One may now take the limit N → ∞ and formally write the partition function
(2.18) in the continuum notation, φ j → φ(t), as

Z =
∫

D[φ̄(t),φ(t)] e iS[φ̄,φ], (2.26)

where the integration measure is the shorthand notation for D[φ̄(t),φ(t)] =∏2N
j=1 d[φ̄ j ,φ j ]/ Tr{ρ̂0}. According to Eqs. (2.18) and (2.19), the action is given by

S[φ̄,φ] =
2N∑

j=2

δt j

[
iφ̄ j

φ j − φ j−1

δt j
− ω0φ̄ jφ j−1

]
+ i φ̄1

[
φ1− iρ(ω0)φ2N

]
, (2.27)

where δt j ≡ t j − t j−1 = ±δt on the forward and backward branches, cor-
respondingly. In continuum notation, φ j → φ(t), the action acquires the form

S[φ̄,φ] =
∫

C
dt φ̄(t)Ĝ−1φ(t), (2.28)

where the continuum form of the operator Ĝ−1 is (see the first square bracket on
the right hand side of Eq. (2.27))

Ĝ−1 = i∂t − ω0. (2.29)

It is extremely important to remember that this continuum notation is only an
abbreviation which represents the large discrete matrix, Eq. (2.19). In particular,
the upper-right element of the matrix (the last term in Eq. (2.27)), that contains
the information about the distribution function, is seemingly absent in the contin-
uum notation, Eq. (2.29). The necessity of keeping the boundary terms originates
from the fact that the continuum operator (2.29) possesses the zero mode e−iω0t . Its
inverse operator Ĝ is therefore not uniquely defined, unless the boundary terms are
included.
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To avoid integration along the closed time contour, it is convenient to split the
bosonic field φ(t) into the two components φ+(t) and φ−(t), which reside on the
forward and backward parts of the time contour, respectively. The continuum action
may be then rewritten as

S[φ̄,φ] =
∫ +∞

−∞
dt
[
φ̄+(t)(i∂t − ω0)φ

+(t)− φ̄−(t)(i∂t − ω0)φ
−(t)

]
, (2.30)

where the relative minus sign comes from the reversed direction of the time inte-
gration on the backward part of the contour. Once again, the continuum notation
is somewhat misleading. Indeed, it creates an undue impression that the φ+(t) and
φ−(t) fields are completely uncorrelated. In fact, they are connected due to the
presence of the non-zero off-diagonal blocks in the discrete matrix, Eq. (2.19). It is
therefore desirable to develop a continuum representation that automatically takes
into account the proper regularization and mutual correlations. We shall achieve it
in the following sections. First the Green functions should be discussed.

2.5 Green functions

According to the basic properties of the Gaussian integrals, see Section 2.3, the
correlator of the two complex bosonic fields is given by

〈
φ j φ̄ j ′

〉
≡
∫

D[φ̄,φ] φ j φ̄ j ′ exp



i
2N∑

k,k′=1

φ̄k G−1
kk′ φk′



 = iG j j ′ . (2.31)

Notice the absence of the factor Z−1 in comparison with the analogous definition in
the equilibrium theory [6]. Indeed, in the present construction Z = 1. This seem-
ingly minor difference turns out to be the major issue in the theory of disordered
systems (see further discussion in Chapter 11, devoted to fermions with quenched
disorder). Inverting the 2N × 2N matrix (2.19) with N = 3, one finds

iG j j ′=
1

det
[
− i Ĝ−1

]





1 ρh2
+h− ρh2

+ ρh2
+ ρh+ ρ

h− 1 ρh2
+h− ρh2

+h− ρh+h− ρh−
h2
− h− 1 ρh2

+h2
− ρh+h2

− ρh2
−

h2
− h− 1 1 ρh2

−h+ ρh2
−

h2
−h+ h−h+ h+ h+ 1 ρh2

−h+
h2
−h2

+ h−h2
+ h2

+ h2
+ h+ 1





,

(2.32)

where ρ ≡ ρ(ω0). Generalization of the N = 3 example to an arbitrary N is
again straightforward. We switch now to the fields φ±

j , residing on the forward
(backward) branches of the contour. Hereafter j = 1, . . . , N and thus the 2N×2N
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matrix written above is indexed as 1, 2, . . . , N , N , . . . , 2, 1. Then the following
correlations may be read out of the matrix (2.32):

〈φ+
j φ̄
−
j ′ 〉 ≡ iG<

j j ′ =
ρ h j ′−1

+ h j−1
−

det
[
− iĜ−1

] , (2.33a)

〈φ−j φ̄+
j ′ 〉 ≡ iG>

j j ′ =
hN− j

+ hN− j ′
−

det
[
− iĜ−1

] = (h+h−)N−1h1− j
+ h1− j ′

−
det
[
− iĜ−1

] , (2.33b)

〈φ+
j φ̄

+
j ′ 〉 ≡ iGT

j j ′ =
h j− j ′
−

det
[
− i Ĝ−1

] ×
{

1, j ≥ j ′

ρ(h+h−)N−1, j < j ′
, (2.33c)

〈φ−j φ̄−j ′ 〉 ≡ iGT̃
j j ′ =

h j ′− j
+

det
[
− i Ĝ−1

] ×
{
ρ(h+h−)N−1, j > j ′

1, j ≤ j ′
. (2.33d)

Here the symbols T and T̃ stand for time ordering and anti-ordering correspond-
ingly, while < (>) is a convenient notation indicating that the first time argument
is taken before (after) the second one on the Keldysh contour. Since h∗+ = h−, one
notices that

[
G<(>)

]† = −G<(>) ;
[
GT]† = −GT̃, (2.34)

where the Hermitian conjugation involves interchange of the two time arguments
along with complex conjugation.

Recalling that h∓ = 1 ∓ iω0δt , one can take the N → ∞ limit, keeping

Nδt a constant. To this end notice that (h+h−)N = (1 + ω2
0δ

2
t )

N N→∞−→ 1, while

h j
∓

N→∞−→ e∓iω0δt j = e∓iω0t , where we denoted t = δt j and correspondingly
t ′ = δt j ′. Employing also the evaluation of the determinant given by Eq. (2.24),
one obtains for the correlation functions in the continuum limit

〈φ+(t)φ̄−(t ′)〉 = iG<(t, t ′) = nB e−iω0(t−t ′), (2.35a)

〈φ−(t)φ̄+(t ′)〉 = iG>(t, t ′) = (nB + 1) e−iω0(t−t ′), (2.35b)

〈φ+(t)φ̄+(t ′)〉 = iGT(t, t ′) = θ(t − t ′)iG>(t, t ′) + θ(t ′ − t)iG<(t, t ′), (2.35c)

〈φ−(t)φ̄−(t ′)〉 = iGT̃(t, t ′) = θ(t ′ − t)iG>(t, t ′) + θ(t − t ′)iG<(t, t ′), (2.35d)

where we introduced the bosonic occupation number nB as

nB(ω0) = ρ(ω0)

1− ρ(ω0)
. (2.36)

Indeed, to calculate the number of bosons at a certain point in time one needs to
insert the operator b̂†b̂ into the corresponding point along the forward or backward
branches of the contour. This leads to the correlation function 〈φ j−1φ̄ j 〉, or in terms
of φ± fields to either 〈φ+

j−1φ̄
+
j 〉 or 〈φ−j φ̄−j−1〉 (notice the reversed indexing along the
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backward branch). According to Eqs. (2.33c,d) in the N →∞ limit both of them
equal nB.

The step-function θ(t) in Eqs. (2.35c,d) is defined as θ(t − t ′) = 1 if t > t ′ and
θ(t−t ′) = 0 if t < t ′. There is an ambiguity about equal times. Consulting with the
discrete version of the correlation functions, Eqs. (2.33), one notices that in both
Eqs. (2.35c) and (2.35d) the first step function should be understood as having
θ(0) = 1, and the second as having θ(0) = 0. Although slightly inconvenient, this
ambiguity will disappear in the formalism that follows.

In analogy with the definition of the discrete correlation functions as a 2N -fold
integral, Eq. (2.31), it is convenient to write their continuum limit, Eq. (2.35),
formally as a functional integral

〈
φ±(t) φ̄±(t ′)

〉
=
∫

D[φ̄,φ]φ±(t)φ̄±(t ′) e iS[φ̄,φ], (2.37)

where the action S[φ̄,φ] is given by Eq. (2.30). Notice that, despite the impression
that the integrals over φ+(t) and φ−(t) may be split from each other and per-
formed separately, there are non-vanishing cross-correlations between these fields,
Eqs. (2.35a,b). The reason, of course, is that the continuum notation (2.37) is noth-
ing but a shorthand abbreviation for the N → ∞ limit of the discrete integral
(2.31). The latter contains the matrix (2.19) with non-zero off-diagonal blocks,
which are the sole reason for the existence of the cross-correlations. It is highly
desirable to develop a continuum formalism, which automatically accounts for the
proper cross-correlations without the need to resort to the discrete notations.

This task is facilitated by the observation that not all four Green functions
defined above are independent. Indeed, direct inspection shows that

GT(t, t ′) + GT̃(t, t ′)− G>(t, t ′)− G<(t, t ′) = 0. (2.38)

This suggests that one may benefit explicitly from this relation by performing a
linear transformation. The Keldysh rotation achieves just that. Notice that, due to
the regularization of θ(0) discussed above, the identity does not hold for t = t ′.
Indeed at t = t ′ the left hand side of Eq. (2.38) is one rather than zero. However,
since the t = t ′ line is a manifold of measure zero, the violation of Eq. (2.38)
for most purposes is inconsequential. (Notice that the right hand side of Eq. (2.38)
is not a delta-function δ(t − t ′). It is rather a Kronecker delta δ j j ′ in the discrete
version, which disappears in the continuum limit.)

2.6 Keldysh rotation

Let us introduce a new pair of fields according to

φcl(t) = 1√
2

(
φ+(t) + φ−(t)

)
, φq(t) = 1√

2

(
φ+(t)− φ−(t)

)
, (2.39)
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with the analogous transformation for the conjugated fields. The superscripts “cl”
and “q” stand for the classical and the quantum components of the fields, respec-
tively. The rationale for this notation will become clear shortly. First, a simple
algebraic manipulation with Eqs. (2.33a)–(2.33d) shows that

〈
φα(t) φ̄ β(t ′)

〉
≡ iGαβ(t, t ′) =




iGK(t, t ′) iGR(t, t ′)

iGA(t, t ′) 0



 , (2.40)

where hereafter α,β = (cl, q). The fact that the (q, q) element of this matrix is
zero is a manifestation of the identity (2.38). Superscripts R, A and K stand for the
retarded, advanced and Keldysh components of the Green function, respectively.
These three Green functions are the fundamental objects of the Keldysh technique.
They are defined as

GR(t, t ′) = G cl,q(t, t ′) = 1
2

(
GT − GT̃ + G> − G<

)
= θ(t − t ′)

(
G> − G<

)
,

(2.41a)

GA(t, t ′) = G q,cl(t, t ′) = 1
2

(
GT − GT̃ − G> + G<

)
= θ(t ′ − t)

(
G< − G>

)
,

(2.41b)

GK(t, t ′) = G cl,cl(t, t ′) = 1
2

(
GT + GT̃ + G> + G<

)
= G> + G<. (2.41c)

As was mentioned after Eq. (2.38), the last equality in each line here holds for
t )= t ′ only, while the diagonal t = t ′ is discussed below. Employing Eq. (2.34),
one notices that

GA =
[
GR]†

, GK = −
[
GK]†

, (2.42)

where the Green functions are understood as matrices in the time domain. Hermi-
tian conjugation therefore includes complex conjugation along with interchanging
of the two time arguments.

The retarded (advanced) Green function is a lower (upper) triangular matrix in
the time domain. Since a product of any number of triangular matrices is again a
triangular matrix, one obtains the simple rule that the convolution of any number of
retarded (advanced) Green functions is also a retarded (advanced) Green function

GR
1 ◦ GR

2 ◦ · · · ◦ GR
l = GR, (2.43a)

GA
1 ◦ GA

2 ◦ · · · ◦ GA
l = GA, (2.43b)

where the circular multiplication sign stands for the convolution operation, i.e. mul-
tiplication of matrices in the time domain, and subscripts denote all other indices
apart from the time.
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Both retarded and advanced matrices have non-zero main diagonals, i.e. t = t ′.
The important observation, however, is that

GR(t, t) + GA(t, t) = 0, (2.44)

see Eqs. (2.35c,d) and the discussion of θ(0) regularization below them. It may be

traced back to the fact that GR + GA = GT−GT̃, and since at the coinciding times
the time ordering and anti-ordering are equivalent, the result is zero. This consid-
eration shows that Eq. (2.44) is not restricted to our toy model, but is completely
general. In the energy representation Eq. (2.44) takes the form

∫
dε
2π

[
GR(ε) + GA(ε)

]
= 0, (2.45)

and it is tempting to attribute it to the fact the energy integral of a function analytic
in the upper (lower) complex half-plane is zero. One should be aware, however,
that according to Eqs. (2.41a,b) and (2.35a,b)

GR(t, t)− GA(t, t) = −i. (2.46)

Once again this expression is not restricted to the toy model, but is very general.
Indeed, GR − GA = G> − G< = −i〈(bb† − b†b)〉 = −i since the commutation
relation (2.2) at the coinciding times is a generic property of any bosonic system.
As a result,

∫
dε
[
GR(ε)− GA(ε)

]
= −2π i and therefore

∫
dε GR(A)(ε) = ∓π i,

which is coming from the integration along the large semicircle closing the inte-
gration contour in the upper (lower) complex half-plane. In practical calculations
the difference GR − GA always comes with the distribution function (see below).
The latter usually exhibits poles or branch cuts in both upper and lower energy half-
planes and therefore the contour integration is not helpful anyway. Wherever GR or
GA show up without the distribution function, they always appear in the combina-
tion GR + GA, calling for the contour integration (2.45). We shall thus frequently
quote (as a rule of thumb) that

∫
dε GR(A)(ε) = 0, or equivalently GR(A)(t, t) = 0,

understanding that it is always the sum of the two which matters. This never leads
to a confusion and therefore there is no danger in extending Eqs. (2.41a,b) to the
diagonal t = t ′ (with the understanding θ(0) = 0) in the continuum formalism.

It is useful to introduce graphic representations for the three Green functions.
To this end, let us denote the classical component of the field by a full line and
the quantum component by a dashed line. Then the retarded Green function is
represented by a full arrow and dashed line, the advanced by a dashed arrow and
full line and the Keldysh by a full arrow and full line, see Fig. 2.2. Notice that the
dashed arrow and dashed line, that would represent the 〈φqφ̄q〉 Green function, is
absent. The arrow shows the direction from φα towards φ̄ β .
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GR (t,t') GA (t,t') GK (t,t')

φcl (t) φq (t) φcl (t') φcl (t')φcl (t)φq (t')

Fig. 2.2 Graphic representation of GR, GA and GK. The full line represents the
classical field component φcl, while the dashed line represents the quantum com-
ponent φq. The arrows are directed from the annihilation operator towards the
creation one, i.e. from φα to φ̄β .

Employing Eqs. (2.35), one finds for our toy example of the single boson level

GR = −iθ(t − t ′) e−iω0(t−t ′) FT→ (ε − ω0 + i0)−1, (2.47a)

GA = iθ(t ′ − t) e−iω0(t−t ′) FT→ (ε − ω0 − i0)−1, (2.47b)

GK = −i [2nB(ω0) + 1] e−iω0(t−t ′) FT→−2π i[2nB(ε) + 1]δ(ε − ω0). (2.47c)

The Fourier transforms (FT) with respect to t − t ′ are given for each of the
three Green functions. Notice that the retarded and advanced components con-
tain information only about the spectrum and are independent of the occupation
number, whereas the Keldysh component depends on it. In thermal equilibrium
ρ = e−(ω0−µ)/T , while nB = (e(ω0−µ)/T − 1)−1 and therefore

GK(ε) = coth
ε − µ

2T

[
GR(ε)− GA(ε)

]
, (2.48)

where T = β−1 is the system’s temperature, expressed in units of energy.
The last equation constitutes the statement of the fluctuation–dissipation theo-

rem (FDT). As we shall see, the FDT is a general property of thermal equilibrium
that is not restricted to the toy example considered here. It implies a rigid relation
between the response functions and the correlation functions in equilibrium.

In general, it is convenient to parametrize the anti-Hermitian Keldysh Green
function, Eq. (2.42), with the help of a Hermitian matrix F = F†, as follows:

GK = GR ◦ F − F ◦ GA, (2.49)

where F = F(t, t ′). The Wigner transform (see Section 5.6), F(t, ε), of the
matrix F is referred to as the distribution function. In thermal equilibrium F(ε) =
coth((ε − µ)/2T ), Eq. (2.48).

2.7 Keldysh action and its structure

One would like to have a continuum action, written in terms of φcl,φq, that properly
reproduces the correlators Eqs. (2.40) and (2.47), i.e.

〈
φα(t) φ̄β(t ′)

〉
= iGαβ(t, t ′) =

∫
D[φcl,φq] φα(t) φ̄β(t ′) eiS[φcl,φq], (2.50)
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where the conjugated fields are not listed in the action arguments or the integra-
tion measure for brevity. According to the basic properties of Gaussian integrals,
Section 2.3, the action should be taken as a quadratic form of the fields with the
matrix which is an inverse of the correlator Gαβ(t, t ′). Inverting the matrix (2.40),
one thus finds the proper action

S[φcl,φq] =
∫∫ +∞

−∞
dt dt ′

(
φ̄cl, φ̄q)

t

(
0

[
G−1

]A

[
G−1

]R [
G−1

]K

)

t,t ′

(
φcl

φq

)

t ′
.

(2.51)

The off-diagonal elements are found from the condition [G−1
]R ◦ GR = 1 and

the similar one for the advanced component. The right hand side here is the unit
matrix, which in the continuum time representation is δ(t− t ′). As a result, the off-
diagonal components are obtained by the matrix inversion of the corresponding
components of the Green functions

[
G−1

]R(A) =
[
GR(A)

]−1. Such an inversion is
most convenient in the energy representation

[
G−1]R(A) = ε − ω0 ± i0→ δ(t − t ′) (i∂t ′ − ω0 ± i0) , (2.52a)

where in the last step we performed the inverse Fourier transform back to the time
representation, employing that the Fourier transform of ε is δ(t − t ′)i∂t ′ .

Although in the continuum limit these matrices look diagonal, it is important to
remember that in the discrete regularization

[
GR(A)

]−1 contains ∓i along the main
diagonal and ±i − ω0δt along the lower(upper) sub-diagonal. The determinants
of the corresponding matrices are given by the product of all diagonal elements,
det

[
G−1

]R det
[
G−1

]A = ∏N
j=1 i(−i) = 1. To obtain this statement without

resorting to discretization, one notices that in the energy representation the Green
functions are diagonal and therefore det

[
G−1

]R[
G−1

]A =∏
ε

[
GR(ε)GA(ε)]−1 =

exp
{
−
∫ dε

2π [ln GR + ln GA]
}

= 1. Here we used the fact that Eq. (2.45) holds not
only for the Green functions themselves but, thanks to Eqs. (2.43), also for any
function of them. This property is important for maintaining the normalization
identity Z =

∫
D[φcl,φq] eiS = 1. Indeed, the integral is equal to minus (due

to the factor of i in the exponent) the determinant of the quadratic form, while the
latter is (−1) times the product of the determinants of the off-diagonal elements in
the quadratic form (2.51).

The diagonal Keldysh component, [G−1]K, of the quadratic form (2.51) is found
from the condition GK◦[GA]−1+GR◦[G−1]K = 0. Employing the parametrization
(2.49), one finds

[
G−1]K = −

[
GR]−1 ◦ GK ◦ [GA]−1 =

[
GR]−1 ◦ F − F ◦

[
GA]−1

. (2.52b)

The action (2.51) should be viewed as a construction devised to reproduce
the proper continuum limit of the correlation functions according to the rules of
Gaussian integration. It is fully self-consistent in the following senses: (i) it does
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not need to appeal to the discrete representation for regularization and (ii) its gen-
eral structure is intact upon renormalization or “dressing” of its components by the
interaction corrections (see Chapter 5).

Here we summarize the main features of the action (2.51), which, for lack of
better terminology, we call the causality structure.

• The cl− cl component of the quadratic form is zero. It reflects the fact that for a
pure classical field configuration (φq = 0) the action is zero. Indeed, in this case
φ+ = φ− and the action on the forward part of the contour is canceled by that
on the backward part (except for the boundary terms, which are implicit in the
continuum limit). The very general statement is, therefore, that

S
[
φcl, 0

]
= 0. (2.53)

Obviously this statement is not restricted to the Gaussian action of the form given
by Eq. (2.51), but holds for any generic action (see Chapter 5).

• The cl − q and q − cl components are mutually Hermitian conjugated upper
and lower (advanced and retarded) triangular matrices in the time domain. This
property is responsible for the causality of the response functions as well as for
protecting the cl−cl component from a perturbative renormalization (see below).
Relations (2.44) and (2.45) are crucial for this last purpose and necessary for the
consistency of the theory.

• The q − q component is an anti-Hermitian matrix [see Eq. (2.42)]. It is respon-
sible for the convergence of the functional integral and keeps information about
the distribution function. In our simple example

[
GK
]−1 = 2i0F , where F is a

Hermitian matrix. The fact that it is infinitesimally small is a peculiarity of the
non-interacting model. We shall see in the following chapters that it acquires a
finite value, once interactions with other degrees of freedom are included.

2.8 External sources

So far we have been content with the representation of the partition function. The
latter does not carry any information in the Keldysh technique, since Z = 1. To
make the entire construction meaningful one should introduce source fields, which
enable one to compute various observables. As an example, let us introduce an
external time-dependent potential V (t). It interacts with the bosons through the
Hamiltonian ĤV = V (t)b̂†b̂. One can now introduce the generating function Z [V ]
defined similarly to the partition function (2.13), Z [V ] = Tr

{
ÛC[V ]ρ̂

}
/Tr{ρ̂},

where the evolution operator ÛC[V ] includes the source Hamiltonian ĤV along
with the bare one, Eq. (2.12). While any classical external field is the same on
both branches of the contour, it is convenient to allow V +(t) and V−(t) to be
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distinct and put them equal only at the very end. Repeating the construction of
the coherent state functional integral of Section 2.2, one obtains for the generating
function

Zd[V ] = 1
Tr{ρ̂0}

∫ 2N∏

j=1

d[φ̄ j ,φ j ] exp



i
2N∑

j, j ′=1

φ̄ j G−1
j j ′[V ]φ j ′



 , (2.54)

where the subscript d stands for the discrete representation. The 2N × 2N matrix
iG−1

j j ′[V ] is similar to the one given by Eq. (2.19) with h∓ → h∓[V ] = 1 ∓
i(ω0 + Vj )δt , where Vj = V (t j ). According to Eq. (2.20) the generating function
is proportional to the inverse determinant of the −iG−1

j j ′[V ] matrix. The latter is
calculated in a way very similar to Eq. (2.24), leading to

Zd[V ] = 1
Tr{ρ̂0}

1

det
[
− iĜ−1[V ]

] = 1− ρ(ω0)

1− ρ(ω0)e−i
∫
C dt V (t)

. (2.55)

It is convenient to introduce classical and quantum components of the source
potential V (t) as

V cl(t) = 1
2

[
V +(t) + V−(t)

]
; V q(t) = 1

2

[
V +(t)− V−(t)

]
, (2.56)

where V ±(t) is the source potential on the forward (backward) branch of the con-
tour. With this notation along with Eq. (2.36) the generating function takes the form

Zd[V cl, V q] =
[
1− nB(ω0)

(
e−2i

∫
dt V q(t) − 1

)]−1
. (2.57)

The fact that the generating function depends only on the integral of the quantum
component of the source and does not depend on its classical component is a pecu-
liarity of our toy model. (Indeed, since [Ĥ , b†b] = 0, the number of particles is
conserved, making the generating function independent of the classical external
potential V cl). The very general statement, though, is

Z [V cl, 0] = 1. (2.58)

Indeed, if V q = 0 the source potential is the same on the two branches, V +(t) =
V−(t), and thus the evolution operator brings the system exactly to its initial state,
i.e. ÛC[V cl] = 1̂. One crucially needs therefore a fictitious potential V q(t) to
generate observables.

Since the source potential is coupled to the number of particles operator n̂ =
b̂†b̂, differentiation over V q(t) generates an expectation value of −2i〈n̂(t)〉 (the
factor of two here is due to the fact that we insert b̂†(t)b̂(t) on both branches):
〈n̂(t)〉 = (i/2)δZd[V q]/δV q(t)|V q=0 = nB(ω0), as was established in Section 2.5.
The higher order correlation functions may be obtained by repetitive differentiation
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of the generating function. To generate irreducible correlators (i.e. cumulants)
〈〈n̂k(t)〉〉 ≡ 〈(n̂(t)−nB)k〉 one needs to differentiate the logarithm of the generating
function, Eq. (2.57), e.g.

〈〈n̂2(t)〉〉 =
(

i
2

)2
δ2 ln Zd

δ[V q(t)]2

∣∣∣∣∣
V =0

= n2
B + nB;

〈〈n̂3(t)〉〉 =
(

i
2

)3
δ3 ln Zd

δ[V q(t)]3

∣∣∣∣∣
V =0

= 2n3
B + 3n2

B + nB; (2.59)

〈〈n̂4(t)〉〉 =
(

i
2

)4
δ4 ln Zd

δ[V q(t)]4

∣∣∣∣∣
V =0

= 6n4
B + 12n3

B + 7n2
B + nB;

etc.
Let us see now how these results can be reproduced in the continuum technique,

without resorting to discretization. The continuum generating function is defined as

Zc[V ] =
∫

D[φ̄,φ] e iS[φ̄,φ]+i SV [φ̄,φ], (2.60)

where the bare action S[φ̄,φ] is given by Eq. (2.30) and

SV [φ̄,φ] = −
∫

C
dt V (t)φ̄(t)φ(t) = −

+∞∫

−∞

dt
[
V +φ̄+φ+ − V−φ̄−φ−

]
(2.61)

= −
+∞∫

−∞

dt
[
V cl(φ̄+φ+ − φ̄−φ−) + V q (φ̄+φ+ + φ̄−φ−)

]
= −

+∞∫

−∞

dt /̄φ TV̂ /φ,

where /φ = (φcl,φq)T and

V̂ (t) =
(

V q(t) V cl(t)
V cl(t) V q(t)

)
. (2.62)

As a result, for our example of the single bosonic level the continuum generating
function is given by

Zc[V cl, V q] =
∫

D[φ̄,φ] e i
∫

dt /̄φ T
(

Ĝ−1−V̂ (t)
)
/φ = 1

Tr{ρ̂0}
1

det
[
− iĜ−1 + iV̂

]

= 1

det
[
1− ĜV̂

] = e−Tr ln
[

1−ĜV̂
]
, (2.63)

where we have used Eq. (2.25) along with the identity ln det Â = Tr ln Â.
According to Eqs. (2.40) and (2.47) the matrix Green function is
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Ĝ(t, t ′) = −i e−iω0(t−t ′)
(

F(ω0) θ(t − t ′)
−θ(t ′ − t) 0

)
(2.64)

and F(ω0) = 2nB(ω0) + 1.
The continuum generating function Zc is not identical to the discrete one

Zd. However, as we shall show, it possesses the same general properties and
generates exactly the same statistics of the number operator. First, let us ver-
ify Eq. (2.58) by expanding the logarithm in Eq. (2.63). To first order in V̂
one finds −Tr ln

[
1 − ĜV̂

]
≈ TrĜV̂ =

∫
dt [GR(t, t) + GA(t, t)]V cl(t) = 0,

where we put V q = 0 and employed Eq. (2.44). To second order one encounters∫
dtdt ′GR(t, t ′)V cl(t ′)GR(t ′, t)V cl(t) and similarly for GA. Since GR(t, t ′) = 0 if

t < t ′, while GR(t ′, t) = 0 if t > t ′, the expression under the integral is non-zero
only if t = t ′. In the continuum limit (N → ∞) this is the manifold of zero mea-
sure, making the integral zero. Clearly the same holds in all orders in V cl. This
illustrates how the generic feature of the Keldysh technique, Eq. (2.58), works in
our simple example.

Consider now iδZc[V ]/δV q(t)|V =0 = 〈φ̄+(t)φ+(t) + φ̄−(t)φ−(t)〉; we refer to
Eqs. (2.60) and (2.61) to see this relation. The expectation value of which oper-
ator is calculated this way? The naive answer is that φ̄(t)φ(t) is generated by
〈b̂†(t)b̂(t)〉 and we deal with the sum of this operator inserted on the forward and
backward branches. If this were the case, φ̄ would be taken one time step ahead of
the φ field, as is indeed the case in the discrete representation. However, our con-
tinuum expression indiscriminately places both φ̄± and φ± at the same time t . One
can check that such a “democratic” choice of the time arguments corresponds to
the expectation value of the symmetric combination F̂(t) ≡ b̂†(t)b̂(t) + b̂(t)b̂†(t).
Employing the equal time commutation relation [b̂(t), b̂†(t)] = 1̂, one finds
F̂(t) = 2n̂(t) + 1 and 〈F̂(t)〉 = i δZc[V cl, V q]/δV q(t)

∣∣
V =0 = iGK(t, t) =

F(ω0), as it should be, of course. For higher order irreducible correlators one
obtains

〈〈F̂2(t)〉〉 = i2
δ2 ln Zc

δ[V q(t)]2

∣∣∣∣
V =0

= F2 − 1;

〈〈F̂3(t)〉〉 = i3
δ3 ln Zc

δ[V q(t)]3

∣∣∣∣
V =0

= 2F3 − 2F; (2.65)

〈〈F̂4(t)〉〉 = i4
δ4 ln Zc

δ[V q(t)]4

∣∣∣∣
V =0

= 6F4 − 8F2 + 2;

etc. To see how it works, consider for example the third order term in the expansion
of ln Zc = −Tr ln[1− ĜV̂ ] in Eq. (2.63) in powers of V q(t) at V cl = 0:
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1
3

Tr{(ĜV̂ )3} = 1
3

∫
dtdt ′dt ′′Tr

{
Ĝ(t, t ′)V q(t ′)Ĝ(t ′, t ′′)V q(t ′′)Ĝ(t ′′, t)V q(t)

}

= i
F3

3

(∫
dtV q(t)

)3

− iF
∫

dtV q(t)
(∫

t
dt ′V q(t ′)

)2

= i
F3 − F

3

(∫
dtV q(t)

)3

.

To calculate the last integral in the intermediate expression here one intro-
duces W (t) =

∫
t V q(t) and therefore V q = −Ẇ , and the integral in question

is thus −
∫

dt Ẇ W 2 = −
∫

dW W 2 = −(1/3)W 3(t)|∞−∞ = (1/3)(
∫

dtV q)3.
Differentiating over V q three times, one arrives at Eq. (2.65).

Substituting F̂ = 2n̂ + 1 and F = 2nB + 1, it is easy to check that the
respective moments (2.59) and (2.65) are exactly equivalent! Therefore, although
the generating functions Zd and Zc generate slightly different sets of cumulants,
their statistical content is equivalent. From now on we shall always deal with the
continuum version, circumventing the tedious discretization procedure.

The generating function Z [V q] gives access not only to the moments, but to a
full counting statistics of the operator n̂(t0), or F̂(t0). Let us define the probabil-
ity of measuring n bosons at a time t0 as P(n). Then 〈n̂k(t0)〉 =

∫
dn nkP(n).

The generating function Z [η] ≡
∫

dn eiηnP(n) = ∑
k(iη)

k〈n̂k(t0)〉/k!, where η
is called the counting “field.” Comparing this with Zd[V q], one notices that Z [η]
may be obtained from it by the substitution V q(t) = −(η/2)δ(t − t0). Employing
Eq. (2.55), one finds

Z [η] = 1− ρ(ω0)

1− ρ(ω0) eiη
=
(
1− ρ(ω0)

) ∞∑

k=0

[ρ(ω0)]k eikη. (2.66)

Performing the inverse Fourier transform and recalling that ρ(ω0) = e−β(ω0−µ),
one finds

P(n) =
∞∑

k=0

δ(n − k)
(
1− e−β(ω0−µ)

)
e−β(ω0−µ)k . (2.67)

That is, one can measure only an integer number of bosons and the corresponding
probability is proportional to e−β(En−µn), where the energy En = nω0. This is of
course a trivial result, which we have already de-facto employed in Eq. (2.14). The
important message, however, is that the counting field η is nothing but a particular
realization of the quantum source field V q(t), tailored to generate an appropriate
statistics. As opposed to the calculation of the moments (2.59) and (2.65), one
should not put the quantum source to zero when the full statistics is evaluated. We
shall employ this lesson in Sections 4.9, 10.3, and 12.4 to discuss less obvious
examples of the full counting statistics.
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Single-particle quantum mechanics

In this chapter we discuss quantum mechanics formulated on the closed time
contour. We also derive a real time version of the Caldeira–Leggett model for a
quantum particle interacting with a bath of harmonic oscillators. A semiclassical
treatment of quantum tunneling on the closed time contour is developed and used
to evaluate the tunneling rate through a time-dependent potential barrier with and
without coupling to the bath.

3.1 Harmonic oscillator

The simplest many-body system of a single bosonic state, considered above, is
equivalent to a quantum harmonic oscillator. To make this connection explicit, con-
sider the Keldysh contour action Eq. (2.28) with the correlator Eq. (2.29) written
in terms of the complex field φ(t). The latter may be parametrized by its real and
imaginary parts as

φ(t) = 1√
2ω0

(
P(t)− iω0 X (t)

)
, φ̄(t) = 1√

2ω0

(
P(t) + iω0 X (t)

)
. (3.1)

In terms of the real fields P(t) and X (t) the action, Eq. (2.28), takes the form

S[X, P] =
∫

C
dt
[

P Ẋ − 1
2

P2 − ω
2
0

2
X2
]

, (3.2)

where the full time derivatives of P2, X2 and P X were omitted, since they con-
tribute only to the boundary terms, implicit in the continuum notations (they have
to be kept for the proper regularization, though). Equation (3.2) is nothing but the
action of the quantum harmonic oscillator in the Hamiltonian form. One may per-
form the Gaussian integration over the real field P(t), with the help of Eq. (2.22),
to obtain

29
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S[X ] =
∫

C
dt
[

1
2

Ẋ2 − ω
2
0

2
X2
]

. (3.3)

This is the Feynman Lagrangian action of the harmonic oscillator [32], written
on the closed time contour. It may be generalized for an arbitrary single-particle
potential V (X):

S[X ] =
∫

C
dt
[

1
2

Ẋ2 − V (X)

]
. (3.4)

One may split the X (t) field into two components, X+(t) and X−(t), residing on
the forward and backward branches of the contour. The Keldysh rotation for real
fields is conveniently defined as

X cl(t) = 1
2

[
X+(t) + X−(t)

]
; Xq(t) = 1

2

[
X+(t)− X−(t)

]
. (3.5)

In terms of these fields the action takes the form

S[X cl, Xq] =
∫ +∞

−∞
dt
[
−2Xq Ẍ cl − V

(
X cl + Xq)+ V

(
X cl − Xq)] , (3.6)

where the integration by parts was performed on the term Ẋq Ẋ cl. This is the
Keldysh form of the Feynman path integral. The omitted boundary terms provide
a convergence factor of the form ∼ i0(Xq)2.

If the fluctuations of the quantum component Xq(t) are regarded as small, one
may expand the potential to first order and find for the action

S[X cl, Xq] = −
∫ +∞

−∞
dt
[
2Xq (Ẍ cl + V ′(X cl)

)
+ O

[
(Xq)3]] , (3.7)

where V ′(X) = ∂V (X)/∂X . In this approximation the integration over the
quantum component, Xq, may be explicitly performed, leading to the functional
delta-function of the expression in the round brackets. This delta-function enforces
the classical Newtonian dynamics of X cl:

Ẍ cl = −V ′
(
X cl). (3.8)

This is the reason the symmetric (over the forward and backward branches) part of
the field is called the classical component. One should be careful with this name,
though. If the higher order terms in Xq are kept in the action, both Xq and X cl are
subject to quantum fluctuations.

Returning to the harmonic oscillator, V (X) = ω2
0 X2/2, one may rewrite its

Feynman–Keldysh action (3.3) in the matrix form

S[ /X ] = 1
2

∫ +∞

−∞
dt /XT D̂−1 /X , (3.9)
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where in analogy with the complex field, Eq. (2.51), we introduced

/X(t) =
(

X cl(t)
Xq(t)

)
; D̂−1 =

(
0 [D−1]A

[D−1]R [D−1]K

)
(3.10)

and the superscript T stands for matrix transposition. Here the retarded and
advanced components of the quadratic form in the action are given by
1
2 [D−1]R(A) = (i∂t±i0)2−ω2

0. As before, one should understand that this expression
is simply a continuous abbreviation for the large lower (upper) triangular matrices
with −δ−1

t along the main diagonal, 2δ−1
t − ω2

0δt along the lower (upper) sub-
diagonal and −δ−1

t along the second lower (upper) sub-diagonal. This makes the
D̂−1 matrix symmetric, since its [D−1]K component must be symmetric by con-
struction (its anti-symmetric part does not enter the action). In continuous notation
the Keldysh component [D−1]K is only a regularization. It is convenient to keep it
explicitly, since it suggests the way the matrix D̂−1 should be inverted to find the
Green function:

〈
Xα(t)Xβ(t ′)

〉
=
∫

D[ /X ] Xα(t)Xβ(t ′) e iS[ /X ] = iD̂αβ(t, t ′), (3.11)

where α,β = (cl, q) and the matrix inverse of Eq. (3.10) is given by

D̂αβ(t, t ′) =
(

DK(t, t ′) DR(t, t ′)
DA(t, t ′) 0

)
. (3.12)

To apply the rules of Gaussian integration for real variables (see Section 2.3), it is
crucial that the matrix D̂−1 is symmetric. In the Fourier representation components
of the equilibrium correlation matrix are given by

DR(A)(ε) = 1
2

1
(ε ± i0)2 − ω2

0

, (3.13a)

DK(ε) = coth
ε

2T

[
DR(ε)− DA(ε)

]
, (3.13b)

where we have assumed an equilibrium thermal distribution with zero chemical
potential. One way to check the consistency of the expression for the Keldysh com-
ponent is to express Xα through φ̄α and φα and employ the correlation functions
for the complex fields, derived in Chapter 2. The fact that the chemical potential of
a real field must be zero follows directly from the symmetry of DK(t, t ′) (making
DK(ε) an even function) and the identity DR(−ε) = DA(ε).

The normalization identity,
∫

D[ /X ] eiS[ /X ] = 1, is maintained in the following
way: (i) first, due to the structure of D̂−1 matrix, explained above, det[ 1

i D̂−1] =
−det[ 1

i D−1]R det[ 1
i D−1]A = (2/δt)

2N ; (ii) the integration measure is understood

as D[ /X ] = ∏N
j=1 2

(
dX cl

j /
√

2πδt

) (
dXq

j/
√

2πδt

)
(in comparison with Eq. (2.22)

there is an additional factor of 2, which originates from the Jacobian of the
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transformation (3.5), and factor δ−1
t at each time slice, coming from the integra-

tions over Pj = P(t j )). According to the real Gaussian identity (2.22) this leads
exactly to the proper normalization. One can also understand the normalization in
the way discussed after Eq. (2.52a), without resorting to the discrete representation.

3.2 Quantum particle in contact with an environment

Consider a quantum particle with coordinate X (t), placed in a potential V (X) and
brought into contact with a bath of harmonic oscillators. The bath oscillators are
labeled by an index s and their coordinates are denoted by ϕs . They possess a set
of frequencies ωs . The Keldysh action of such a system is given by the three terms
S = Sp + Sbath + Sint, where

Sp[X ] =
∫ +∞

−∞
dt
[
−2Xq Ẍ cl−V

(
X cl + Xq)+V

(
X cl − Xq)] , (3.14a)

Sbath[ϕs] = 1
2

∑

s

∫ +∞

−∞
dt /ϕ T

s D̂−1
s /ϕs, (3.14b)

Sint[X,ϕs] =
∑

s

gs

∫ +∞

−∞
dt /XT σ̂1 /ϕs, (3.14c)

where the symmetric quadratic form D̂−1
s is given by Eq. (3.10) with the frequency

ωs . The interaction term between the particle and the bath oscillators is taken as a
product of their coordinates,

∑
s gs

∫
C dt X (t)ϕs(t) = ∑

s gs
∫

dt (X+ϕ+
s −X−ϕ−s ).

Performing the Keldysh rotation according to Eq. (3.5), one arrives at Eq. (3.14c),
where σ̂1 is the first Pauli matrix in the Keldysh (cl, q) space. The corresponding
coupling constants are denoted by gs .

One may now integrate out the degrees of freedom of the bath to reduce the
problem to the particle coordinate only. Employing Eq. (2.22) for the Gaussian
integration over the real variables, one arrives at the so-called dissipative action for
the particle:

Sdiss = 1
2

∫∫ +∞

−∞
dt dt ′ /X T(t) D̂−1(t − t ′) X̂(t ′), (3.15a)

D̂−1(t − t ′) = −σ̂1

[
∑

s

g2
s D̂s(t − t ′)

]

σ̂1. (3.15b)

Straightforward matrix multiplication shows that the dissipative quadratic form
D̂−1 possesses the causality structure as, e.g., Eq. (3.10). For the Fourier transform
of its retarded (advanced) components, one finds
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[
D−1(ε)

]R(A) = −1
2

∑

s

g2
s

(ε ± i0)2 − ω2
s

=
∞∫

0

dω
2π

ωJ (ω)

ω2 − (ε ± i0)2
, (3.16)

where J (ω) = π
∑

s(g
2
s /ωs)δ(ω − ωs) is the bath spectral density.

We shall assume now that the spectral density behaves as J (ω) = 4γω, where
γ is a constant at small frequencies. This is the so-called Ohmic bath, which is
frequently found in more realistic models of the environment (see, e.g., Section
7.8). Substituting it into Eq. (3.16), one finds

[
D−1(ε)

]R(A) = 4γ
∫

dω
2π

ω2

ω2 − (ε ± i0)2
= const ± 2iγ ε, (3.17)

where the ε-independent real positive constant (the same for R and A components)
may be absorbed into the redefinition of the harmonic part of the particle’s potential
V (X) = const× X2 + · · · and, thus, may be omitted. If the bath is in equilibrium,
the Keldysh component of the correlator is set by FDT,

[
D−1(ε)

]K =
([

DR]−1 −
[
DA]−1

)
coth

ε

2 T
= 4iγ ε coth

ε

2 T
, (3.18)

where we assumed that the bath is at temperature T and, as explained after
Eqs. (3.13), the chemical potential of the real bath oscillators must be zero. Notice
that the validity of this expression does not rely on the particle being at equilib-
rium, but only the bath. The Keldysh component is an anti-Hermitian operator with
a positive-definite imaginary part, rendering convergence of the functional integral
over /X(t).

In the time representation the retarded (advanced) component of the correla-
tor takes a time-local form:

[
DR(A)

]−1 = ∓2γ δ(t − t ′) ∂t ′ . On the other hand,
the Keldysh component is a non-local function that may be found by the inverse
Fourier transform of Eq. (3.18):

[
D−1(t − t ′)

]K = 4iγ
[
(2T + C)δ(t − t ′)− πT 2

sinh2[πT (t − t ′)]

]
, (3.19)

where the infinite constant C = πT 2
∫

dt/ sinh2(πT t) serves to satisfy the con-
dition

∫
dt[D−1(t)]K = [D−1(ε = 0)]K = 8iγ T . Finally, one obtains for the

Keldysh action of the particle connected to the ohmic bath

S[ /X ] =
∫ +∞

−∞
dt
[
−2Xq (Ẍ cl + γ Ẋ cl)− V

(
X cl + Xq)+ V (X cl − Xq)

]

+ 2iγ
∫ +∞

−∞
dt

[

2T
(
Xq(t)

)2 + πT 2

2

∫ +∞

−∞
dt ′
(
Xq(t)− Xq(t ′)

)2

sinh2[πT (t − t ′)]

]

, (3.20)
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where the infinite constant C is absorbed into the two diagonal terms ∼
(
Xq(t)

)2.
This action satisfies all the causality criteria listed in Section 2.7. Notice that in the
present case the Keldysh q − q component is not just a regularization, but a finite
term, originating from the coupling to the bath and serving to limit fluctuations.
This term breaks the symmetry S[X cl,−Xq] = −S[X cl, Xq] present in the initial
action (3.14). Such a symmetry of the action is a direct consequence of the time
reversal symmetry of the problem. Thus the appearance of a finite q−q component
of the action is a manifestation of the breaking of the time-reversal symmetry.
The latter takes place due to integrating out the continuum of the bath degrees of
freedom.

The other manifestation of the bath is the presence of the friction term ∼ γ ∂t

in the R and the A components. In equilibrium the friction coefficient and fluctua-
tion amplitude are rigidly connected by the FDT. The quantum dissipative action,
Eq. (3.20), is a convenient playground to demonstrate various approximations and
connections to other approaches. We shall discuss it in detail in Chapter 4. If only
linear terms in Xq are kept in the action (3.20), the integration over Xq(t) results
in the functional delta-function, which enforces the following relation:

Ẍ cl = −V ′
(
X cl)− γ Ẋ cl. (3.21)

This is the classical Newtonian equation with the viscous friction force. Remark-
ably, we have obtained the Ẋ cl term in the equation of motion from the action
principle. It would not be possible, if not for the doubling of the number of fields
X cl and Xq. Indeed, in any action depending on X cl only, terms linear in the first
time derivative may be written as a full time derivative and integrated out, not
affecting the equation of motion.

3.3 From Matsubara to Keldysh

Most of the texts dealing with equilibrium systems at finite temperature employ
the Matsubara technique [11, 2, 4, 6]. This method is designed to treat the equi-
librium density matrix e−β Ĥ as the evolution operator. To this end one considers
an imaginary time quantum mechanics, with the imaginary time τ restricted to
the interval 0 ≤ τ < β. When calculating an expectation value of an observable
Ô(τ ), one evaluates a trace of the form 〈Ô〉 = Tr{Ô(τ )e−β Ĥ }. To this end one
divides the imaginary time interval [0,β] into N infinitesimal segments and inserts
the resolution of unity in the coherent state basis at each segment, similarly to our
procedure in Section 2.2. As a result, one ends up with fields, say with coordinate
X (τ ) which, in view of the fact that one evaluates the trace, obeys the periodic
boundary conditions X (0) = X (β). In the Fourier representation it is represented
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by a discrete set of components Xm =
∫ β

0 dτ X (τ ) eiεmτ , where εm = 2πmT is a
set of Matsubara frequencies and m is an integer.

We shall discuss now how to convert an action written with the Matsubara tech-
nique into the Keldysh representation. This may be useful, if one wishes to extend
treatment of the problem to non-equilibrium or time-dependent conditions. As an
example consider the following bosonic Matsubara action:

S[Xm] = i
2
γ T

∞∑

m=−∞
|εm ||Xm |2. (3.22)

Due to the absolute value sign |εm | )= i∂τ . In fact, in the imaginary time rep-
resentation the kernel Km = |εm | acquires the form K (τ ) = ∑

m |εm |e−iεmτ =
Cδ(τ ) − πT sin−2(πT τ ), where the infinite constant C is chosen to satisfy∫ β

0 dτK (τ ) = K0 = 0. As a result, in the imaginary time representation the action
(3.22) obtains the following non-local form:

S[X ] = i
2
γ T

∫∫ β

0
dτ dτ ′X (τ ) K (τ − τ ′) X (τ ′)

= i
4π

γ

∫∫ β

0
dτ dτ ′

π2T 2

sin2[πT (τ − τ ′)]
(
X (τ )− X (τ ′)

)2
. (3.23)

This action is frequently named after Caldeira and Leggett [33], who used it to
investigate the influence of dissipation on quantum tunneling.

To transform to the Keldysh representation one proceeds along the following
steps: (i) double the number of degrees of freedom, correspondingly doubling the
action, X → /X = (X cl, Xq)T and consider the latter as functions of the real time
t or real frequency ε ; (ii) according to the causality structure, Section 2.7, the
general form of the quadratic time translationally invariant Keldysh action is:

S
[ /X
]

= γ

∫
dε
2π

(
X cl
ε , Xq

ε

) ( 0 K A(ε)

K R(ε) K K(ε)

)(
X cl
ε

Xq
ε

)
; (3.24)

(iii) the retarded (advanced) component K R(A)(ε) is the analytic continuation
of the Matsubara correlator K (εm) = |εm| from the upper (lower) half-plane
of the complex variable εm to the real axis: ∓iεm → ε, see [2]. As a result,
K R(A)(ε) = ±iε ; (iv) in equilibrium the Keldysh component follows from FDT:
K K(ε) =

(
K R(ε) − K A(ε)

)
coth (ε/2 T ) = 2iε coth (ε/2 T ), see Eqs. (3.17) and

(3.18). We found thus that γ K̂ (ε) = 1
2 D̂−1(ε) and therefore the Keldysh counter-

part of the Matsubara action, Eq. (3.22) or (3.23), is the already familiar dissipative
action (3.20) (without the potential and inertial terms, of course). One may now
include external fields and allow the system to deviate from equilibrium.
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3.4 Quantum tunneling in a time-dependent potential

We shall discuss here the quasi-classical description of quantum mechanical tun-
neling. The quasi-classical approach originates from evaluating the Feynman path
integral in the stationary path approximation. Taking the variation of the Feynman
action, one arrives at the classical Newtonian equation of motion. At first glance
the latter fails to describe motion in the classically forbidden under-barrier region.
Let us look at it more closely, however. In particular, for a particle with unit mass
and energy E = P2/2 + V (X) one finds

P(t) = dX
dt

=
√

2(E − V (X)). (3.25)

Integrating this equation, one finds for the time t needed to reach infinity starting
from a point X ,

t (X) =
∫ ∞

X

dX ′√
2(E − V (X ′))

. (3.26)

As long as X > X2, such that E > V (X), the corresponding time is real, see
Fig. 3.1. For X1 < X < X2, where E < V (X), the time changes along the
imaginary direction. Finally for X < X1 the time is complex, t+iτ0, with a constant
imaginary part τ0 =

∫ X2
X1

dX/
√

2(V (X)− E). Therefore for a tunneling trajectory,
with X going from negative to positive infinity, the time evolves along the C+

contour depicted in Fig. 3.2.
If one wants the tunneling trajectory to be a solution of the stationary path equa-

tion, one has to consider the evolution operator along the contour C+ in the complex
time plane, see Fig. 3.2. The semiclassical approximation for the tunneling ampli-
tude is given by the exponentiated action along the C+ contour. To calculate the
tunneling probability one has to supplement the latter with the conjugated back-
ward contour C−, see Fig. 3.2. Actually, the locations in time of the vertical parts

E

XX1 X2

x0

Fig. 3.1 Tunneling potential V (X) and classical turning points X1 and X2. Time
goes in the imaginary direction for X1 < X < X2. The dashed lines show a small
time-dependent part of the potential, Eq. (3.29).
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t

t0 − iτ0

t0 + iτ0

C+

C−

z 0
+

z 1
+ z 1

−

z0
−

t0

Fig. 3.2 The time contour for semiclassical evaluation of the tunneling probabil-
ity. The poles at t = z±

n appear upon perturbative treatment of a time-dependent
potential. After deforming the contour (dotted lines) only the poles at z−0 and z−1
contribute to the action.

of the contour are not necessarily the same on the forward and backward branches.
This freedom is important for the treatment of multiple tunneling events. Since our
immediate goal is to find the probability of a single tunneling event, we can restrict
ourselves to the particular contour drawn in Fig. 3.2.

With exponential accuracy the tunneling probability for a particle with energy E
is given by

P(E) ∼ e i
∫
C++C− dt

[
1
2 Ẋ2−V (X)+E

]

, (3.27)

where X (t) is a solution of the classical equation of motion Ẍ = −V ′(X) along
the contour. The last term in the action,

∫
dt E = E(tf − ti), where tf is the final

point on C− and ti is the initial point on C+, serves to fix the energy of the particle.
Indeed, demanding stationarity with respect to variations over tf,i and using [34]
δS/δtf,i = ∓H , one finds that the energy is fixed on both branches of the contour
Ẋ2/2 + V (X) = E . An alternative way of looking at this term is to view it as
Fourier transform from the time to the energy representation.

It is easy to see that the action along the horizontal parts of the contour sums up
to zero. Indeed, the action of the backward branch cancels exactly that of the for-
ward one. It is therefore the action along the two vertical segments which remains.
With the help of the classical equation of motion (3.25) the latter is given by

iS0 = i
∫ −iτ0

iτ0

dt Ẋ2 = 2i
∫ X2

X1

dX Ẋ = −2
∫ X2

X1

dX
√

2(V (X)− E). (3.28)

For the tunneling probability one finds P(E) ∼ eiS0 . This is the well-known WKB
result [35], which is in fact obtained by the usual trick [35] of considering the
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imaginary time Schrödinger equation (indeed, the horizontal parts of the contour
were inconsequential so far).

However, doing the problem the way presented above allows one to consider
tunneling in the presence of a time-dependent potential [36]. To be specific, let us
consider a potential of the form

V (X, t) = −1
2
ω2

0 X2 + ε x2
0

X2 + x2
0

cos3 t, (3.29)

which consists of a parabolic barrier, along with the localized time-dependent
potential, oscillating with a frequency 3. We shall assume that the amplitude of
the latter is small and consider a correction to the action linear in ε. To this end we
need to find a semi-classical tunneling trajectory X (t) of the unperturbed potential
and substitute it into the time-dependent part of the action:

iS1 = −iε x2
0

∫

C++C−
dt

cos3 t
X2(t) + x2

0

. (3.30)

The tunneling trajectory of the particle with energy E < 0 in the unperturbed
potential −ω2

0 X2/2 is given by

X (t) = X2 cosh
(
ω0(t − t0)

)
, X2 =

√
−2E/ω0. (3.31)

At time t = −∞ + iτ0 the particle starts at X = −∞ and reaches the point
X1 = −X2 at time t = t0 + iτ0. Then it spends an imaginary time iτ0 = iπ/ω0

under the barrier where X (t0 + iτ ) = X2 cosω0τ and finally continues to move in
real time from X = X2 towards X =∞. The integral in Eq. (3.30) has poles in the
complex time plane at t = z±

n , where z±
n = t0 ±ω−1

0 arcsinh(x0/X2)+ iτ0(1/2−n)

and n is an integer. Two of these poles are located inside the contour, z−0 and z−1 , see
Fig. 3.2. Deforming the contour to run around the poles and evaluating the integral
in Eq. (3.30) with the help of the residue theorem, one finds

iS1 = 2 ετ0 cosα
√

(X2/x0)2 + 1
cosh

3τ0

2
, (3.32)

where α = 3 t0 − (3/ω0) arcsinh(x0/X2). The tunneling probability is given by
P(E) ∼ eiS0+i S1 , where in the present case iS0 = 2Eτ0 = 2πE/ω0 (remember that
E < 0). The correction iS1 has a random sign, dictated by cosα, which depends
on t0 – the free parameter of the tunneling trajectory (3.31). One should now fix t0
by maximizing the tunneling probability, i.e. demanding cosα = 1. This way one
obtains for the tunneling probability in the presence of the oscillating field

P(E) ∼ e−2|E |τ0 exp

{
2 ετ0√

(X2/x0)2 + 1
cosh

3τ0

2

}

. (3.33)
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Therefore the tunneling probability is exponentially enhanced! The most surprising
feature of this result is that at high frequency 3τ0 3 1 the enhancement parameter
is itself exponentially large∼ ετ0e3τ0/2 [36]. This does not mean that a weak high-
frequency field can make the barrier completely transparent. It rather means that
there is a surprisingly small scale of the ac modulation amplitude ε ∼ ω0e−3τ0/2,
beyond which the linear correction to the action is not sufficient.

To understand this behavior qualitatively, consider absorption of n quanta of
energy 3. It elevates the energy of an incoming particle to E + 3n and there-
fore changes its tunneling action to iS0(E + 3n) ≈ iS0 + 2τ03n, since quite
generally ∂(iS0)/∂E = 2τ0, where τ0 is the (imaginary) time the particle spends
under the barrier. The amplitude of the n-quanta absorption process may be esti-
mated as (ε/3)n/n!. As a result, the probability of tunneling upon absorption of
n quanta from the ac field is eiS0+2τ03n(ε/3n)2n . Optimizing over n one finds
iS1 ∼ (ε/3)e3τ0 , similarly to what we have found above. The difference from
the actual result, Eq. (3.33), originates in the overestimated absorption amplitude
(the actual one is probably reduced by another factor of n!). This consideration
shows that the results are applicable as long as 34 |E |.

3.5 Dissipative quantum tunneling

Consider a particle with unit mass moving in a potential

V (X) = V0

[

δ

(
X
a

)2

−
(

X
a

)3
]

, (3.34)

where δ is a dimensionless bifurcation parameter, which governs the shape of the
potential. For δ > 0 the potential exhibits a meta-stable minimum at X = 0, see
Fig. 3.3(a). If V0 3 δ/a2 one may disregard energy quantization in the meta-
stable well and consider escape of the particle with zero energy, E = 0, initially
trapped in the meta-stable minimum. The semiclassical escape trajectory according
to Eq. (3.26) is given by

X (t) = δa

cos2 ω0(t−t0)
2

, (3.35)

where ω0 =
√

2V0δ/a2. The contour C+, see Fig. 3.3(b), proceeds along t + iτ0,
where t ∈ ] − ∞, t0], then goes along the imaginary axis from t = t0 + iτ0 to
t = t0 and finally goes along the real-time axis from t = t0 to t = t0 + π/ω0, see
Fig. 3.3(b). In the coordinate space the three pieces of the C+ contour correspond
to: (i) the particle staying at X = 0; (ii) the particle moving under the barrier, where
X (t0 + iτ ) = δa/ cosh2(ω0τ/2); (iii) the classical motion from the “resurfacing”
point X = δa towards X = ∞. The imaginary time spent under the barrier is
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t

t0 −i∞

t0 + i∞

δa

V(X)

0

X2 X

C−

C
(a)

t0

t0 − π/ω0

+
(b)

Fig. 3.3 (a) Potential (3.34) with the meta-stable minimum at X = 0. If a particle
loses energy by exciting the bath, the tunneling trajectory is plotted schematically
by the dashed line, with the “resurfacing” point X2. (b) Contour in the complex
time plane. The particle reaches X = +∞ at t = t0 + π/ω0. There is an infinite
set of poles of Eq. (3.35) at t = t0 − π(1 + 2n)/ω0.

infinite in the present case, τ0 = ∞. The presence of the poles on the real axis in
Eq. (3.35) is an artefact of the too-steep potential drop at X > δa, allowing the
particle to reach X = ∞ in a finite time. According to Eq. (3.28), the under the
barrier action is given by

iS0 = −2
∫ δa

0
dX
√

2V (X) = − 8
15

√
2V0 a δ5/2. (3.36)

As long as |iS0|3 1, the escape rate from the meta-stable well is W ∝ ω0eiS0 .
We now consider how the coupling to the ohmic bath affects the tunneling escape

rate. In this paragraph we restrict ourselves to the purely quantum, i.e. zero tem-
perature scenario, T = 0 (the high-temperature case is discussed in Chapter 4).
Since all the bath oscillators are in their ground states, they cannot transfer energy
to the particle. Therefore one does not expect any activation-like acceleration of
the escape. On the other hand, the particle is very far from its ground state and
may excite the bath oscillators during its escape. Such processes lead to the par-
ticle losing its energy and “sinking” deeper into the barrier, see Fig. 3.3(a). As a
result, one expects that the particle emerges from under the barrier somewhere at
X = X2 > δa (in fact, we’ll see that in the limit of very strong coupling to the bath
there is a universal result for such a “resurfacing” point X2 = 4

3δa). At X > X2

the particle moves in real time, its action is real and cancels between the forward
and backward branches of the contour. The finite imaginary part of the action is
accumulated during the motion along the imaginary time direction t = iτ . Taking
the limit T → 0 in Eq. (3.23), one finds for the imaginary time action

S[X ] = i
∫

dτ

{
1
2

(∂τ X)2 + V (X) + γ

4π

∫
dτ ′

(
X (t0 + iτ )− X (t0 + iτ ′)

)2

(τ − τ ′)2

}

.

(3.37)
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Variation of this action with respect to X (t0+iτ ) leads to the semiclassical equation
for under the barrier motion:

∂ 2
τ X = V ′(X) + γ

π
−
∫

dτ ′
X (t0 + iτ )− X (t0 + iτ ′)

(τ − τ ′)2
, (3.38)

where the integral is understood as a principal value. A general solution of this
equation is not known. In the limit of weak dissipation, γ 4 ω0, one may find a
correction to the tunneling action using perturbation theory. To this end one needs
to substitute the imaginary time tunneling trajectory X (t0+iτ ), given by Eq. (3.35),
into the last term in Eq. (3.37). This way one finds for the small dissipative correc-
tion to the bare tunneling action (3.36) that iδSdiss = −(12ζ(3)/π3)γ a2δ2.1 Notice
that this correction, being smaller than the bare tunneling action (3.36), may still
result in the exponential suppression of the tunneling rate by the dissipation.

As was first realized by Caldeira and Leggett [33], one may also find a solution
of Eq. (3.38) in the opposite limit of strong dissipation γ 3 ω0. In this case the
inertia term ∂2

τ X on the left hand side of the equation of motion (3.38) may be
neglected. One can check then by direct substitution that the following trajectory
is indeed the desired solution:2

X (t) =
4
3 δa

1− ω2
1(t − t0)2

, (3.39)

where t = t0 + iτ and ω1 = 2V0δ/(γ a2) = ω2
0/γ . At t = t0 + i∞ it starts in

the meta-stable minimum X = 0 and reaches X2 = 4δa/3 at t = t0 + i0. Here the
particle emerges from under the barrier and continues its motion in real time. The
action (3.37) on this trajectory is given by (the inertia term (∂τ X)2/2 is neglected)

iSdiss = −2π
9
γ a2δ2. (3.40)

1 The calculations are easier in the Fourier representation, where the T = 0 Matsubara components of the
trajectory (3.35) are given by Xm = 4πδaω−2

0 εm/ sinh(πεm/ω0). Employing the dissipative action in the
form of Eq. (3.22) and substituting summation by integration, one finds

iδSdiss = −(γ /2)(4πδaω−2
0 )2

∫
(dε/2π)ε3/ sinh2(πε/ω0) = −(12ζ(3)/π3)γ a2δ2.

2 Indeed, putting t0 = 0 for simplicity,

−
∫

dτ ′
X (iτ )−X (iτ ′)

(τ − τ ′)2 = 4
3
δaω1−

∫
dz′

(z′−z)2

[
1

1+z2 −
1

1+z′2

]
= 4

3
δaω1

1 + z2 Re
∫

dz′

z′−z−i0
z′ + z

1+z′2
,

where z = ω1τ . Evaluating the integral with the help of the residue theorem, one finds

4π
3

δaω1

1+(ω1τ )2 Re
i+ω1τ

i−ω1τ
= 4π

3
δaω1

(ω1τ )
2 − 1

[1+(ω1τ )2]2 = −πV0
γ

[
2δX (τ )

a2 − 3X2(τ )

a3

]

= −π
γ

V ′(X).
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Notice that Sdiss/S0 ∼ γ /ω0 3 1 in the limit of strong dissipation. As a result,
the coupling to the bath leads to the exponential suppression of the escape rate
W ∼ eiSdiss . Remarkably, the scaling of the action with the bifurcation parameter
changes from δ5/2 to δ2. One expects that the Caldeira–Leggett scaling, δ2, always
wins in the immediate vicinity of the bifurcation point, i.e. for δ 4 1. Indeed,
since ω0 ∼ δ1/2, for δ 4 1 the dissipation is always strong, i.e. ω0 4 γ . It may
seem paradoxical that the escape rate is independent of the barrier height V0 (as
long as δ/a2 < V0 < γ 2a2/δ, where the left inequality is needed to disregard level
quantization in the meta-stable well and the right one is ω0 4 γ ). In fact, taking
the inertia term (∂τ X)2/2 in Eq. (3.37) as a perturbation, i.e. substituting in it the
inertia-less solution (3.39), one finds a correction to the action (3.40) iδSinert =
−4πV0δ

3/(9γ ). Although smaller than the dissipative action (3.40), this correction
still leads to the exponential dependence of the tunneling rate on V0.

One may notice that the real-time Caldeira–Leggett solution (3.39) does not sat-
isfy Newton’s equation with viscous friction, Eq. (3.21). This is because during the
imaginary-time part of the trajectory the particle has excited the bath oscillators.
The latter also continue to evolve in real time, exerting an additional force on the
particle. As discussed in Section 3.3, the real-time counterpart of the dissipative
action (3.37) is the Keldysh action (3.20). The corresponding semiclassical equa-
tion of motion is given by Eq. (3.21). Combining Eqs. (3.21) and (3.38), one finds
the equation of motion for X (t) on the real-time part of the contour, Fig. 3.3b,

Ẍ = −V ′(X)− γ Ẋ − γ
π

∫
dτ

X (t0 + iτ )
(t − t0 − iτ )2

, (3.41)

where the τ -integration runs along the vertical part of the contour in Fig. 3.3b. It
is easy to check that, neglecting the inertia term Ẍ , the Caldeira–Leggett solution
(3.39) satisfies this equation too. Therefore the trajectory (3.39) solves the semi-
classical equations of motion along the entire contour! Notice that the tunneling
event completed at t = t0 exerts a slowly decaying ∼ (t − t0)−2 (for t − t0 3 ω−1

1 )
force, altering the subsequent motion of the particle in real time. This fact may
qualitatively change the picture of tunneling between two resonant wells, where
multiple tunneling events are important. We shall not develop this theory here,
referring the reader to a review [37].

One can use now the analytic form of the tunneling trajectories, Eqs. (3.35)
and (3.39), to investigate the influence of an external time-dependent signal on the
escape rates. To this end let us consider a weak spatially uniform oscillatory force
by adding the following term to the potential (3.34):

V (X, t) = ε
X
a

e νt cos3 t, (3.42)
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where ν is an infinitesimal energy scale, which describes an adiabatic switching
on of the external time-dependent force. To the first order in ε the change in the
tunneling action is evaluated by substituting the trajectory (3.35) or (3.39) into the
action S1 = −i

∫
C++C−dt V (X (t), t). Due to the factor e νt (omitted from now on)

the t = −∞ part of the contour does not contribute to the action. Deforming the
contour, one finds that the integral is reduced to the contribution of the poles of the
X (t) function along the t < t0 part of the real-time axis. For the bare tunneling
trajectory, Eq. (3.35), the relevant poles are at t = zn = t0− (π + 2πn)/ω0, where
n = 0, 1, . . .. Summing over all of them and maximizing over the free parameter
t0, one finds [36]

iS1 = ε3

ω2
0

4πδ
sin(π3/ω0)

. (3.43)

For 3 = ω0, 2ω0, . . . the external field is in resonance with the small oscillations
in the meta-stable minimum and the linear response approach fails. In the limit
3→ 0 one finds iS1 = 4δε/ω0. This may be directly obtained from Eq. (3.36) by
changing δ2 to δ2− 3ε/V0. Indeed, the potential (3.34) is equivalent, up to a trivial
shift, to V (X) = V0[δ2 X/3a− (X/a)3]. Therefore, adding to it a static linear term
−εX/a leads to the aforementioned redefinition of δ2.

For the case of strong dissipation the only relevant pole of the trajectory (3.39)
is at t = t0 − 1/ω1, which leads to the following correction to the action:

iS1 = 4π
3
εδ

ω1
= 2π

9
γ a2 3ε

V0
. (3.44)

This is nothing but the adiabatic change of the time-independent result (3.40) by
the static reduction of δ2 → δ2 − 3ε/V0. Therefore for not too large frequencies
the effect of the ac force on the overdamped tunneling decay is the same as the dc
one. At higher frequencies the fact that the −X3 tail of the potential must flatten
somewhere becomes important. In this case the particle does not reach infinity in
a finite time. This fact translates into the splitting of the poles and moving them
away from the real axis by a small imaginary time iτs ∼ ia/

√
V0. Similarly to

Section 3.4, it leads to the exponential enhancement of the ac correction at very
high frequencies iS1 ∝ εe3τs [36].
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Classical stochastic systems

This chapter is devoted to the classical limit of the quantum dissipative action
obtained in Chapter 3. We show how it yields Langevin, Fokker–Planck and
optimal path descriptions of classical stochastic systems. These approaches are
used to discuss activation escape, fluctuation relation, reaction models and other
examples.

4.1 Classical dissipative action

In Section 3.2 we derived the Keldysh action for a quantum particle coupled to
an Ohmic environment, Eq. (3.20). If only linear terms in the quantum coordinate
Xq(t) are kept in this action, it leads to a classical Newtonian equation with a
viscous friction force, Eq. (3.21). Such an approximation completely disregards
any fluctuations: both quantum and classical. Our goal now is to do better than that
and to keep classical thermal fluctuations, while still neglecting quantum effects.

To this end it is convenient to restore the Planck constant ! in the action and
then take the limit ! → 0. For dimensional reasons, the factor !−1 should stay in
front of the entire action. To keep the part of the action responsible for the classical
equation of motion (3.21) free from the Planck constant it is convenient to rescale
the quantum component as Xq → !Xq. Indeed, when this is done all terms linear
in Xq do not contain !. Finally, to have the temperature in energy units, one needs
to substitute T with T/!. As a result, the term ∼ γ T (Xq(t))2 does not contain
the Planck constant either. The limit !→ 0 is now straightforward: (i) one has to
expand ∓V (X cl ± !Xq) to first order in !Xq and neglect all higher order terms;
(ii) in the last non-local term in Eq. (3.20) the ! → 0 limit is taken with the help
of the identity

πT 2/(2!)

sinh2(πT (t − t ′)/!)

!→0−→ T δ(t − t ′). (4.1)

44
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Consequently the non-local term becomes local and drops out in the !→ 0 limit.
Finally, the classical limit of the dissipative action (3.20) is

S[ /X ] =
+∞∫

−∞

dt
{
−2Xq [Ẍ cl + γ Ẋ cl + V ′

(
X cl)]+ 4iγ T

(
Xq)2

}
. (4.2)

Notice that this action is local in time. Also, despite its name, the quantum
component Xq still has a role to play in the classical setting.

Physically the limit !→ 0 means that !γ and !34 T , where 3 is a character-
istic frequency of the particle’s classical motion. These conditions are sufficient
for us to neglect both the time non-local term and the higher order expansion
of V (X cl ± !Xq) in Eq. (3.20). Correspondingly, an alternative way to look at
the classical expression (4.2) is to view it as a high-temperature limit of the full
quantum action (3.20). On the technical level it amounts to substituting coth ε/(2T )

by 2T/ε in, e.g., Eq. (3.24). In this chapter we consider some implications of the
classical dissipative action (4.2) as well as some of its generalizations.

4.2 Langevin equation

One way to proceed with the classical action (4.2) is to notice that the exponent of
its last term (times i) may be rewritten in the following way:

e−4γ T
∫

dt
(

Xq(t)
)2

=
∫

D[ξ(t)] e−
∫

dt
[

1
4γ T ξ

2(t)−2iξ(t)Xq(t)
]

. (4.3)

This identity is called the Hubbard–Stratonovich transformation, where ξ(t) is
an auxiliary Hubbard–Stratonovich field. With the integration measure D[ξ(t)]
normalized such that

∫
D[ξ(t)] e−

∫
dt ξ2/4γ T = 1, the identity (4.3) is an immediate

consequence of the real Gaussian integral (2.22).
Any observable O[X cl] formulated in terms of the classical coordinate (possibly

taken in more than one instance of time) may be written as (recall that Z = 1 and
thus no normalization factor is needed)

〈O[X cl]〉 =
∫

D[X cl, Xq]O[X cl] eiS[ /X ]

=
∫

D[ξ ] e−
1

4γ T

∫
dt ξ2
∫

D[X cl]O[X cl]
∫

D[Xq] e−2i
∫
dt Xq(Ẍcl+γ Ẋcl+V ′(Xcl)−ξ)

=
∫

D[ξ ] e−
1

4γ T

∫
dt ξ2
∫

D[X cl]O[X cl] δ
(
Ẍ cl + γ Ẋ cl + V ′(X cl)− ξ

)
,

(4.4)

where the last line includes the functional delta-function of the expression in the
round brackets. This functional delta-function enforces its argument to be zero at
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every moment of time. Therefore, among all possible trajectories X cl(t) only those
contribute to the observable that satisfy

Ẍ cl = −γ Ẋ cl − V ′(X cl) + ξ(t). (4.5)

This is the Newton equation with a friction force −γ Ẋ and a time-dependent
external force ξ(t), known also as the Langevin equation.

Equation (4.4) implies the following strategy for finding the expectation value
〈O[X cl]〉: (i) choose a particular realization of the force ξ(t); (ii) solve Eq. (4.5)
(e.g. numerically); (iii) having its solution, X cl(t), calculate the observable O[X cl];
(iv) average the result over an ensemble of realizations of the random force ξ(t)
with the Gaussian weight exp{−

∫
dt ξ 2(t)/4γ T }. The Gaussian statistics of the

random force ξ(t) means that only its first and second irreducible moments must
be specified. In our example 〈ξ(t)〉 = 0 (if the first moment is not zero, it may
always be viewed as a part of the deterministic force −V ′). This means that the
Langevin equation (4.5) must be supplemented only with the second moment of
the random force, given by

〈ξ(t)ξ(t ′)〉 =
∫

D[ξ ] ξ(t)ξ(t ′) e−
1

4γ T

∫
dt ξ2 = 2γ T δ(t − t ′), (4.6)

where we employed the Wick theorem, Eq. (2.23). Since in the frequency
representation the right hand side of this equation is a constant, the corresponding
random force is often referred to as a white noise. It originates from the classical
thermal fluctuations of bath oscillators. The fact that the noise amplitude is propor-
tional to the friction coefficient, γ , and temperature T is a manifestation of FDT in
its classical limit (i.e. coth ε/2T → 2T/ε). The latter holds because we assumed
the bath to be in thermal equilibrium.

4.3 Multiplicative noise and Martin–Siggia–Rose method

The Langevin equation (4.5) with the white noise force (4.6) provides a convenient
way for a numerical treatment of the classical dissipative action (4.2). It is not very
useful, though, for analytical approaches. In fact, many problems may be initially
formulated as Langevin equations with certain random forces and one would like to
have a way to convert them into a proper classical action. Such a procedure, which
is in essence an inversion of what was done in the previous section, was formulated
by Martin, Siggia and Rose (MSR) [30]. It is presented here in the form suggested
by DeDominicis [31] and Janssen [38].

Consider a Langevin equation

Ẋ = A(X) + b(X)ξ(t). (4.7)
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We have restricted ourselves to the first order differential operator ∂t . It may be
viewed as an overdamped limit (i.e. γ 3 3, where 3 is a characteristic classical
frequency) of the Newton equation (4.5). We shall generalize, however, Eq. (4.7)
to more than one variable. This will allow us to treat an arbitrary order operator
by representing it as a higher dimensional first order one (see below). The most
important difference between Eqs. (4.7) and (4.5) is the fact that the noisy force
ξ(t) is modulated in a coordinate-dependent way. This is achieved by multiplying it
by a coordinate-dependent function b(X), hence the name multiplicative noise. The
Gaussian white noise ξ(t) is fully specified by its second moment, which without
loss of generality may be normalized as

〈ξ(t)ξ(t ′)〉 = 2δ(t − t ′). (4.8)

In fact the multiplicative Langevin equation (4.7) is ill-defined unless the
regularization of the differential operator is explicitly specified. We shall choose
such a regularization in a way to be consistent with the field theoretical treatment
of the previous chapters. To this end consider the “partition function”

Z [ξ ] =
∫

D[X (t)]J [X ] δ
(
∂t X − A(X)− b(X)ξ

)
≡ 1. (4.9)

It is identically equal to unity by virtue of the integration of the delta-function,
provided J [X ] is the Jacobian of the operator N̂ [X ] = ∂t X − A(X)− b(X)ξ . The
way to interpret Eq. (4.9) is to discretize the time axis, introducing N -dimensional
vectors X j = X (t j ) and ξ j = ξ(t j ), where j = 1, . . . , N . The operator takes
the form N j = N (0)

j + N (1)
jl Xl + 1

2N
(2)
jlk Xl Xk + · · · , where summation is under-

stood over repeated indices. The Jacobian J [X ] in the partition function (4.9) is
given by the absolute value of the determinant of the following N × N matrix:
J jl ≡ ∂N j/∂Xl =N (1)

jl +N (2)
jlk Xk +· · · . It is possible to choose a proper (retarded)

regularization, where J jl is the lower triangular matrix with unit main diagonal
(coming entirely from the N (1)

j j = 1 term). Clearly, in this case J = 1. To this end
let us choose the discrete version of the operator as

N j = X j − X j−1 − δt
[
A(X j−1) + b(X j−1)ξ j−1

]
. (4.10)

Clearly, in this case J j j = 1 and J j, j−1 = −1 − δt [A′(X j−1) + b′(X j−1)ξ j−1],
while all other matrix elements J jl = 0. As a result J [X ] = 1 for any realization
X j and ξ j . The regularization (4.10) of the differential operator (4.7) is retarded
since the right hand side of Eq. (4.7) is always taken in the “preceding” moment
of time j − 1. Such an understanding of the Langevin equation (4.7) is called
Ito regularization [39, 40] and it is the most convenient one for field-theoretical
treatment.
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Although the partition function (4.9) is trivial, it is clear that all meaningful
observables and correlation functions may be obtained by inserting a factor O[X ]
in the functional integral (4.9). Having this in mind along with the fact that
J [X ] = 1 due to Ito regularization, let us proceed with the partition function.
Employing the integral representation of the delta-function with the help of an
auxiliary field Xq(t), one obtains:

Z [ξ ] =
∫

D[X ]
∫

D[Xq] e−2i
∫

dt Xq(t)
(
∂R

t X−A(X)−b(X)ξ(t)
)
, (4.11)

where ∂R
t stays for the retarded (Ito) regularization of the operator. One may

average now the partition function over the white noise, Eq. (4.8), by performing
the Gaussian integration over ξ(t):

Z =
∫

D[ξ ] e−
1
4
∫
dt ξ2

Z [ξ ] =
∫

D[X, Xq] e
∫
dt
[
−2i Xq

(
∂R

t X−A(X)
)
−4(Xq)2 D(X)

]

,

(4.12)

where D(X) ≡ b2(X) ≥ 0. The exponent on the right hand side is (i times) the
MSR action for the Ito–Langevin process (4.7), (4.8). The main difference from
the classical limit of the Keldysh action (4.2) is the X -dependent coefficient D(X)

in the Keldysh component ∼ (Xq)2. It clearly originates from the multiplicative
nature of the noise term. Notice also that the retarded derivative ∼ Xq∂R

t X has a
correct regularization of the lower triangular matrix with the unit main diagonal.
This shows that taking Ito regularization (4.10) of the Langevin process (4.7), is
indeed crucial to establishing correspondence with the Keldysh formalism. Let us
reiterate thus the discrete form of the MSR action:

S[ /X ]=
N∑

j=1

[
−2Xq

j

(
X j − X j−1 − δt A(X j−1)

)
+ 4iδt(Xq

j )
2 D(X j−1)

]
, (4.13)

which appears to be normally ordered (in a sense that the auxiliary variable Xq

is taken one time step ahead of the physical variable X , apart from the diagonal
term −2Xq

j X j ). The MSR method provides a way to go from a classical stochastic
problem to its proper functional representation. The latter is useful for analytical
analysis. Some examples are discussed below.

One can generalize the above consideration for an M-component vector variable
Xα(t), where α = 1, . . . ,M . The corresponding Ito–Langevin process reads as

Ẋα = Aα(X) + bαβ(X)ξβ(t); (4.14)

〈ξβ(t)ξγ (t ′)〉 = 2δβγ δ(t − t ′), (4.15)

where summation over repeated indices is understood. Introducing the correspond-
ing vector of auxiliary fields Xq

α, one obtains the following MSR action (in the
continuous notation)
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S[ /X ]=
∫

dt
[
−2Xq

α

(
Ẋα − Aα(X)

)
+ 4iXq

αXq
βDαβ(X)

]
, (4.16)

where Dαβ(X) = ∑M
γ=1 bαγ (X) bβγ (X) is a symmetric non-negative-definite

matrix.1

As an example consider the second order Langevin equation (4.5). Renaming
the variables as X1 = X cl and X2 = Ẋ cl, Eq. (4.5) may be brought to the form of
Eq. (4.14) with A1(X) = X2, A2(X) = −γ X2−V ′(X1) and b22 =√γ T , while all
other components of bαβ are zero. One may then write the MSR action (4.16) and
notice that Xq

1 enters the action only linearly. Integrating over Xq
1 one thus obtains

δ(Ẋ1 − X2), which allows one now to perform integration over X2. The resulting
action written in terms of X1 = X cl and Xq

2 = Xq is exactly the classical dissipative
action (4.2). This illustrates that considering the first order Langevin equations
is not a real limitation. It also shows that, since the equation Ẋ1 = X2 should be
understood in the Ito way, i.e. X1, j − X1, j−1 = δt X2, j−1, the proper regularization
of Eq. (4.5) is X j − 2X j−1 + X j−2 = − δtγ (X j−1− X j−2)− δ2

t V ′(X j−2). That is,
the corresponding quadratic action again has a lower triangular structure with unit
diagonal.

4.4 Optimal path approximation

For some applications (most notably associated with rare events) the functional
integral in Eq. (4.12) may be evaluated in the stationary path approximation. The
corresponding equations are obtained by the variation of the action with respect to
Xq(t) and X (t) and have the form

Ẋ = A(X) + 4iXq D(X), (4.17)

iẊq = −iXq A′(X) + 2(Xq)2 D′(X).

One possible solution of these equations is Xq = 0, while Ẋ = A(X). Clearly
this solution corresponds to the noiseless evolution of X (t). Such a noiseless
trajectory is by no means the only solution of the stationary path equations (4.17).
There are other solutions, which ought to be considered. Since X (t) as well
as A(X) and D(X) are all real, one expects that stationary trajectories of the
variable Xq are purely imaginary. This does not contradict, of course, the fact
that D[Xq] = ∏

j dXq
j integrations run along the real axis. What we observed is

that the stationary points are located away from the initial integration contour and

1 Indeed, the eigenvalue equation is Dαβ sβ = bαγ bβγ sβ = λsα . Multiplying by sα one finds λ =
(bβγ sβ )2/(sα)2 ≥ 0. The zero eigenvalue is possible if the matrix bαβ possesses a left zero mode, i.e. if
sαbαβ = 0.
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therefore the latter must be deformed in the complex planes of Xq
j to pass through

purely imaginary stationary points (unless Xq = 0).
To avoid complex notation it is convenient to rename a stationary trajectory

Xq(t) as Xq(t) = P(t)/(2i), where P(t) is real on the stationary trajectories. With
this notation Eqs. (4.17) acquire the Hamiltonian structure

Ẋ = ∂P H(P, X) , Ṗ = −∂X H(P, X); (4.18)

H(P, X) = P A(X) + P2 D(X). (4.19)

Notice that P is not the physical momentum (indeed we deal with the overdamped
motion (4.7)). It is rather an auxiliary variable which encodes the noise. Never-
theless it is useful to view it as the canonical pair of the physical variable X . Due
to their Hamiltonian nature the stationary path equations possess the integral of
motion: the “energy” H(P, X) = const. The corresponding MSR action, acquired
along an optimal trajectory (i.e. the one satisfying the equations of motion (4.18)),
takes the standard form [34]

iS[X, P] = −
∫

dt
[
P Ẋ − H(P, X)

]
, (4.20)

where H(P, X) is a constant along the trajectory. The statistical weight of the
corresponding path is given by exp{iS}.

One may visualize solutions of Eqs. (4.18) by plotting the phase portrait, i.e.
the curves of constant energy on the phase plane (P, X). The special role is
played by the curves of zero energy H = 0. Generally (i.e. if D(X) )= 0) there
are two of them P = 0 and P = −A(X)/D(X). The first one corresponds
to the noiseless relaxation according to Ẋ = A(X), while the second one is
responsible for fluctuations. These two intersect at the points where A(X) = 0,
i.e. at the fixed points of the noiseless dynamics. Along the fluctuation curve
P =−A(X)/D(X) the equation of motion reads Ẋ = A(X)+2P D(X) = −A(X),
i.e. it describes the evolution, which is time reversed compared to that along the
noiseless P = 0 line. The fact that the fluctuations are time-reversed partners of
the relaxation is not generic. It is a consequence of the potential nature of the force,
see Section 4.12.

As an example consider an overdamped thermal motion in a potential V (X).
In this case A(X) = −V ′(X) and D(X) = T (we put γ = 1 for brevity). The
fluctuation zero energy curve takes the form P = V ′(X)/T . Figure 4.1(a) depicts
the phase portrait for a potential with a single stable minimum at X = 0. The
noiseless relaxation drives the system towards the origin X = 0 along the P = 0
line. If we are interested in a relative weight for finding the system at some X0 )= 0,
we need to identify an optimal trajectory which brings the system to X0 in a given
time. If no time limitations are imposed (i.e. the observation time is unlimited), the
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0
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Fig. 4.1 Phase portraits of the Fokker–Planck Hamiltonians: (a) for a potential
with a single minimum at X = 0; (b) for a potential with a meta-stable minimum
at X = 0 and unstable maximum at X = Xs . Bold lines are curves of zero energy
P = 0 and P = V ′(X)/T . The shaded areas give actions of the optimal paths,
reaching points X0 and Xs , respectively.

proper optimal trajectory is the zero energy curve P = V ′(X)/T . Indeed, it takes
an infinite time to depart from the fixed point X = 0. Since along the optimal path
H(P, X) = 0, the accumulated action (4.20) may be written as

iS(X0) = −
∫

dt P Ẋ = −
X0∫

0

P dX,

i.e. it is given by the geometric area shaded in Fig. 4.1a. Employing that
P = V ′(X)/T , one further obtains

iS(X0) = −
X0∫

0

P dX = − 1
T

X0∫

0

V ′(X)dX = −V (X0)− V (0)

T
. (4.21)

As a result, the relative statistical weight for finding the system at X = X0 is
∝ exp{−V (X0)/T }. This is, of course, nothing but the Boltzmann distribution. So
far we have found it with exponential accuracy only, i.e. without a pre-exponential
factor, which, in principle, could be X0-dependent. In the next section we’ll prove
that this is not the case.

Consider now a potential which has a meta-stable minimum at X = 0 and an
unstable maximum at X = Xs , see Fig. 3.2. The corresponding phase portrait is
depicted in Fig. 4.1b. The fluctuation curve P = V ′(X)/T has now two inter-
sections with the relaxation line P = 0. The relaxation dynamics in a local
vicinity of X = 0 is stable (attractive), while at X = Xs it is unstable (repulsive).
According to the Liouville theorem of classical mechanics [34], the Hamiltonian
motion conserves the area of the phase space. This implies that both fixed points
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must be hyperbolic, i.e. have one attractive and one repulsive direction. As a result,
the stability of the two fixed points along the fluctuation curve is opposite to that
along the relaxation line, i.e. X = 0 is repulsive, while X = Xs is attractive,
see Fig. 4.1(b). It is clear now that the activation escape from the meta-stable
fixed point X = 0 must proceed along the fluctuation curve P = V ′(X)/T until
X = Xs ; starting at the P = 0 point and then following the relaxation line P = 0.
The action is accumulated only along the fluctuation part of the optimal escape
trajectory and is given by the shaded area in Fig. 4.1(b). In complete analogy with
Eq. (4.21) one finds that the escape rate is proportional to the Boltzmann factor
∝ exp{−(V (Xs)−V (0))/T }. We shall evaluate the corresponding pre-exponential
factor in Section 4.8.

Let us discuss now an overdamped particle in a harmonic potential subject to
a multiplicative noise (in the Ito sense), proportional to a certain positive power
of |X |:

Ẋ = −κX + |X |νξ(t), (4.22)

where the Gaussian white noise ξ(t) is specified by Eq. (4.8). The question is
whether the particle sticks to the bottom of the well and does not ever leave it,
because the noise near the bottom is too weak. The corresponding Hamiltonian
reads as H(P, X) = −κP X + P2|X |2ν and its phase portrait for the case ν > 1/2
is plotted in Fig. 4.2. Again the relative weight of reaching a point X0 )= 0 is
given by an exponentiated (negative) area enclosed by the curves of zero energy,
i.e. exp{−κX2−2ν

0 /(2 − 2ν)} for ν < 1. On the other hand, for ν ≥ 1 the corre-
sponding area diverges, nullifying the long-time probability of finding the particle
away from X0 = 0. As a result, for ν ≥ 1 the particle eventually sticks to the
bottom and the only steady state distribution is δ(X0).

The message of this section is that the stationary path dynamics of dissipative
stochastic models may be described by the effective Hamiltonian system. The role
of momentum is played by the auxiliary MSR variable (times i), which is nothing

X0

X

P0

Fig. 4.2 Zero energy lines of the Fokker–Planck Hamiltonian corresponding to
Eq. (4.22): P = 0, X = 0 and P = κ/X2ν−1 with ν > 1/2. The action (i.e. the
shaded area) diverges for ν ≥ 1.
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but the classical limit of the Keldysh “quantum” component. A lot of insight in
the behavior of the corresponding stochastic model may be gained by an inspec-
tion of the phase portrait of the corresponding Hamiltonian. The action (4.20) was
written above only for stationary trajectories (i.e. satisfying the equations of motion
(4.18)). However, it may be equally well extended to any trajectory X (t) and P(t)
and used as a weight in the functional integral, much as the action (4.13) or (4.16).
The only thing to remember is that the D[P(t)] = ∏

j dPj integrations run along
the imaginary axis. Notice that quantities such as the escape rate are determined
by the optimal trajectories with some non-zero Xq(t). This means in turn that such
trajectories are different along the forward and backward branches of the time con-
tour. The latter is a consequence of the time-reversal invariance being broken by
the integration over the bath with a continuous spectrum.

4.5 Fokker–Planck equation

The consideration of the previous section closely resembles the WKB approxima-
tion in quantum mechanics. One may take one step forward towards the analogy
between the theory of classical stochastic models and quantum mechanics and
look for a corresponding “Schrödinger” equation. The latter is derived through
the transfer-matrix treatment of the Feynman path integral [32]. To this end one
integrates over trajectories which at time t = t j arrive at the point X = X j with an
arbitrary momentum (i.e. arbitrary Xq). From the definition (4.9) it is clear that the
corresponding restricted partition function P(X, t) = Z |X (t)=X is proportional to
the probability (not the amplitude!) of finding the system at the point X at time t .
The fact that P(X, t) is real follows immediately from the form of the action (4.12)
and the symmetry Xq → −Xq, while Z → Z∗. In other words, the Keldysh
contour provides the product of an amplitude (forward branch) and its complex
conjugate (backward branch), resulting in the probability.

We shall formally derive the equation for P(X, t) below. The result, however,
may be anticipated from the Hamiltonian formulation, Eqs. (4.19), (4.20) and
analogy with quantum mechanics. The latter states that the required equation has
the form ∂tP = ĤP . Here the Hamiltonian operator Ĥ is obtained from the
normally ordered classical Hamiltonian H(P, X) by the substitution of P → P̂ ,
which satisfies the canonical commutation relation [X, P̂] = 1 (in our case P runs
along the imaginary axis), i.e. P̂ = −∂X . Using Eq. (4.19) for the Hamiltonian,
one obtains

∂tP(X, t) = −∂X

[
A(X)P(X, t)− ∂X

[
D(X)P(X, t)

]]
. (4.23)

This is the Fokker–Planck equation [41] for the evolution of the probability distri-
bution function of the stochastic system (4.7). The normal ordering of the action



54 Classical stochastic systems

(4.13) is crucial to employing the quantum mechanical analogy. Therefore this
form of the Fokker–Planck equation is specific to the Ito regularization.

The Fokker–Planck equation has the structure of the continuity relation ∂tP +
∂X J = 0, where the probability current is J = AP − ∂X [DP]. This fact is respon-
sible for the conservation of probability ∂t

∫
dXP = 0. On the classical level it

may be traced back to the observation that H(P, X) ∼ P , i.e. there are no terms
with the zero power of momentum P in the Hamiltonian. Therefore the property
of the Hamiltonian

H(0, X) = 0 (4.24)

is crucial to the conservation of probability. On the other hand, this relation along
with expression (4.20) for the action are completely equivalent to the basic Keldysh
symmetry S[X, 0] = 0, Eq. (2.53) (recall that P ∼ Xq), the latter follows from the
quantum unitarity.

In the case of the additive noise D(X)= T the Fokker–Planck Hamiltonian
(4.19) may be transformed into the conventional Schrödinger form. This is
achieved by the canonical transformation x = X and p̂ = P̂−V ′(X)/(2T ), which
preserves the commutation relation [x, p̂] = 1 and thus p̂ = −∂x . With these
new variables the Fokker–Planck equation acquires the form of the imaginary-time
Schrödinger equation ∂t P̃(x, t) = ĥ( p̂, x)P̃(x, t), where

ĥ( p̂, x) = T p̂ 2 + W (x) ; W (x) = −[V ′(x)]2/(4T ) + V ′′(x)/2, (4.25)

while the “wave function” transforms as P̃(x, t) = eV (x)/(2T )P(x, t). As briefly
mentioned below, the effective potential W (x) has some remarkable properties,
which originate from the fact that the initial Hamiltonian (4.19) satisfies the
normalization identity (4.24).

We turn now to the transfer matrix derivation of the Fokker–Planck equation
(4.23). Consider P(X j−1, t j−1), which is obtained from Eq. (4.12) by integration
over all Xi with i = 1, . . . , j − 2 and all Xq

i with i = 1, . . . , j − 1. Notice that the
Xq integration runs one step ahead of the X integration. To find P = P(X, t) =
P(X j , t j ) one needs to perform two more integrations over dX j−1dXq

j with the
weight specified by Eq. (4.12):

P=
∫

dX j−1dXq
j e−2i Xq

j

(
X j−X j−1−δt A(X j−1)

)
−4δt (Xq

j )
2 D(X j−1)P(X j−1, t j−1). (4.26)

We now rename the integration variables as Xq
j = Xq and X j−1 = X j − δX and

expand the exponent to second order in the small fluctuations δX and Xq. This leads
to the already familiar Keldysh structure
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exp
{
−
(
δX , Xq)

(
0 i
i 4δt D

)(
δX

Xq

)}
. (4.27)

From here one concludes that as δt → 0 the fluctuations scale as Xq ∼ δ
−1/2
t

and δX ∼ δ
1/2
t . We then approximate A(X j−1) ≈ A − δX A′, while D(X j−1) ≈

D − δX D′ + δ2
X D′′/2 and P(X j−1, t j−1) ≈ P − δXP ′ + δ2

XP ′′/2 − ∂tPδt , where
A = A(X j ), D = D(X j ) and P = P(X j , t j ) and primes denote derivatives with
respect to X j . Expanding the exponent up to second order in terms δX ∼ δ1/2

t and
up to first order in terms δ2

X ∼ δt , we find

∂tP= −(A′P + AP ′)2i〈δX Xq〉 − (D′′P + 2D′P ′)2〈δ2
X (Xq)2〉+ P ′′

〈δ2
X 〉

2δt
,

where the angular brackets stand for averaging with the Gaussian weight (4.27)
and we took into account that, as always, 〈(Xq)2〉 = 0 and also 〈δX (Xq)3〉 =
〈δ2

X (Xq)4〉 = 0. The remaining non-zero averages are given by 〈δX Xq〉 = −i/2,
〈δ2

X (Xq)2〉 = −1/2 and 〈δ2
X 〉 = 2δt D. As a result one obtains the Fokker–Planck

equation (4.23), as expected.
The derivation may be straightforwardly extended to the multivariable Ito–

Langevin process (4.14), yielding

∂tP(X, t) = −∂α
[

Aα(X)P(X, t)− ∂β
[
Dαβ(X)P(X, t)

]]
, (4.28)

where ∂α = ∂Xα and summation over repeated indices is understood. Again the
equation has the structure of the continuity relation ∂tP + divJ = 0, where the
probability current vector Jα = AαP − ∂β[Dαβ(X)P] consists of the drift part and
the diffusive part.

For a particular case where the drift is provided by a potential force, i.e.
Aα(X) = −∂αV (X) and the noise is isotropic and additive, i.e. Dαβ = δαβT ,
one may look for a stationary solution of Eq. (4.28) by demanding that the current
vector is zero: ∂αVP = −T ∂αP . Solving this first order equation, one finds

P(X) = Z−1 e−V (X)/T , (4.29)

which is a proper stationary probability distribution as long as it can be normal-
ized. This means the normalization constant, also known as the partition function,
Z =

∫ ∏
α dXα e−V (X)/T exists.2 This is, of course, the Boltzmann distribution,

which we have already found with exponential accuracy using the optimal path
method, see Eq. (4.21). Here we have proved that the pre-exponential factor is
an X -independent constant. Notice that if the drift force is not a potential one,

2 Here Z is not the Keldysh “partition function” normalized to one, but a usual equilibrium statistical mechanics
partition function.
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the stationary distribution (if it exists) implies, in general, a non-zero divergence-
less current, divJ = 0, whereas Jα )= 0. The distribution (4.29) is thus not
applicable.

The fact that the Fokker–Planck equation has a stationary solution (for the class
of normalizable potentials) may be formulated as the presence of a zero eigenvalue
of the corresponding Hamiltonian operator Ĥ(P̂, X). Equation (4.29) provides
the corresponding eigenfunction, or zero mode. In the transformed Schrödinger
variables (4.25) the presence of the zero mode follows from the supersymmetric
nature of the effective potential W (x) [42, 43].

If there is an inertia term Ẍ in the Langevin equation (4.5), one needs to con-
sider particle momentum as just another coordinate X1 = X and X2 = Ẋ = K .
Employing that A1(K ) = K , A2(X, K ) = −γ K − V ′(X) and D22 = γ T is the
only non-zero component of Dαβ , one may rewrite Eq. (4.28) for the probability
distribution function P = P(X, K , t) as

∂tP + K∂XP − V ′(X)∂KP = γ ∂K (KP + T ∂KP) . (4.30)

The left hand side, called the kinetic term, may be written as ∂tP −
{

E,P
}
, where

the classical Hamiltonian function is E(K , X) = K 2/2 + V (X) and we used stan-
dard Poisson brackets. It describes evolution of the distribution function due to the
drift of position in the presence of the velocity K = vK = ∂K (K 2/2) and the drift
of momentum in the presence of the force −∂X V (X). The right hand side, also
known as the collision term, originates from the interaction with the thermal bath.
It describes random diffusion in the momentum space superimposed on the drift
towards K = 0 in the effective “potential” K 2/2. The latter is responsible for the
particle losing energy and cooling down, if the temperature T is too low.

One may look for a stationary solution of the Fokker–Planck equation (4.30)
which separately nullifies the kinetic and the collision terms. From the latter
condition one finds that P(X, K ) = P(X) e−K 2/2T . Substituting it into the kinetic
term, one finally finds for the corresponding zero mode

P(X, K ) = Z−1 e−V (X)/T e−K 2/2T = Z−1 e−E(K ,X)/T , (4.31)

where the normalization constant Z , i.e. the partition function, is given by
Z =

∫
dXdK e−V (X)/T e−K 2/2T . This is the Maxwell–Boltzmann distribution for

the particle’s potential and kinetic energy in thermal equilibrium.
If the system is out of equilibrium, but all characteristic time scales are much

longer than the relaxation time γ−1, one may look for a solution of the Fokker–
Planck equation (4.30) in the form

P(X, K , t) = (2πT )−1/2 e−K 2/2T [P(X, t) + KN (X, t)
]
,
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where the exponential factor is chosen to nullify the right hand side of Eq. (4.30)
and thus to compensate for the large factor γ . We now substitute this trial solution
in Eq. (4.30) and (i) integrate over K ; (ii) multiply by K and then integrate over
K . This way we obtain two coupled equations

∂tP + T ∂XN = 0 ; T ∂XP + V ′(X)P = −γ TN ,

where in the second equation we neglected the term T ∂tN as being much smaller
than its right hand side. Substituting N from the second equation into the first one,
one finds a closed equation for P(X, t):

γ ∂tP = ∂X
[
V ′(X)P + T ∂XP

]
. (4.32)

This is, of course, the already familiar overdamped Fokker–Planck equation (4.23).
The fact that the diffusion coefficient in the coordinate space is D = T/γ is
known as the Einstein relation. Notice that the diffusion coefficient in momentum
space, according to Eq. (4.30), is DK = γ T . Both of these facts are manifestations
of FDT.

Since we are dealing with a classical particle, there is no problem in exactly
specifying its coordinate X and momentum K simultaneously. This should be
contrasted with the fictitious momentum P = 2iXq, introduced in Section 4.4. The
latter is conjugated to the coordinate X in the sense of the functional integral. It
obeys thus the uncertainty principle 8X8P ≥ 1 even in a purely classical setting.
One may still discuss trajectories in the phase space (P, X) in the semiclassical
(i.e. weak fluctuations, or low temperature) approximation. If the inertia and thus
the physical momentum K are taken into account, the semiclassical phase space is
four-dimensional: (P, P2, X, K ), where P2 is conjugate to K = X2.

4.6 Ito vs. Stratonovich

Although Ito regularization of stochastic processes, discussed in Section 4.3, is
the most convenient for the field-theoretical representation, one must be aware
that there are other regularizations. The one frequently found in physics litera-
ture is known as Stratonovich regularization. It appears upon changing variables in
stochastic evolution equations. Consider, for example, the Langevin equation (4.7),
(4.8) with the additive noise, i.e. b = 1. The corresponding Fokker–Planck equa-
tion for the probability distribution function P(X, t) is given by Eq. (4.23) with
D = b2 = 1,

Ẋ = A(X) + ξ(t) ; ∂tP = −∂X
[
AP − ∂XP

]
. (4.33)
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Suppose now we want to change the coordinate X (t) to another coordinate Y (t),
such that

X = f (Y ), (4.34)

where f is a monotonic function which provides a one-to-one correspondence
between X and Y . We shall assume thus that f ′(Y ) = dX/dY > 0, for
convenience. Substituting it in the Langevin equation (4.33), one notices that the
corresponding stochastic equation for the new variable Y (t) formally acquires the
multiplicative form

Ẏ = Ã(Y ) + b̃(Y ) ξ(t), (4.35)

where b̃(Y ) = 1/ f ′(Y ) and Ã(Y ) = A( f (Y ))/ f ′(Y ).
Naively one may think that the corresponding Fokker–Planck equation is given

by Eq. (4.23) with D(Y ) = b̃ 2(Y ) = [1/ f ′(Y )]2. Let us, however, perform
the change of variables (4.34) directly in the Fokker–Planck equation (4.33). To
maintain normalization of the probability distribution function one has to demand
that P̃(Y, t) dY = P(X, t) dX and thus the proper distribution of the Y variable is
P̃(Y, t) = P( f (Y ), t) f ′(Y ). Notice also that ∂X = (1/ f ′(Y )) ∂Y . As a result the
Fokker–Planck equation (4.33) transforms into

∂t P̃(Y, t) = −∂Y

[
Ã(Y ) P̃(Y, t)− b̃(Y ) ∂Y

[
b̃(Y )P̃(Y, t)

]]
. (4.36)

As before b̃(Y ) = 1/ f ′(Y ). While the drift current is what we expect from
the Langevin equation (4.35), the diffusive current is different from that in the
Ito–Fokker–Planck equation (4.23). The latter has the form ∂Y [b̃2P̃].

The reason for this difference is that the multiplicative noise in Eq. (4.35)
does not have the Ito retarded regularization. Indeed, the discrete form of the
Langevin equation (4.33) is X j − X j−1 = δt A(X j−1) + δtξ j−1. Upon the
change of variables given by Eq. (4.34) the left hand side takes the form
f (Y j )− f (Y j−1)= f (Ȳ + δY /2) − f (Ȳ − δY /2) = f ′(Ȳ )(Y j − Y j−1) + O(δ3

Y ),
where δY = Y j − Y j−1 and Ȳ = (Y j + Y j−1)/2. As a result the discrete version of
the Langevin equation (4.35) is

Y j − Y j−1 = δt b̃
(

Y j + Y j−1

2

)
A(Y j−1) + δt b̃

(
Y j + Y j−1

2

)
ξ j−1. (4.37)

The first term on the right hand side is already ∼ δt and therefore may be
substituted by δt Ã j−1 = δt b̃(Y j−1)A(Y j−1). This is not so with the second term:

since ξ j ∼ δ
−1/2
t (indeed the corresponding statistical weight is e−δt ξ

2
j /4), one

finds δtξ j−1 ∼ δ
1/2
t . Therefore it is important to keep the argument of the noise
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modulation function as b̃
(
(Y j + Y j−1)/2

)
. This is different from the Ito retarded

regularization, which assumes b̃(Y j−1) instead. The symmetric regularization of
the multiplicative noise as in Eq. (4.37) is known as Stratonovich regularization.
It leads to the different form of the diffusion term in the Fokker–Planck equation
(4.36).

One may formally bring the Stratonovich diffusion term to the Ito form, by
the expense of adding (∂Y b̃) b̃ P̃ to the drift term. All the considerations may
be straightforwardly generalized to an arbitrary dimension M . As a result the
Stratonovich–Langevin equation Ẋ = A(S) + bξ is equivalent to the Ito–Langevin
one Ẋ = A(I) + bξ with

A(I)
α (X) = A(S)

α (X) +
M∑

β,γ=1

[
∂βbαγ (X)

]
bβγ (X). (4.38)

The Ito process may be then used for the field-theoretical treatment via the MSR
procedure of Section 4.3.

4.7 Noise with a finite correlation time

Another context where the Stratonovich interpretation appears naturally is
stochastic systems with noise which has a short, but finite correlation time τ .
Consider Gaussian “colored” noise with the correlation function

〈η(t)η(t ′)〉 = 1
τ

e−|t−t ′|/τ , (4.39)

known also as the Ornstein–Uhlenbeck process. The white noise (4.8) is obtained
in the limit τ → 0. Such a random function is a result of “filtering” of the white
noise force ξ(t), Eq. (4.8), with an overdamped harmonic oscillator (e.g. an RC
circuit), having the time constant τ . This means that η(t) satisfies

η̇ = 1
τ

[
− η + ξ(t)

]
. (4.40)

Indeed, the solution of this equation is η(t) = 1
τ

∫ t dt1 ξ(t1) e(t1−t)/τ . Employing
Eq. (4.8) one readily establishes the correlation function (4.39).

One may consider the Ornstein–Uhlenbeck process (4.39), (4.40) as a random
force term in a multiplicative Langevin equation

Ẋ = A(X) + b(X) η(t). (4.41)

Then in the limit τ 4 3−1 (but still τ 3 δt ), where3 is a characteristic frequency
of the deterministic process Ẋ = A(X), the probability distribution function
P(X, t) obeys the Stratonovich–Fokker–Planck equation (4.36).
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To prove this statement let us consider the two evolutionary equations
(4.41) and (4.40) as a two-dimensional Langevin process (4.14). In this case
AX = A(X)+ b(X) η and Aη = −η/τ , while the noise ξ(t) is non-multiplicative
with the coupling constant bη,1 = 1/τ . Because the noise is non-multiplicative,
there is no need to specify the regularization. The Fokker–Planck equation for the
joint probability distribution P(X, η, t) acquires the form, cf. Eq. (4.28),

∂tP = −∂X
[
(A(X) + b(X) η)P

]
+ ∂η

[
1
τ
ηP + 1

τ 2
∂ηP

]
. (4.42)

In the absence of coupling, b = 0, the η-variable quickly equilibrates to a
symmetric Gaussian distribution ∼ e−η

2τ/2. One can thus proceed in a way anal-
ogous to the one that led from Eq. (4.30) to Eq. (4.32). To this end we look for a
solution in the form P(X, η, t) ∼ e−η

2τ/2
[
P(X, t)+ηN (X, t)

]
. Substituting it into

Eq. (4.42) and then (i) integrating over η and (ii) multiplying by η and then integrat-
ing over it, one obtains two equations ∂tP = −∂X [AP] − ∂X [bN ]/τ along with
N /τ = −∂X [bP], where in the last equation we have neglected ∂tN and ∂x [AN ],
as being much less than N /τ . Substituting the resulting N into the equation for P ,
one finds the Stratonovich–Fokker–Planck equation (4.36).

4.8 Kramers problem

We return now to the problem of activation escape of an overdamped particle
from a meta-stable potential minimum. It was briefly considered in Section 4.4
in the stationary path approximation. Here we address it employing the Ito–
Fokker–Planck equation (4.23). To modify the result for the Stratonovich stochastic
process, one can take advantage of the correspondence rule (4.38). The potential
V (X) is similar to the one plotted in Fig. 3.3a. Since the Boltzmann distribution
(4.29) with such a potential is not normalizable, there is no stationary solution (i.e.
zero mode) of the Fokker–Planck equation. One expects, however, that there is a
long-lived solution localized in the vicinity of the meta-stable minimum. We shall
look for such a solution in the form

P(X, t) = P(X) e−t/τes, (4.43)

where τes is the escape time, which is expected to be exponentially long. The
total probability is not conserved, because there is a probability current J towards
X =∞. Substituting this form into Eq. (4.23), one obtains the stationary Fokker–
Planck equation for P(X):

1
τes

P = ∂X
[
− V ′P − ∂X [DP]

]
= ∂X J. (4.44)
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Since the escape rate 1/τes is expected to be exponentially small, so is ∂X J
everywhere, except near the narrow peak of the meta-stable distribution P(X)

around X = 0. As we show below, the latter has the characteristic width
l0 =√D(0)/V ′′(0) 4 Xs, if D(0) is small enough (see Fig. 4.1(b)). Therefore
the current J out of the meta-stable state is practically a constant for |X | 3 l0.
Obviously the current is zero in the negative direction: J (−∞) = 0, while at large
positive X it approaches a constant value, which we denote J (∞). This observation
leads to the linear first order differential equation

−V ′(X)P(X)− ∂X [D(X)P(X)] = J (X), (4.45)

which may be easily solved to express P through J (X). The result is

P(X) = 1
D(X)

e−S(X)

∫ ∞

X
dY J (Y ) e S(Y ), (4.46)

where S satisfies S ′ = V ′/D, i.e.

S(X) =
∫ X

−∞
dY

V ′(Y )

D(Y )
. (4.47)

The upper limit of the Y -integration in Eq. (4.46) is basically arbitrary (with expo-
nential accuracy) as long as it is well to the right of the point Y = Xs. We put it
infinite for brevity. One can now integrate the stationary Fokker–Planck equation
(4.44) from minus infinity, where the current is zero, to plus infinity (in the same
sense as above), where the current is J (∞). This leads to

τes = 1
J (∞)

∫ ∞

−∞
dX P(X) =

∫ ∞

−∞

dX
D(X)

e−S(X)

∫ ∞

X
dY

J (Y )

J (∞)
e S(Y ). (4.48)

Notice that adding a constant to S does not change the result. This means that the
lower limit of integration in Eq. (4.47) is of no importance.

The X -integral is dominated by the vicinity of the potential minimum, i.e.
|X | ! l0. On the other hand, the Y -integral is coming from the vicinity of the
maximum i.e. |X − Xs| ! ls, where the characteristic width of the maximum is
ls = √D(Xs)/|V ′′(Xs)| . If l0 + ls 4 Xs, which is the case for sufficiently small
D, one may extend the Y -integral to minus infinity and perform both integrals in
the stationary point approximation. The crucial observation is that under the same
condition J (Xs)/J (∞) = 1 with exponential accuracy. As a result one obtains for
the escape time, including the pre-exponential factor [44],

τes = 2π
D(0)

e8S

√
S ′′(0)|S ′′(Xs)|

=
√

D(Xs)

D(0)

2π√
V ′′(0)|V ′′(Xs)|

e8S, (4.49)
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where we took into account that S ′′= (V ′/D)′= V ′′/D, since V ′(0)= V ′(Xs)= 0,
and

8S = S(Xs)− S(0) =
∫ Xs

0
dX

V ′(X)

D(X)
. (4.50)

This is exactly the action along the zero energy trajectory P = V ′/D of
the Hamiltonian (4.19), introduced in Section 4.4. The Fokker–Planck equation
allowed us to determine the pre-exponential factor. In the case of non-multiplicative
noise D = T = const, the exponent is the Boltzmann one, (V (Xs) − V (0))/T ,
while the prefactor is temperature independent, 2π [V ′′(0)|V ′′(Xs)|]−1/2. This is
the celebrated Kramers result [45]. In the case where the inertia term may not be
neglected, the pre-exponential factor was evaluated in [46].

In a vicinity of the bifurcation point, a wide class of problems may be modeled
by the cubic potential (3.34) and the additive noise with variance D. According to
the Kramers formula the corresponding escape time is

τes = πa2

V0δ
e

4
27

V0δ
3

D . (4.51)

The scaling of the action with the bifurcation parameter δ is rather different from
both the pure tunneling exponent (3.36) and the dissipative tunneling exponent
(3.40).

4.9 Fluctuation relation

Consider an overdamped Langevin dynamics in a time-dependent potential

Ẋ = −∂X V (X, t) +
√

T ξ(t), (4.52)

where the white noise is normalized according to Eq. (4.8). The time dependence
of the potential is limited to a time window ti < t < tf. Moreover, we shall
assume that initially at t = ti the system is in equilibrium with a bath maintained
at temperature T . During the time interval [ti, tf] the potential is changing by the
action of an external device. Such a device (e.g. a piston) is performing a work W
on the system, which may be written as

W [X ] =
∫ tf

ti

dt ∂t V (X (t), t). (4.53)

The work is a functional of the stochastic trajectory X (t), which the system follows
upon a given realization of the random noise ξ(t). As a result, the work W is itself a
random quantity, dependent on the noise. One may ask about statistics of the work,
for example the work distribution function P(W ). This question probably can’t be
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answered for an arbitrary potential. There is, however, a particular function of the
work, e−W/T , whose average value may be found in a very general form [47, 48].

Employing the MSR method of Section 4.3, one finds for the corresponding
average value, cf. Eq. (4.12),

〈
e−W/T 〉 =

∫
D[X, Xq] e

∫
dt
[
−2i Xq

(
Ẋ+∂X V (X,t)

)
−4T (Xq)2

]

e−W [X ]/T

=
∫

D[X, Xq] e
∫
dt
[
−2i Xq

(
Ẋ+∂X V (X,t)

)
−4T (Xq)2− 1

T ∂t V (X,t)
]

. (4.54)

Let us first analyze this expression within the stationary path approximation.
Following the procedure of Section 4.4, it is convenient to rename the auxil-
iary variable as Xq = P/(2i). The action acquires the Hamiltonian form (4.20),
where

H(P, X, t) = −P ∂X V (X, t) + T P2 − 1
T
∂t V (X, t). (4.55)

Notice that this Hamiltonian does not satisfy the probability conservation condition
(4.24), because it includes the specific observable−W/T . Since the Hamiltonian is
explicitly time dependent, the energy is not conserved and solution of the stationary
path equations

Ẋ = ∂H
∂P

= −∂X V + 2T P , Ṗ = −∂H
∂X

= P ∂2
X V + 1

T
∂X∂t V (4.56)

is not immediately obvious. Remarkably, the activation trajectory of the time-
independent problem, i.e. the time-reversed path of the noiseless relaxation
Ẋ = + ∂X V and P = ∂X V/T still solves the equations of motion. This fact may
be checked by direct substitution of this solution into the equations (4.56).3 Notice
that to have such a solution it is crucial to average e−ηW with η = 1/T . It would
not work for any other η. The action along this trajectory is given by

3 This solution may be traced back to the existence of the canonical transformation (P, X, H)→ (p, x, h), with
the generating function [34] 9 = 9(x, P, t) = −x P + V (x, t)/T . Then the following relations hold:

X = − ∂9
∂P

= x , p = − ∂9
∂x

= P − 1
T
∂x V (x, t).

The transformed Hamiltonian is

h = H + ∂9

∂t
= −

(
p + 1

T
∂x V (x, t)

)
∂x V (x, t) + T

(
p + 1

T
∂x V (x, t)

)2

− 1
T
∂t V (x, t) + 1

T
∂t V (X, t) = p ∂x V (x, t) + T p2.

It is conserved (despite being time dependent), h = 0, along the following obvious solution of the equations
of motion: p = 0, while ẋ = ∂x V . Being transformed back to the original variables, it yields the required
solution.
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iS =−
∫

dt [P Ẋ − H ]=− 1
T

∫
dt [∂X V Ẋ + ∂t V ]=− 1

T

∫
dV = Vi − Vf

T
,

where Vi/f = V (X i/f, ti/f) and eiS gives the relative weight of a particle moving
from X i to X f under the action of the time-dependent potential. Since at t = ti
the system is assumed to be in thermal equilibrium, the initial coordinate is to be
weighted with the Boltzmann distribution e−Vi/T /Z(ti). On the other hand, there is
no control over the final coordinate X f and therefore it should be integrated over
with the plane measure, resulting in Z(tf). One thus obtains

〈
e−W/T 〉 = e−Vi/T

Z(ti)

∫
dX f e(Vi−Vf)/T = Z(tf)

Z(ti)
= e−(F(tf)−F(ti))/T , (4.57)

where Z(ti/f) =
∫

dXe−V (X,ti/f)/T ≡ e−F(ti/f)/T are the equilibrium partition func-
tions in the potentials V (X, ti) and V (X, tf), respectively. Therefore this particular
average value of the non-equilibrium work may be expressed through the equi-
librium free energies of the system allowed to equilibrate in the initial and final
potential configurations. This remarkable statement is known as the Jarzynski fluc-
tuation relation [47, 48]. As a matter of principle, it allows one to measure the
equilibrium free energy of the final state, without waiting for the system to equili-
brate. To this end one has to accumulate statistics of the work performed to bring
the system into final (yet non-equilibrium) states, and average e−W/T .

So far we have derived the fluctuation relation in the stationary path approx-
imation. Let us show now that Eq. (4.57) is actually exact, i.e. there is no
pre-exponential factor on its right hand side. To this end we need to derive the
Fokker–Planck equation corresponding to the functional integral (4.54) [49]. As
explained in Section 4.5 the “quantization” procedure is ∂tP(X, t) = ĤP(X, t),
where Ĥ is obtained from Eq. (4.55) by the substitution P →−∂X :

∂tP = ∂X [∂X V P] + T ∂2
XP −

1
T
∂t V P. (4.58)

The initial condition is P(X, ti) = e−V (X,ti)/T /Z(ti). Motivated by the station-
ary path result, we look for the solution of this equation in the following form:
P(X, t) = e−V (X,t)/T /Z(ti). It is easy to check that it is indeed the solution,
satisfying the initial condition. Notice that having the coefficient 1/T in the last
term (the observable) is vital to find such a simple solution. By construction of the
functional integral (4.54),

〈
e−W/T

〉
=
∫

dXP(X, tf), leading directly to Eq. (4.57).
This proves that the fluctuation relation (4.57) is not restricted to the stationary path
approximation, but is actually exact.
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4.10 Reaction models

Another important class of classical stochastic models is provided by reaction
systems. These models are formulated in terms of reaction rules which are followed
by certain agents. The latter are typically denoted as A, B, etc. and can be
atoms, molecules, viruses, organisms, etc. An example of such a reaction rule is

A + A
λ→ B, which states that two agents A may coagulate to form an agent B.

A probability for this to happen per unit time (in other words, a reaction rate) is
denoted as λ. One would like to have a description which would be able to predict
an outcome of many such reactions, provided some initial conditions are specified.
It is clear that such a description has to be probabilistic, since there is no way to say
with absolute certainty how many and what reactions will happen in a long time
span. The other important thing to remember is that the number of agents at any
time is always an integer. Therefore a state of the system may be characterized by a
time-dependent probability P(n, m, . . . , t) of finding n agents A, m agents B, etc.
at time t , where n, m, . . . are integers. Such a probability is normalized as

∑

n,m,...

P(n, m, . . . , t) = 1. (4.59)

For any given set of reaction rules one may formulate an evolution equation, also
known as a Master equation, for probabilities P(n, m, . . . , t). For example, for a
single species reaction model, the Master equation is

∂tP(n, t) =
∑

n′

[
Wn′→nP(n′, t)−Wn→n′P(n, t)

]
, (4.60)

where Wn→n′ is the rate of going from a state with n agents to a state with n′

ones. The first term on the right hand side is the rate of in processes, i.e. those
which lead into the state n from any other state, while the second term is the
rate of out processes, i.e. those which lead out of the state n into any other state.

If, for example, the reaction rules are A + A
λ→ ∅, A

µ→ ∅ and A
σ→ 2A, the

corresponding rates are

Wn→n′ = λ δn′,n−2 n(n − 1)/2 + µ δn′,n−1 n + σ δn′,n+1 n, (4.61)

where n(n − 1)/2 is the number of pairs which can enter the coagulation reaction,
and n is the number of agents amenable to annihilation or branching.

Reaction models may have a stationary state, that is a time-independent solution
of the Master equation P(n). If, in such a stationary state, every term on the right
hand side of Eq. (4.60) (i.e. for any integer n′) is zero: Wn′→nP(n′) = Wn→n′P(n),
it is said that the reaction scheme satisfies the detailed balance condition. If there
are no reactions creating agents out of the empty state ∅, in many cases the only
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stationary solution is the complete extinction P(n) = δn,0. In this case the detailed
balance condition is clearly absent.

The Master equation (4.60) may be written as a differential equation. To this end
let us formally extend the integer variable n onto the entire real axis. The “in” term
of the Master equation includes the shift operation of the function Wn→n+rP(n, t),
where r is an integer, on r units to bring it to the form Wn−r→nP(n − r, t). Such
a shift operation may be written as e−r∂n .4 As a result the Master equation (4.60)
acquires the form

∂tP(n, t) =
∑

r

[
e−r∂n − 1

]
Wn→n+rP(n, t). (4.62)

It may be thus written as ∂tP = Ĥ( p̂, n)P , where the “momentum” operator
stands for p̂ = −∂n and the reaction Hamiltonian is given by [50]

H(p, n) =
∑

r

[
er p − 1

]
Wn→n+r . (4.63)

The reaction Hamiltonian is normally ordered, meaning that all p̂ operators stay
on the left of the n-dependent functions. It also satisfies the identity (4.24),
H(0, n) = 0, which is necessary to maintain the conservation of probability (4.59).
This way of writing the Master equation brings it into the same category as
the Ito–Fokker–Planck equation. The only difference is that the latter has only
terms of the first and second power of the p̂-operator. For some problems one
may expand the exponent in Eq. (4.63) up to second power in r p, reducing the
Master equation to the Fokker–Planck equation (4.23). In this case the drift term is
A(n) = ∑

r r Wn→n+r while the diffusion coefficient D(n) = ∑
r r2Wn→n+r/2.

Other problems do not allow for such an expansion, nevertheless all the tools
developed for the treatment of the Ito–Fokker–Planck dynamics may be directly
transferred to the reaction models.

In particular, solution of the Master equation may be formally written through
the evolution operator acting on an initial distribution function P(n, t) =∫

dni Û(n, t; ni, ti)P(ni, ti). The evolution operator Û may be represented by the
Hamiltonian path integral, see Eq. (4.12),

Û(n, t; ni, ti) =
∫

D[n, p] e−
∫

dt[pṅ−H(p,n)], (4.64)

where, as explained at the end of Section 4.4, the D[p] integration runs along the
imaginary axis. The trajectories satisfy n(ti) = ni and n(t) = n. We shall first
analyze this expression in the stationary path approximation. The corresponding

4 Indeed, e−r∂n f (n) = f (n)− r f ′(n) + r2 f ′′(n)/2− · · · = f (n − r).
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Fig. 4.3 Phase portraits of the reaction Hamiltonians: (a) the one with the reac-
tion rates (4.61); (b) the universal Hamiltonian (4.68) close to the bifurcation
point. Bold lines are curves of zero energy, M is the meta-stable point and E the
extinction fixed point.

equations of motion are the Hamilton equations ṅ = ∂p H and ṗ = −∂n H . Since
they conserve the energy H , one may visualize the solutions by plotting curves of
constant energy on the phase plane (p, n), Fig. 4.3(a). As discussed in Section 4.4,
the long-time behavior is described by the curves of zero energy H = 0. Due
to the conservation of probability (4.59) one such line is always p = 0. The
corresponding stationary path equation is nothing but the rate equation

ṅ = ∂p H(p, n)
∣∣

p=0 =
∑

r

r Wn→n+r = A(n). (4.65)

It provides the mean-field description, which disregards fluctuations and discrete-
ness of the agents. For the reaction scheme of Eq. (4.61) it predicts the stable fixed
point at n = n̄ ≈ (σ −µ)/λ and the unstable fixed point at n = 0. According to the
rate equation (4.65) the population stabilizes at n ≈ n̄. This is indeed the case at the
intermediate time scale (provided n̄ 3 1). However, in the long-time limit the only
stationary solution of the corresponding Master equation is the extinct state. In the
stationary path approximation this fact is reflected in the presence of the n = 0
line of constant zero energy, which is thus the invariant line of the Hamiltonian
dynamics. This is always the case if n = 0 is the absorbing state, i.e. W0→n′ = 0.
As a result all Wn→n′ ∼ n and therefore H(p, 0) = 0.

For a scheme exemplified by Eq. (4.61) one finds, with the help of Eq. (4.63),
the following reaction Hamiltonian:

H(p, n) = λ

2
(e−2p − 1)n(n − 1) + µ(e−p − 1)n + σ (ep − 1)n. (4.66)

Its inspection shows that in addition to p = 0 and n = 0, there is the third curve
of zero energy p = pa(n), which we call the activation trajectory, see Fig. 4.3(a).
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The activation trajectory intersects the rate equation line p = 0 in the meta-stable
fixed point M = (0, n̄). It also intersects the extinction line n = 0 in the extinction
fixed point E = ( p̄, 0). The large fluctuation, leading to the population extinction,
starts at the meta-stable state M and proceeds along the activation trajectory pa(n)

until the extinction fixed point E . The rate of such events is ∼ e−Sex , where the
extinction action is given by (hereafter we absorb the factor −i into the action, cf.
Eq. (4.20))

Sex =
∫

dt[pṅ − H(p, n)] =
∫ 0

n̄
pa(n) dn. (4.67)

Here we took into account that H = 0 along the activation trajectory. The extinc-
tion time is thus proportional to the exponentiated area of the shaded triangle in
Fig. 4.3(a) [50, 51].

If the two fixed points of the rate equation n = n̄ and n = 0 are relatively close
to each other, the problem may be substantially simplified. For our example (4.61),
(4.66) this is the case when 0 < σ −µ4 σ . One may then disregard the curvature
of the activation trajectory between the fixed points M and E and substitute it by a
straight line. This leads to the universal reaction Hamiltonian of the form

H(p, n) = p
(
δ − n

N
+ p

)
n. (4.68)

Its three zero-energy lines form the right triangle, Fig. 4.3(b). In terms of our
example (4.61) we put µ + σ = 1, which fixes units of time, and introduced
notations δ = (σ − µ)/(σ + µ) 4 1 for the so-called bifurcation parameter and
N = (σ + µ)/λ 3 1 for the effective system size. A large class of models in
the vicinity of the bifurcation point may be described by this Hamiltonian. The
activation trajectory is given by pa(n) = n/N − δ and therefore the extinction
action (4.67) is Sex = Nδ2/2.

Substituting p → −∂n and keeping the normal ordering in Eq. (4.68), one
obtains the universal limit of the Master equation for P(n, t). Its only true
stationary solution is the extinct state P(n) = δn,0. There is, however, a long-
lived meta-stable solution, which we shall look for in the form P(n) e−t/τex . With
the help of the Master equation with the universal Hamiltonian (4.68), one finds
P/τex = ∂n

[
(−pa(n)− ∂n)nP

]
= ∂n J . Since the extinction time τex is expected to

be exponentially long, the probability current J (n) is practically a constant away
from the narrow peak of the meta-stable distribution around n̄ = Nδ 3 1. This
constant current is obviously zero for n 3 n̄ and is finite, J (0), in the direction
of the absorbing boundary at n = 0. Integrating the expression for the current,
one finds nP(n) = −e−S(n)

∫ n
0 dl J (l) eS(l), where S(n) =

∫ n pa(n)dn and we

demanded that nP n→0→ 0. Integrating the equality P = τex∂n J over the entire
range of n, one finds
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τex = − 1
J (0)

∫ ∞

0
dn P(n) =

∫ ∞

0

dn
n

e−S(n)

∫ n

0
dl

J (l)
J (0)

eS(l). (4.69)

The dn integral is dominated by the minimum of the action S(n) i.e. by n ≈
Nδ= n̄. Under these conditions the dl integral is given by the boundary region
l ≈ 0, where J (l) ≈ J (0) with exponential precision. Evaluating the integrals in
the stationary/boundary point approximation, one finds

τex =
√

2π
S ′′(n̄)

1
n̄

e Sex

|S ′(0)| =
√

2π
p ′a (n̄)

e Sex

n̄|pa(0)| =
√

2π
N

1
δ2

e Nδ2/2. (4.70)

The result is valid for N−1/2 < δ 4 1. Notice that scaling of the action and the
pre-exponential factor with the bifurcation parameter δ is very different from the
Kramers activation (4.51). This result, along with pre-exponential factors in more
general situations, were found in [52, 53, 54].

4.11 Time-dependent problems

Imagine that the particle’s potential or reaction rates are modulated in time. In
Sections 3.4 and 3.5 we discussed how such a modulation affects the quantum
tunneling. Here we consider its influence on the activation escape time, or the
extinction time. In the language of optimal paths these rare events correspond to
instanton trajectories, which bring the system from e.g. the meta-stable fixed point
M to the extinction fixed point E , see Fig. 4.3. In a time-independent setting, such
an instanton trajectory may be written n = n0(t − t0) and p = p0(t − t0), where
t0 is an arbitrary constant which specifies the time of the extinction event. The
action does not depend on t0 and it is therefore said to be a “zero mode”. If the
Hamiltonian is an explicit function of time, the independence of the action on t0 is
lifted. Indeed, there are more and less preferable instances of undertaking the fluc-
tuation which leads to the extinction. The probabilities of these fluctuations differ
exponentially and therefore are largely dominated by the “best chance” t0, when
the extinction is most likely to occur [55].

One can analytically access such an optimal t0 and the corresponding extinction
probability in some limiting cases. The first such case is a weak time-dependent
modulation of the system’s parameters. It leads to a time-dependent reaction (or
Fokker–Planck) Hamiltonian

H(p, n, t) = H0(p, n) + εH1(p, n, t), (4.71)

where ε is a small parameter. According to the Melnikov theorem of classi-
cal mechanics [56, 57], the perturbed Hamiltonian still allows for the optimal
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trajectory. This is the case if ε is small enough and another condition, explained
below, is satisfied. Such a deformed optimal trajectory may be written as

n(t, t0) = n0(t − t0) + εn1(t, t0) , p(t, t0) = p0(t − t0) + εp1(t, t0). (4.72)

The corresponding action to first order in ε is given by the integral of

(p0 + εp1)(ṅ0 + εṅ1)− H0 − ∂n H0 εn1 − ∂p H0 εp1 − εH1 = p0ṅ0 − εH1,

where we employed that H0(n0, p0) = 0 along with the equations of motion
ṅ0 = ∂p H0 and ṗ0 = −∂n H0. We have also disregarded the full time derivative
p0ṅ1 + ṗ0n1. The first term on the right hand side is the unperturbed action Sex.
Therefore to first order in ε the change of the action (4.20) is

S1(t0) = −ε
∫

dt H1
(

p0(t − t0), n0(t − t0), t
)
. (4.73)

To maximize the extinction (escape) probability ∼ e−(Sex+S1(t0)), one needs to find
minima of S1(t0) with respect to the center of the bare instanton t0. That is, find a
t0 such that ∂t0 S1(t0) = 0, while the second derivative is positive. This leads to the
condition ∫

dt
(
∂p H1 ṗ0 + ∂n H1 ṅ0

)
=
∫

dt
{

H1, H0
}

= 0, (4.74)

where { , } denotes classical Poisson brackets [34] and we again employed equa-
tions of motion ṅ0 = ∂p H0 and ṗ0 = −∂n H0. Existence of simple zeros of this
function is the condition of the Melnikov theorem [56, 55, 58].

As an example, consider H0 given by the universal extinction Hamiltonian
(4.68). Its bare instanton trajectory may be easily obtained by putting p = pa(n) =
n/N − δ in the Hamilton equation of motion ṅ = ∂p H(p, n) and integrating this
first order differential equation. The result is

n0(t − t0) = Nδ
1 + N e δ(t−t0)

, p0(t − t0) = − Nδ e δ(t−t0)

1 + N e δ(t−t0)
. (4.75)

For the time-dependent part we take a weak harmonic modulation of the bifurca-
tion parameter δ(t) = δ(1 + ε cos3t), leading to H1(p, n, t) = pnδ cos3t . The
resulting correction (4.73) to the action is

S1(t0) = εN 2δ3
∫

dt
e δ(t−t0) cos3t
(
1 + N e δ(t−t0)

)2 = ε πNδ3
sinhπ3/δ

cos
[
3(t0 + δ−1 ln N )

]
.

Once every period there is the “best chance” t0, rendering the last cosine to be
−1. For such optimal trajectories one finds the negative correction to the extinction
action
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S1 = −εSex
2π3/δ

sinh (π3/δ)
, (4.76)

where as before Sex = Nδ2/2. The modulation thus leads to the exponential
reduction of the extinction time (4.69) by the factor e−|S1|. The result is valid as
long as 1 < |S1| 4 Sex. In the limit 3 4 δ the correction is −2εSex, which
may be immediately found as the minimizing adiabatic form of the extinction
action Sex = Nδ2(t)/2. At large frequency 3 > δ the linear correction decays
exponentially.5 This should be compared with the very different frequency depen-
dence for the underdamped, Eq. (3.32), and overdamped, Eq. (3.43), quantum
tunneling.

Another example where the optimal path may be explicitly constructed is
a sudden temporary change in the system’s parameters [60]. We call it a
“catastrophic” event. Consider, e.g., the reaction scheme (4.61) and assume that
during the time window −tc < t < tc the branching rate σ suddenly drops to zero.
There is a chance that, after it recovers back to its pre-catastrophic value at t = tc,
the population does not recover (provided it was not extinct at the time the catas-
trophe struck at t = −tc). Our goal is to evaluate the probability that the population
goes extinct during the catastrophe or in its immediate aftermath. The correspond-
ing optimal trajectory starts at the meta-stable fixed point M sometime before
the catastrophe arrives and ends up in the extinction fixed point E after it ends.
Therefore the initial and final pieces of the optimal path follow the zero energy
activation trajectory pa(n) of the pre-catastrophic Hamiltonian H0(p, n). During
the time window |t | < tc the Hamiltonian acquires a different form Hc(p, n), and
the optimal path follows one of its finite energy trajectories, Fig. 4.4. The latter
is selected in such a way that the time elapsed between its two intersections with
pa(n) is exactly 2tc.

To be specific, let us model the pre-catastrophic H0(p, n) by Eq. (4.68), while
during the catastrophe Hc(p, n) = −µpn. The latter corresponds to the pure anni-
hilation reaction A

µ→ ∅, where we took into account that |p| < δ 4 1. Its
constant energy H trajectory pH (n) = −H/(µn) intersects the activation trajec-
tory pa(n) = n/N − δ in points n± = (1 ± ε)Nδ/2, where ε =

√
1− 4H/µNδ2.

Since n(t) ∼ e−tµ along pH (n), the time elapsed between points n+ and n− is
found to be e−2tcµ = n−/n+ = (1 − ε)/(1 + ε). From here one finds the proper
energy to be H = µNδ2/4 cosh2(tcµ). The corresponding extinction action is
given by S(tc) =

∫
dt[pṅ − H ], where the first term is the area shaded in Fig. 4.4,

while the second one is −2tc H . Straightforward calculation yields

5 There is, however, the second order correction to the action ∼ −(εδ/3)2Sex, which decays only as a power
law of frequency [59]. The same type of correction is responsible for the Kapitsa pendulum effect. Therefore
at 3 ! (δ/π) ln(1/ε) the linear correction (4.76) may be disregarded.
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Fig. 4.4 Optimal path to extinction facilitated by the catastrophe – bold line.
The dotted line is the activation trajectory of the pre-catastrophic Hamiltonian
pa(n). The dashed line is a finite energy trajectory of the Hamiltonian during the
catastrophe, pH(n). The switches between the two occur at t = ∓tc.

S(tc) = Sex
[
1− tanh(tcµ)

]
= Nδ 2/(1 + e2tcµ). (4.77)

The extinction probability in the aftermath of the catastrophe is ∼ e−S(tc). It is of
order one if Nδ 2e−2tcµ ≈ 1. However, according to the rate equation ṅ = −µn,
by the time such a catastrophe ends n(2tc) = Nδ e−2tcµ ≈ 1/δ 3 1, and one
could expect that the population is still in no immediate danger of extinction. The
message is that the population may be much less catastrophe-tolerant than a naive
expectation based on the rate equations.

4.12 Large deviations in multivariable systems

We discuss now applications of the optimal path approach of Section 4.4 for
systems with several degrees of freedom. The ideas touched here were introduced
in seminal works of Graham and Tél [61], Dykman and Smelyanskiy [62] and
Maier and Stein [63]. Consider, e.g. an overdamped stochastic system with two
degrees of freedom X1 and X2, i.e. Ẋα = Aα(X) +

√
T ξα(t), with the white noise

(4.15). Its Fokker–Planck Hamiltonian (4.19) is given by

H(P1, P2, X1, X2) = P1 A1(X) + P2 A2(X) + T P2
1 + T P2

2 . (4.78)

The corresponding noiseless motion is described by the zero-energy invariant plane
of this Hamiltonian P1 = P2 = 0, indeed Ẋα = Aα(X) = ∂Pα H

∣∣
P=0. Let us

assume for simplicity that such a noiseless dynamics admits a fixed point at X1 =
X2 = 0, i.e. it is in the origin of the four-dimensional phase space. Being the fixed
point means Aα(0) = 0. Linearizing noiseless equations of motion in the vicinity
of this point, one finds Ẋα = AαβXβ , where Aαβ = ∂β Aα(X)

∣∣
X=0. The matrix Aαβ

may have either two real eigenvalues λ1,2, or two complex conjugated eigenvalues
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λ1,2 = κ ± iω. We consider the latter case and assume that κ < 0, i.e. the fixed
point X = 0 is a locally stable focus. This means that the noiseless relaxation tends
to bring the system to the fixed point along a spiral trajectory. In a near vicinity of
X = 0 the spirals may be characterized in terms of the two right eigenvectors of
Aαβ , which both belong to the (X1, X2) plane of the four-dimensional phase space
(analog of the P = 0 line in the one degree of freedom example of Fig. 4.1).

Thermal fluctuations take the system out of the fixed point and lead to a certain
probability of finding the system at X0 )= 0. As explained in Section 4.4, such a
probability is given by the exponentiated action of an activation trajectory, which
goes from the origin to a point of the phase space with the coordinates X0. In
case of the single degree of freedom there is only one possible trajectory which
departs from the fixed point: the curve of zero energy P = −A(X)/T , Fig. 4.1.
The situation is much more interesting now. Linearizing the Hamiltonian equations
of motion determined by Eq. (4.78) near the origin, one finds

(
Ẋα

Ṗα

)
=
(

Aαβ 2T δαβ
0 −AT

αβ

)(
Xβ

Pβ

)
. (4.79)

This 4 × 4 matrix possesses four eigenvalues. Two of them are already familiar
eigenvalues of Aαβ denoted as λ1,2. The corresponding two right eigenvectors have
zero components in the P directions. They thus give rise to the relaxation trajec-
tories, which stay entirely within the invariant hyperplane P = 0. Two additional
eigenvalues λ3,4 = −λ1,2 have positive real parts and thus describe the activation
trajectories which depart from the fixed point. The corresponding right eigenvec-
tors have, in general, non-zero components in all four directions of the phase space.
All trajectories which depart from the fixed point along an arbitrary linear super-
position of these two eigenvectors form the two-dimensional Lagrangian manifold
of activation trajectories. The energy is still a conserved quantity and therefore all
the trajectories forming the Lagrangian manifold have the fixed energy, which is
zero (indeed, all these trajectories depart from the origin, which has zero energy).
The Lagrangian manifold is a generalization of the activation zero energy trajec-
tory of Fig. 4.1. Since for a non-potential force Aα the Lagrangian manifold is not
given by Pα(X) = −Aα(X)/T , 6 the activation trajectories are not time-reversed
counterparts of the relaxation ones.

6 Indeed, according to the Hamilton–Jacobi equation [34] the Lagrangian manifold is characterized by Pα(X) =
−∂αS(X), where S is the action along a trajectory leading to X . Therefore for Pα(X) = −Aα(X)/T to be true
one needs to have ∂2 A1 = ∂1 A2, which implies Aα = −∂αV (X), i.e. the force is potential (no vorticity). In the
language of the Fokker–Planck equation the condition Pα(X) = −Aα(X)/T means that in a stationary state
all components of the current vector are zero. Again, this not the case in presence of vorticity – a stationary
state does support a finite divergenceless current. The author is indebted to M. Dykman for clarifying this
point.
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Fig. 4.5 (a) Lagrangian manifold with a cusp singularity and three characteristic
trajectories coming from the origin. (b) Projection of the Lagrangian manifold
onto the (X1, X2) plane. The two folds project onto caustics, while projections
of the three trajectories intersect at the point X0. (c) The action S(X0) is a three-
valued function in between the caustics. Two of its lower branches intersect along
the switching line. After [62].

This observation may have dramatic consequences. As shown in [61, 62, 63],
for non-potential forces the Lagrangian manifold develops cusp singularities some
distance away from the origin, Fig. 4.5(a). The projection of the manifold onto the
physical (X1, X2) plane exhibits two caustics, emanating from the cusp, Fig. 4.5(b).
In between them the projection is three-valued. There are thus three distinct trajec-
tories, whose projections pass through the same point X0 = (X01, X02). Two of
them, 1 and 2, reach the point X0 before being reflected by one of the caustics,
i.e. they meet X0 while being on the top and bottom sheets of the manifold. The
projection of 3 passes through X0 after being reflected once by a caustic, i.e. the
corresponding trajectory meets X0 being on the middle sheet of the Lagrangian
manifold. The action S(X0) calculated along the trajectories is therefore a three-
valued function of the physical coordinate in between the two caustics, Fig. 4.5(c).
The biggest action is due to trajectories of type 3, which underwent reflection
before arriving at the point X0. The two smaller action branches intersect each
other along the switching line, which emanates from the projection of the cusp and
stays in between the two caustics.

The stationary state probability P(X0) of finding the system at point X0 is
given by the exponentiated action, Section 4.4. If the action is multi-valued, one
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can observe only its smallest branch, which gives rise to the largest probability.
Therefore the large deviation function: − lim T→0[T lnP(X0)] = T min{S(X0)}
is a non-analytic function of the coordinates along the switching line. Notice that
for the potential forces Aα = −∂αV , this function is simply the potential V (X0)

and thus is perfectly smooth. As a result, the stationary state of non-equilibrium
systems (e.g. with non-potential forces) is qualitatively different from equilibrium
ones. Strictly speaking, this is only true in the limit of weak noise T → 0, while
for a finite noise the singularities are smeared. However, since the action is in the
exponent, the change in the derivative across the switching line may be extremely
sharp. There is a large mathematical literature devoted to this phenomenon
[64, 65].



5

Bosonic fields

In this chapter we generalize the formalism of Chapter 2 for the case of complex
and real interacting bosonic fields. We then develop a perturbative diagrammatic
technique and use it to derive the quantum kinetic equation.

5.1 Complex bosonic fields

Consider a box of size L filled with bosonic particles of mass m. The single-
particle states within the box are labeled by the wavenumber vector k = (2π/L)n,
where the vector n = (nx , ny, nz) has integer components nµ = 0,±1, ±2, . . . (we
have assumed periodic boundary conditions in all directions). The corresponding
energies are given by ωk = k2/(2m). One may associate bosonic creation and anni-
hilation operators b̂†

k and b̂k, obeying the commutation relations [b̂k, b̂†
k′] = δk,k′ ,

with each of these single-particle states. The kinetic energy part of the Hamiltonian
written in terms of such operators takes the form

Ĥ0 =
∑

k

ωkb̂†
kb̂k. (5.1)

Assuming some initial density matrix, e.g. ρ̂0 = exp{−β(Ĥ0 − µN̂ )}, where the
number operator is N̂ = ∑

k b̂†
kb̂k , one may write the Keldysh partition function

Z = 1, see Eq. (2.13), as a functional integral over the closed time contour, Fig. 2.1.
The coherent states are parametrized by a set of complex numbers φ j (k), labeled by
the discrete time index j along with the state index k. Transforming to continuum
notation and performing the Keldysh rotation according to Eq. (2.39) for each state
k, one obtains the two sets of complex fields φcl(k, t) and φq(k, t). The partition
function acquires the form

Z =
∫

D[φcl,φq] eiS0[φcl,φq], (5.2)

76
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where the integration measure is given by

D[φcl,φq] = 1
Tr{ρ̂0}

∏

k

N∏

j=1

d(Reφcl
j (k))d(Imφcl

j (k))

π

d(Reφq
j (k))d(Imφq

j (k))

π
,

(5.3)
and the limit N →∞ is understood. The Keldysh action of the free complex Bose
field is written, employing Eqs. (2.51) and (2.52), as

S0[φcl,φq] =
∑

k

∞∫

−∞

dt
(
φ̄cl, φ̄q)

(
0 i∂t − ωk − i0

i∂t − ωk + i0 2i0F(ωk)

)(
φcl

φq

)
,

(5.4)
where φcl,q = φcl,q(k, t). The ±i0 indicates the retarded/advanced nature of the
off-diagonal operators and specifies how the corresponding inverted operators are
to be understood. The q − q Keldysh component is a pure regularization for the
free field. Unlike the cl− cl component, it becomes finite (and in general non-local
with respect to time and state indices) once the interactions between the particles
are included. We kept it explicitly here to remind us that it determines the way the
quadratic form in the action is inverted.

The corresponding free (bare) Green function is defined as

Gαβ
0 (k, k′, t, t ′) = −i

∫
D[φcl,φq] φα(k, t) φ̄β(k′, t ′) eiS0[φcl,φq] (5.5)

and according to the rules of the Gaussian integration is given by the inverse of the
quadratic form in the action

Gαβ
0 (k, k′, t, t ′) = δk,k′

(
GK

0 (k, t − t ′) GR
0 (k, t − t ′)

GA
0 (k, t − t ′) 0

)
. (5.6)

The three non-zero components of the Green function are

GR
0 (k, t) = −iθ(t) e−iωkt FT→ (ε − ωk + i0)−1; (5.7a)

GA
0 (k, t) = iθ(−t) e−iωkt FT→ (ε − ωk − i0)−1; (5.7b)

GK
0 (k, t) = −iF(ωk) e−iωkt FT→−2π iF(ε) δ(ε − ωk). (5.7c)

In equilibrium the distribution function is F(ε) = coth(ε − µ)/(2T ). Above we
also quoted the Fourier transforms with respect to the time argument for all three
components.

It is sometimes convenient to perform the linear change of variables in the func-
tional integral to introduce the coordinate space representation for the two complex
bosonic fields
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φα(r, t) =
∑

k

φα(k, t) eikr. (5.8)

In terms of these fields the bare bosonic action (5.4) takes the form

S0 =
∫

dr

∞∫

−∞

dt
(
φ̄cl, φ̄q)

(
0 i∂t + ∇2

r
2m − V cl

i∂t + ∇2
r

2m − V cl 2i0F

)(
φcl

φq

)
, (5.9)

where we have added an external classical potential V cl = V cl(r, t) in accordance
with Eq. (2.61). In the absence of such an external potential, the correlators of the
coordinate space bosonic fields are given by the Fourier transform of the Green
function (5.6), (5.7)
〈
φα(r, t) φ̄β(r′, t ′)

〉
= iGαβ

0 (r− r′, t − t ′) = i
∑

k

Gαβ
0 (k, t − t ′)eik(r−r′). (5.10)

5.2 Interactions

Let us now include interactions between bosonic particles through a pairwise inter-
action potential U (r− r′). The corresponding normally ordered Hamiltonian takes
the form

Ĥint = 1
2

∑

q,k,k′
U (q) b̂†

kb̂†
k′ b̂k′+qb̂k−q, (5.11)

where U (q) is the Fourier transform of the interaction potential. In the case of
dilute atomic gases the interaction potential may be thought of as being short-
ranged, i.e. momentum-independent, U (q) = g, where the interaction constant
may be expressed through the s-wave scattering length as as g = 4πas/m [66].
The corresponding term in the action takes the form

Sint = −g
2

∑

q,k,k′

∫

C
dt φ̄(k, t)φ̄(k′, t)φ(k′ + q, t)φ(k− q, t).

Going to the coordinate space representation, one finds

Sint = −g
2

∫
dr
∫

C
dt (φ̄φ)2 = −g

2

∫
dr
∫ +∞

−∞
dt
[
(φ̄+φ+)2 − (φ̄−φ−)2]. (5.12)

It is important to remember that there are no interactions in the distant past,
t =−∞ (while they are present in the future, t = +∞). The interactions are
supposed to be adiabatically switched on and off on the forward and backward
branches correspondingly. Therefore the interactions modify only those matrix ele-
ments of the evolution operator, Eq. (2.17), that are away from t = −∞. It is also
worth remembering that in the discrete time form the φ̄ fields are taken one time



5.2 Interactions 79
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φq φq

φq

φq
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φcl

Fig. 5.1 Graphic representation of the two interaction vertices of the |φ|4 theory.
There are also two complex conjugated vertices with a reversed direction of all
arrows.

step δt after the φ fields along the contour C. Performing the Keldysh rotation,
Eq. (2.39), one finds

Sint[φcl,φq] = −g
2

∫
dr

+∞∫

−∞

dt
[
φ̄clφ̄qφclφcl + φ̄clφ̄qφqφq + c.c.

]
, (5.13)

where c.c. stands for the complex conjugate of the first two terms. The interaction
action, Eq. (5.13), obviously satisfies the normalization condition, Eq. (2.53). Dia-
grammatically, the action (5.13) generates two types of vertex depicted in Fig. 5.1:
one with three classical fields (full lines) and one quantum field (dashed line) and
the other with one classical field and three quantum fields (as well as two complex
conjugated vertices, obtained by reversing the direction of the arrows).

Let us demonstrate that the addition of the interaction term to the action does not
violate the normalization identity, Z = 1. To this end, one may expand exp(iSint)

in powers of g and then average term by term with the help of the Gaussian
action (5.9). To show that the normalization, Z = 1, is intact, one needs to show
that 〈Sint〉 = 〈S 2

int〉 = · · · = 0. Applying the Wick theorem, Eq. (2.21), one finds
for the term linear in g

〈Sint〉 = −
g
2

∫
dr dt

〈
φ̄clφ̄qφclφcl + φ̄clφ̄clφclφq + φ̄qφ̄clφqφq + φ̄qφ̄qφqφcl

〉
.

The first two terms upon application of the Wick theorem lead to diagrams of the
type of Fig. 5.2(a):

〈
φ̄clφ̄qφclφcl + φ̄clφ̄clφclφq〉 = −2

[
GR

0 (t, t) + GA
0 (t, t)

]
GK

0 (t, t) = 0,

where we have suppressed the space arguments and focused only on the time ones
and the factor of two originates from the two combinatorial possibilities to make
Wick’s contractions. This expression vanishes due to the identity (2.44). The last
two terms in 〈Sint〉 trivially vanish because

〈
φqφ̄q

〉
= 0.

There are two families of terms that are second order in g and contain not more
than four quantum fields (terms with six quantum fields unavoidably lead to q− q
contractions and therefore vanish). They contain
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t

(b)

t1 t2
t2t1
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Fig. 5.2 Diagrams for the first (a) and second (b), (c) order interaction correc-
tions to the partition function Z . As explained in the text, they do not change the
normalization identity Z = 1.

〈
φ̄

q
1 φ̄

cl
1 φ

cl
1 φ

cl
1 × φq

2φ
cl
2 φ̄

cl
2 φ

cl
2

〉
= 2GR

0 (t2, t1)GA
0 (t2, t1)[GK

0 (t1, t2)]2,

Fig. 5.2(b), and
〈
φ̄

q
1 φ̄

cl
1 φ

cl
1 φ

cl
1 × φq

2φ
cl
2 φ̄

q
2φ

q
2

〉
= 2GR

0 (t2, t1)GA
0 (t2, t1)[GR

0 (t1, t2)]2,

Fig. 5.2(c), where φα1,2 = φα(r1,2, t1,2). Both of these terms are zero, because
GR

0 (t2, t1) ∼ θ(t2 − t1), while GA
0 (t2, t1) ∼ GR

0 (t1, t2)∗ ∼ θ(t1 − t2) and thus their
product has no support in the time domain. One may be concerned that GR

0 (t2, t1)
and GA

0 (t2, t1) are simultaneously non-zero on the diagonal t1 = t2. The contri-
bution of the diagonal to the double integral over dt1dt2, however, is of the order
∼ δ2

t N → 0, when N →∞. It is easy to see that, for exactly the same reasons, all
higher order terms in g vanish and thus the fundamental normalization is indeed
intact (at least in the perturbative expansion). However, the observables and cor-
relation functions are affected by the interactions. We demonstrate it below on the
example of the Green functions.

5.3 Dyson equation

We define the full or dressed Green function as the correlator of the fields averaged
with the weight, which includes both the bare action S0 and the interaction action:

Gαβ(r, r′, t, t ′) = −i
∫

D[φ̄φ]φα(r, t) φ̄ β(r′, t ′) e i(S0+Sint), (5.14)

here α,β = (cl, q) and the action is given by Eqs. (5.9) and (5.13). To evaluate
the full Green function one may expand the exponent in powers of Sint. The func-
tional integration with the remaining Gaussian action S0 is then performed using
the Wick theorem. This procedure leads to an infinite series of terms which are con-
venient to represent by Feynman diagrams. Each of these diagrams has two external
“legs”: an incoming, staying for the contraction 〈φα(x)φ̄ γ (x1)〉 = iGαγ

0 (x, x1), and
an outgoing, representing 〈φδ(x2)φ̄

β(x ′)〉 = iGδβ
0 (x2, x ′), where we introduced a

combined notation x = r, t . The interior of a diagram, which is a matrix in Keldysh
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(c)(b)(a)

Fig. 5.3 Examples of diagrams for the dressed Green function: (a) an irreducible
diagram of second order in g; (b) a reducible diagram of third order, which
contains two irreducible blocks; (c) a disconnected diagram of first order.

Ĝ
= +

Ĝ0 G0 G0
ˆ ˆ G0

ˆ G0
ˆ G0

ˆ
ˆ +Σ Σ̂ Σ̂

Fig. 5.4 Diagrammatic series for the dressed Green function Ĝ, rearranged into
the Dyson series. The self-energy blocks contain the sum of all irreducible
diagrams.

indices γ , δ as well as in space-time coordinates x1, x2, contains a number of inter-
nal four-leg vertices, each carrying a factor of g/2 . Integration over space-time
coordinates of all internal vertices as well as summation over Keldysh indices is
assumed. Examples of the diagrams are given in Fig. 5.3.

One can now define irreducible diagrams as those which can’t be cut into two
disconnected parts by cutting a single line in the interior of the diagram. The dia-
gram in Fig. 5.3(a) is irreducible, while the one in Fig. 5.3(b) is reducible. The
diagram in Fig. 5.3(c) is a disconnected one. The disconnected diagrams contain
all the same building blocks as in Fig. 5.2 and thus are zero, as explained above.1

Rearranging the order of terms in the perturbative expansion, one may formally
sum up the inner parts of all irreducible diagrams and call the resulting object the
self-energy :γδ(x1, x2). The full series may be written then, Fig. 5.4, as

Ĝ = Ĝ0 + Ĝ0 ◦ :̂ ◦ Ĝ0 + Ĝ0 ◦ :̂ ◦ Ĝ0 ◦ :̂ ◦ Ĝ0 +· · · = Ĝ0 + Ĝ0 ◦ :̂ ◦ Ĝ, (5.15)

where the circular multiplication sign implies convolution of the space-time coor-
dinates as well as a 2 × 2 Keldysh matrix multiplication. The only difference
compared with the standard diagrammatic expansion [2, 4, 6] is the presence of
the 2 × 2 matrix structure. The fact that the series is arranged as a sequence of
matrix products is of no surprise. Indeed, the Keldysh index, α = (cl, q), is just
one more index in addition to time, space, spin, etc. Therefore, as with any other
index, there is a summation over all of its intermediate values, hence the matrix

1 Cancelation of disconnected diagrams is a direct consequence of the normalization identity Z = 1. Notice that
in equilibrium theory the disconnected diagrams are not zero and serve to compensate for the denominator eiL ,
Eq. (1.5), [2, 4].
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multiplication. The concrete form of the self-energy matrix, :̂, is specific to the
Keldysh technique and is discussed below in some detail.

Multiplying both sides of Eq. (5.15) by Ĝ−1
0 from the left, one obtains an

equation for the exact dressed Green function, Ĝ,
(

Ĝ−1
0 − :̂

)
◦ Ĝ = 1̂, (5.16)

where 1̂ is the unit matrix. This equation is named after Dyson. The very non-
trivial feature of the Keldysh technique is that the self-energy matrix, :̂, possesses
the same causality structure as Ĝ−1

0 , Eq. (2.51), namely

:̂ =
(

0 :A

:R :K

)
, (5.17)

where :R(A) are mutually Hermitian conjugated lower (upper) triangular matrices
with respect to the two time indices, while :K is an anti-Hermitian matrix

:R(x1, x2) = [:A(x2, x1)]∗ ∼ θ(t1 − t2) ; :K(x1, x2) = −[:K(x2, x1)]∗.
(5.18)

This fact will be explicitly demonstrated below. Since both Ĝ−1
0 and :̂ have the

same causality structure, one concludes that the dressed Green function, Ĝ, also
possesses the causality structure, like Eq. (2.40). As a result, the Dyson equation
acquires the form

(
0

[
GA

0

]−1 −:A
[
GR
]−1

0 −:R −:K

)

◦
(

GK GR

GA 0

)
= 1̂, (5.19)

where one took into account that
[
G−1

0

]K is a pure regularization (∼ i0F) and
thus may be omitted in the presence of a non-zero self-energy component :K.
Employing the specific form of

[
GR(A)

0

]−1, Eq. (5.9), one obtains for the retarded
(advanced) component
(

i∂t + 1
2m
∇2

r − V cl(r, t)−:R(A)

)
◦ GR(A)(x, x ′) = δ(t − t ′)δ(r− r′). (5.20)

Provided the self-energy component :R(A) is known (in some approximation),
Eq. (5.20) constitutes a closed equation for the retarded (advanced) component
of the dressed Green function.

For the space-time translationally invariant system, V cl = 0, such that
Ĝ(x, x ′) = Ĝ(x − x ′), this equation may be solved explicitly with the help of
the Fourier transform, leading to

GR(A)(k, ε) =
(
ε − k2

2m
−:R(A)(k, ε)

)−1

. (5.21)
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Employing Eq. (5.18), one observes that Re:R(k, ε) = Re:A(k, ε) and
Im:R(k, ε) = −Im:A(k, ε) ≤ 0. The real part of the retarded (advanced)
self-energy provides renormalization of the particle’s dispersion relation. That is,
the relation ε = k2/(2m) should be substituted by the solution of the equation
ε − k2/(2m) − Re:R(A)(k, ε) = 0. On the other hand, the imaginary part of the
self-energy has the meaning of the inverse lifetime a particle spends in a given
(renormalized) eigenstate k of the non-interacting system.

We turn now to the Keldysh component of the Dyson equation. As before, it is
convenient to parametrize the Keldysh component of the Green function as

GK = GR ◦ F − F ◦ GA (5.22)

(compare with Eq. (2.49)), where F(x, x ′) is a Hermitian matrix in the space-
time domain. The Dyson equation for the Keldysh component then takes the form([

GR
0

]−1 − :R
)
◦
(
GR ◦ F − F ◦ GA

)
= :K ◦ GA. Multiplying it from the right

by
([

GA
0

]−1 − :A
)

and employing Eq. (5.20), one finds F ◦
([

GA
0

]−1 − :A
)
−

([
GR

0

]−1 −:R
)
◦ F = :K. This may be written as

F ◦
[
GA

0

]−1 −
[
GR

0

]−1 ◦ F = :K −
(
:R ◦ F − F ◦:A) . (5.23)

Since
[
GR

0

]−1
(x ′, x) =

[
GA

0

]−1
(x ′, x) = δ(x ′ − x)

(
i∂t + ∇2

r /(2m)− V cl(x)
)
,

where the regularization ±i0 may be omitted in this context, one finally finds

−
[(

i∂t + 1
2m
∇2

r − V cl(x)

)
◦, F

]
= :K −

(
:R ◦ F − F ◦:A) , (5.24)

where the symbol [ ◦, ] stands for the commutator. With the help of integration
by parts, it may be understood as [∂t

◦, F] = (∂t + ∂t ′)F(x, x ′), on the other hand
[∇2

r
◦, F] = (∇2

r−∇2
r′)F(x, x ′) and [V ◦, F] = (V (x)−V (x ′))F(x, x ′). This equation

is the quantum kinetic equation for the distribution matrix F(x, x ′). Schemati-
cally, its left hand side forms the kinetic term, while the right hand side is the
collision term or the collision integral. In equilibrium the kinetic term vanishes.
This implies, in turn, that the self-energy possesses the same structure as the Green
function: :K = :R ◦ F − F ◦:A. The latter is not the case, however, away from
equilibrium.

5.4 Real bosonic fields

We briefly repeat now the construction of the interacting field theory for the case
of real boson fields, such as, e.g., elastic phonons. To this end we consider a
toy model of a d-dimensional “quantum membrane.” It is formed by a lattice
of quantum particles, where a displacement of an i-th particle from the corre-
sponding lattice point is denoted as ϕi. For simplicity we consider ϕ as a scalar,
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which may be, e.g., a transversal deformation of the membrane. We assume that
the particles interact through some short-ranged potential, which leads to a bend-
ing rigidity κ of the membrane. The corresponding contribution to the energy is
U = (κ/2a4)

∑
i(∇2ϕi)

2, where ∇ is the lattice gradient operation and a is the
lattice constant. In essence, the energy is paid for the curvature of the membrane.
Furthermore, we also assume that each site experiences a static potential V (ϕi),
created by, e.g., an external substrate. Being expanded around its minimum, such a
potential may be written as

V (ϕ) = ω2
0

2
ϕ2 + γ

6
ϕ3 + · · · . (5.25)

The Keldysh action of an individual quantum particle is given by Eq. (3.4).
Generalizing it for the lattice, one finds

S[ϕ] =
∫

C
dt
∑

i

(
1
2
ϕ̇ 2

i −
κ

2a4
(∇2ϕi)

2 − V (ϕi)

)
, (5.26)

where ϕi = ϕi(t) with t running along the closed time contour. We take now the
continuum limit by introducing the displacement density field ϕ(r, t), where r is
the coordinate in the d-dimensional space of the membrane. In terms of this scalar
real field the action takes the form

S[ϕ] =
∫

C
dt
∫

dr
[

1
2

(
ϕ̇ 2 − κ (∇2

rϕ)2 − ω2
0 ϕ

2
)
− γ

6
ϕ3
]

. (5.27)

Performing the Keldysh rotation according to ϕcl,q = (ϕ+ ± ϕ−)/2, one finds
for the quadratic part of the action (5.27)

S0 = 1
2

∫
dr

∞∫

−∞

dt
(
ϕcl,ϕq)

(
0 −2(∂2

t +κ∇4
r +ω2

0)

−2(∂2
t +κ∇4

r +ω2
0) −0[∂t , F]

)(
ϕcl

ϕq

)
.

(5.28)
The matrix in the action is the inverse bare Green function D̂−1

0 . As before its
Keldysh q – q component is a pure regularization, showing the way the matrix is
to be inverted. Neglecting the cubic non-linearity, the correlator of the real fields is
given by the bare Green function

Dαβ
0 (r, r′, t, t ′) = −i

∫
D[ϕcl,ϕq] ϕα(r, t)ϕβ(r′, t ′) eiS0[ϕcl,ϕq], (5.29)

which possesses the standard causality structure

Dαβ
0 (r, r′, t, t ′) =

(
DK

0 (r− r′, t − t ′) DR
0 (r− r′, t − t ′)

DA
0 (r− r′, t − t ′) 0

)
. (5.30)
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As discussed in Section 3.1, the matrix D̂ is symmetric (unlike the case of the
complex field). The Fourier transforms of the three non-zero components of the
bare Green function, according to Eq. (3.13), are

DR(A)
0 (k, ε) = 1

2
1

(ε ± i0)2 − ω2
k
, (5.31a)

DK
0 (k, ε) = F(ε)

[
DR(k, ε)− DA(k, ε)

]
, (5.31b)

where the dispersion relation for our model is given by ω2
k = κk4 + ω2

0, but the
construction may be generalized to accommodate an arbitrary dispersion ωk. Due
to the symmetry of the Green function the distribution function F(ε) must be an
odd function of energy ε. In equilibrium it takes the form Feq(ε) = coth(ε/2T ).

The cubic non-harmonicity of the action (5.27) after the Keldysh rotation leads
to the following non-linear term in the action:

Sint = −
∫

dr
∫ +∞

−∞
dt
[
γ
(
ϕcl)2

ϕq + γ

3

(
ϕq)3

]
. (5.32)

The normalization condition (2.53) is again satisfied. Diagrammatically, the cubic
non-linearity generates two types of vertex, Fig. 5.5: one with two classical fields
(full lines) and one quantum field (dashed line), and the other with three quantum
fields. The former vertex carries the factor γ , while the latter has γ /3. Note that
for the real field the lines do not have a direction.

Similarly to the case of the complex field, one may check that addition of the
interaction action does not affect the normalization identity Z = 1. This prop-
erty is based on the identity DR

0 (t, t) + DA
0 (t, t) = 0 and the rule of thumb

DR
0 (t, t ′)DA

0 (t, t ′) = 0, explained in Section 5.2. The Green function, on the other
hand, is affected. The effect of non-linearity on the dressed Green function D̂(x, x ′)
is described by the Dyson equation

(
D̂−1

0 − :̂
)
◦ D̂ = 1̂, (5.33)

where :̂(x, x ′) is the self-energy of real bosons, possessing the causality structure,
Eq. (5.17), and calculated in the next paragraph to second order in γ . The retarded
and advanced components of the Dyson equation take the form

ϕq ϕq

ϕq

ϕq

ϕcl

ϕcl

γ γ/3

Fig. 5.5 Graphic representation of the two interaction vertices of the ϕ3 theory.
Note the relative factor of one third between them.
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−
(
2∂2

t + 2κ ∇4
r + 2ω2

0 +:R(A)
)
◦ DR(A)(x, x ′) = δ(t − t ′)δ(r− r′). (5.34)

The Keldysh component of the Green function is again convenient to parametrize
as DK = DR ◦ F− F ◦DA, see Eq. (2.49), where F(x, x ′) is a Hermitian matrix in
the space-time domain. The Dyson equation for the Keldysh component then takes
the form of the kinetic equation for the two-point distribution function F(x, x ′):

[(
2∂2

t + 2κ ∇4
r + 2ω2

0

) ◦, F
]

= :K −
(
:R ◦ F − F ◦:A) . (5.35)

The commutators involved in the kinetic term read [∂2
t
◦, F] = (∂2

t − ∂2
t ′)F(x, x ′)

and [∇4
r
◦, F] = (∇4

r − ∇4
r′)F(x, x ′). Finally [ω2

0
◦, F] = 0; one may allow, though,

for some space- and/or time-dependent function ω0(x), in the latter case [ω2
0
◦, F] =

(ω2
0(x) − ω2

0(x ′))F(x, x ′). The self-energy components on the right hand side of
Eq. (5.35) are calculated in the following sections.

5.5 Self-energy

Let us demonstrate that the self-energy matrix, :̂, indeed possesses the causality
structure, Eq. (5.17). To this end, we consider the real boson field with the γϕ3

non-linearity, Eq. (5.32), and perform calculations up to second order in the non-
linearity γ . Employing the two vertices of Fig. 5.5, one finds the following.

(i) The cl – cl component of the self-energy (i.e. the diagram having two classi-
cal external legs) is given by the single diagram, depicted in Fig. 5.6(a). The
corresponding analytic expression is

:cl−cl(x, x ′) = 4iγ 2 DR
0(x, x ′)DA

0(x, x ′)=0.

Indeed, the product DR
0 (t, t ′)DA

0 (t, t ′) has no support in the time domain
(see the discussion in Section 5.2).

(ii) The cl – q (advanced) component is given by the single diagram Fig. 5.6(b).
The corresponding expression is

:A(x, x ′) = 4iγ 2 DA
0 (x, x ′)DK

0 (x, x ′). (5.36)

t

(a)

t'

(b)

t' t

(c)

t'

t

(d)

t' t

t

(e)

t' t

(f)

t'

γ

γ γ γ /3 γ γ γ /3

γ γ γ γ γ

Fig. 5.6 Self-energy diagrams for the ϕ3 theory.
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Since :A(t, t ′) ∼ DA
0 (t, t ′) ∼ θ(t ′ − t), it is, indeed, an advanced (upper

triangular) matrix in the time domain. There is a combinatoric factor of 4,
associated with the diagram (four ways of choosing external legs × 2 internal
permutations × 1/(2!) for having two identical vertices).

(iii) The q – cl (retarded) component is given by the diagram of Fig. 5.6(c):

:R(x, x ′) = 4iγ 2 DR
0 (x, x ′)DK

0 (x, x ′), (5.37)

which is, in fact, the Hermitian conjugation of Eq. (5.36): :R =
[
:A
]†. Since

:R(t, t ′) ∼ DR
0 (t, t ′) ∼ θ(t − t ′), it is indeed a retarded (lower triangular)

matrix.
(iv) The q – q (Keldysh) component is given by the three diagrams, Fig. 5.6(d)–(f).

The corresponding expression (sum of these diagrams) is

:K(x, x ′) = 2iγ 2[DK
0(x, x ′)

]2+ 6i
(γ

3

)
γ
[
DA

0 (x, x ′)
]2+ 6iγ

(γ
3

) [
DR

0 (x, x ′)
]2

= 2iγ 2
([

DK
0 (x, x ′)

]2 +
[
DR

0 (x, x ′)− DA
0 (x, x ′)

]2
)

. (5.38)

The combinatoric factors are 2 for diagram (d) and 6 for (e) and (f). In the
last equality the fact that DR

0 (t, t ′)DA
0 (t, t ′) = 0, due to the absence of support

in the time domain, has been used again. Employing the symmetry properties
of the Green functions, one finds :K = −

[
:K
]†. This demonstrates that the

self-energy :̂ possesses the same structure as D̂−1
0 . One may check that this

statement is not restricted to second order in γ , but holds in higher orders
as well.

5.6 Wigner transformation

The distribution matrix F(x1, x2) = F(r1, t1, r2, t2) is a function of the two space-
time points. It is usually difficult to solve the kinetic equations (5.24) or (5.35) in
full generality. One may often take advantage of scale separation between intrin-
sic microscopic space and time scales and the extrinsic ones, dictated by external
perturbations and/or a measurement apparatus. In many instances the latter scales
are macroscopic, or at least mesoscopic, and thus are much greater than the former
ones. If this is indeed the case, the kinetic theory may be greatly simplified. Most
elegantly, it is achieved with the help of the Wigner transformation (WT).

We employ combined notation for space-time x = r, t and momentum-energy
p = k, ε, with px = kr− εt . For a two-point function A(x1, x2) one may change
the variables to the central point coordinate x = (x1+x2)/2 and the relative coordi-
nate x ′ = x1−x2, such that x1,2 = x±x ′/2. One then performs a Fourier transform,
going from the relative coordinate x ′ to its Fourier image p. As a result, the Wigner
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transform of the two-point function A(x1, x2) is a function of the central coordinate
x and the relative momentum p, i.e. A(x, p), defined as

A(x, p) =
∫

dx ′ e−ipx ′ A
(

x + x ′

2
, x − x ′

2

)
. (5.39)

The WT of A†(x1, x2) = [A(x2, x1)]∗ is simply [A(x, p)]∗. The inverse WT takes
the form

A(x1, x2) =
∑

p

eip(x1−x2) A
(

x1 + x2

2
, p
)

, (5.40)

where
∑

p = ∑
k

∫
dε/(2π) .

Let us consider now a two-point function C = A ◦ B, which means C(x1, x2) =∫
dx3 A(x1, x3)B(x3, x2). According to the above definitions its WT is given by

C(x, p) =
∫

dx ′e−ipx ′
∫

dx3

∑

p1,p2

eip1(x+x ′/2−x3)+ip2(x3−x+x ′/2)

A
(

x + x ′/2 + x3

2
, p1

)
B
(

x3 + x − x ′/2
2

, p2

)
.

We change coordinate variables from x3, x ′ to xa,b = x3 − x ± x ′/2 and shift
momenta as pa,b = p1,2 − p to obtain

C(x, p) =
∫∫

dxadxb

∑

pa ,pb

ei(pbxa−pa xb) A
(

x+ xa

2
, p+ pa

)
B
(

x+ xb

2
, p+ pb

)
.

We now formally expand the A and B functions in Taylor series in momenta
pa,b. The corresponding integrals over momenta may be evaluated employing∑

p e±ipx pn = (∓i)nδ(n)(x), where δ(n) denotes the n-th derivative of the delta-
function. Subsequently, the integrals over coordinates xa,b may be also evaluated,
leading to the formally exact expression

C(x, p) = A (x, p) e
i
2 (
←−
∂ x
−→
∂ p−
←−
∂ p
−→
∂ x ) B(x, p), (5.41)

where the arrows show the direction of the differentiation, and the scalar products
in the exponent are ∂x∂p = ∇r∇k − ∂t∂ε .

This formally exact result is most useful when the exponential operator on its
right hand side may be expanded and only the few lowest order terms kept. It
is a legitimate procedure when the operator ∂x∂p may be regarded as small, i.e.
if (δx)(δp) 3 1, where δx and δp are characteristic scales at which the x and
p arguments of the WT functions change. This in turn implies that the two-point
functions of interest, say A(x1, x2), are relatively slow functions of the central coor-
dinate x = (x1 +x2)/2 and relatively fast functions of the distance between the two
points x ′ = x1−x2. The ultimate example is translationally invariant functions, e.g.
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A(x1 − x2) = A(x ′), for which ∂x = 0 and therefore only the zeroth order term in
the expansion of the exponent in Eq. (5.41) survives, leading to C(p) = A(p)B(p),
which is, of course, the well-known convolution theorem of the Fourier analysis.
For the case where dependence on the central coordinate x is slow one finds

C = AB + i
2

(
∂x A∂p B − ∂p A∂x B

)
+ · · · , (5.42)

where the arguments of all the functions are (x, p). As a result, WT is a tool to
approximately substitute convolutions of two-point functions by algebraic prod-
ucts of the Wigner transforms and their derivatives. In the same approximation one
finds for the commutator of two-point functions

[A ◦, B] WT→ i
(
∂x A∂p B − ∂p A∂x B

)
+ · · · , (5.43)

i.e. the classical Poisson bracket.
For an algebraic product of two-point functions, as, e.g., in Eqs. (5.36)–(5.38),

C(x1, x2) = A(x1, x2)B(x1, x2), one finds after WT

C(x, p) =
∑

q

A (x, p − q) B (x, q) . (5.44)

5.7 Kinetic term

A one-point function, such as, e.g., V cl(x), should be considered as its own WT,
which is momentum p independent. We find thus for the commutator in the kinetic
term of Eq. (5.24)

[V cl ◦, F] WT→ i∂x V cl(x)∂p F(x, p) = i∇rV cl∇k F − i∂t V cl∂εF,

where F(x, p) = F(r, t, k, ε) is the WT of the two-point function F(r1, t1, r2, t2).
We turn now to the other commutators in the kinetic terms on the right hand
sides of the kinetic equations (5.24) and (5.35). The WT of the translationally

invariant operator i∂t is ε, as a result [i∂t
◦, F] WT→ i∂εε∂t F = i∂t F , in a similar way

[−∂2
t
◦, F] WT→ i∂εε2∂t F = 2iε∂t F . Finally, the WT of the operator −∇2

r is k2 and

thus [−∇2
r
◦, F] WT→ −i∇kk2∇r F =− 2ik∇r F . For a generic dispersion relation

ωk one finds [ω2
k
◦, F] WT→ −2iωkvk∇r F , where we introduced the group veloc-

ity as vk = ∇kωk. As for the right hand side of Eqs. (5.24) and (5.35), one finds
for its WT

:K − F
(
:R −:A

)
− i∂x

(
Re:R)∂p F + i∂p

(
Re:R)∂x F,

where we took into account that :A(x, p) = [:R(x, p)]∗.
Combining all the pieces together, one finds for the WT of the kinetic equation

(5.24) for the complex boson field
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[(

1− ∂εRe:R)∂t + (∂t Ṽ )∂ε + ṽk∇r − (∇rṼ )∇k

]
F = I coll[F], (5.45)

where

Ṽ (x, p) = V cl(x) + Re
[
:R(x, p)

]
; ṽk = ∇k(ωk + Re:R) (5.46)

and the right hand side, known as the collision integral, is

I coll[F] = i:K(x, p) + 2F(x, p) Im
[
:R(x, p)

]
. (5.47)

Notice that in a static, i.e. ∂t = 0, (including spatially non-uniform) situation any
function F(ε) which depends on the energy argument only, nullifies the left hand
side of the kinetic equation (5.45). As we shall see in the next section, there is one
such function Feq = coth(ε −µ)/2T , which also nullifies its right hand side. This
is the equilibrium solution.

To make progress away from equilibrium, one changes the energy argument of
the distribution function as

F(r, t, k, ε) = F̃(r, t, k, ε − ωk − Ṽ ). (5.48)

One may check that the distribution function F̃ , defined this way, satisfies the equa-
tion which differs from Eq. (5.45) only by the absence of the (∂t Ṽ )∂ε term on the
left hand side. Thus there is no derivative over the last argument in the equation
for F̃ . Should the collision integral depend only on the same local value of the
renormalized energy ε̃ = ε − ωk − Ṽ , the kinetic equations for different ε̃s would
split and would not talk to each other. Strictly speaking, this is never the case. That
is, the collision integral is actually a non-local function of ε̃ = ε̃(x, p) in both the
energy and space-time directions. However, in many cases the distribution function
F̃(r, t, k, ε̃) is a much slower function of ε̃ than GR − GA. The latter is a sharply
peaked function at ε̃ = 0 with the width given by the inverse quasiparticle lifetime
1/τqp. As long as the characteristic energy scale δε̃ of the distribution function
F̃(r, t, k, ε̃) is much larger than it, δε̃ 3 1/τqp, one may approximately disregard
the ε̃ dependence of F̃ in the collision integral. Indeed, the distribution function,
by its definition Eq. (2.49), always shows up in a product with WT of GR − GA.
Since the latter is a sharp function of the renormalized energy at ε̃ = 0, one may
approximately put that

F̃(r, t, k, ε̃) ≈ F̃(r, t, k, 0) ≡ F̃(r, t, k) (5.49)

and write down a closed kinetic equation for the three-argument, or the mass-
shell restricted distribution function F̃(r, t, k).2 As long as quasiparticles are well

2 The mass-shell distribution function may be defined as F̃(r, t, k) =
∫

dε F(r, t, k, ε)δ(ε − ωk − Ṽ ). For free
non-interacting particles GR − GA = −2π iδ(ε − ωk), while GK = F(GR − GA) and thus this definition is
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defined, i.e. δε̃τqp 3 1, the WT of GR − GA remains a sharply peaked function at
ε = ε(r, t, k) satisfying

ε − ωk − V cl(r, t)− Re:R(r, t, k, ε) = 0, (5.50)

cf. Eq. (5.21). As a result, all observables are approximately (in the leading order
in (δε̃τqp)

−1) determined by F̃(r, t, k). Such a “mass-shell” distribution function
obeys the following closed kinetic equation:

[
Z̃−1 ∂t + ṽk∇r − (∇rṼ )∇k

]
F̃(r, t, k) = I coll[F̃], (5.51)

where Z̃−1(r, t, k) = 1 − ∂εRe:R. It is important that velocity and exter-
nal potential are renormalized according to Eq. (5.46) and the energy argument
ε = ε(r, t, k) of all functions is taken as the solution of Eq. (5.50).

The “mass-shell” distribution function F̃(r, t, k) is essentially a classical object.
It may be considered as a time-dependent probability of finding a particle at a given
point of the classical phase space (r, k). The quantum mechanics modifies the dis-
persion relation along with the effective potential and the quasiparticle weight Z̃
as well as (possibly) the collision integral. The kinetic equation (5.51) provides
thus a semiclassical approximation of the full quantum description. It is instruc-
tive to compare the kinetic term (i.e. the left hand side) of Eq. (5.51) with that
of the Fokker–Planck equation (4.30). Provided Z̃ = 1, both may be written as
∂t . . . − {E, . . .}, where the curly brackets stand for the classical Poisson brackets
and the classical Hamiltonian is E(k, r) = ωk + Ṽ (r, k). One observes, therefore,
that the mass-shell distribution function F̃(r, t, k) has basically the same meaning
as the classical probability distribution function P(R, K, t). The right hand side of
the Fokker–Planck equation (4.30), being linear in P , is different from the collision
integral (see Section 5.8). The latter is a non-linear functional of the distribution
function F̃ . This difference originates from the fact that in the classical problems
of Chapter 4 the bath was assumed to be passive and independent of the state of the
system. In the present context the many-body system serves as a “bath” for itself.

equivalent to F̃(r, t, k) = i
∫
(dε/2π) GK(r, t, k, ε) = iGK(r, k, t, t). It is therefore frequently stated that the

mass-shell distribution function is equivalent to the Keldysh Green function at the coinciding time arguments.
As explained in Section 2.8, the latter is given by 2nB(k) + 1, where nB(k) is the occupation number of the
state k. This latter relation between the equal-time Keldysh function and the occupation number is generic
and remains true even in the interacting case. However, the relation between the equal-time Keldysh function
and the mass-shell distribution function F̃ is not. It is restricted to the non-interacting case, where GR −
GA = −2π iδ(ε − ωk). It is therefore important to stress that the kinetic equation is written for the mass-shell
distribution function F̃(r, t, k) and not for the equal-time Keldysh Green function GK(r, k, t, t). In particular,
in equilibrium F̃ = coth(ωk − µ)/2T is always a solution of the kinetic equation. On the other hand, the
occupation number nB(ωk) even in equilibrium may be very different from the Bose (or Fermi) distribution.
The most famous example probably comes from the fermionic 1d Luttinger model [67], where the occupation
number at T = 0 is not a Fermi step-function, but rather a power-law non-analytic function. This function is
not a solution of the kinetic equation; in equilibrium the latter is solved by the Fermi distribution.
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This latter “bath”, however, is not passive and depends on the local state of the
system. Hence the non-linear character of the collision term. Such a non-linearity
is still a classical phenomenon (though specific transition rates may, of course,
incorporate quantum mechanics in an essential way).

Finally let us formulate the kinetic equation for real boson quasiparticles, such
as, e.g., elastic phonons. The Wigner transform of the kinetic term of the real boson
Dyson equation (5.35) takes the form

[
∂ε
(
2ε2 − Re:R)∂t + ∂t Re:R∂ε + ∇k

(
2ω̃2

k

)
∇r − ∇r(2ω̃2

k)∇k

]
F,

where ω̃2
k = ω2

k + Re:R/2. Due to the symmetries of the real boson Green
functions, the distribution function F obeys

F(r, t, k, ε) = −F(r, t,−k,−ε). (5.52)

Changing the energy argument of the distribution function and acknowledging that
ε ≈ ±ω̃k, one arrives at the three-argument “mass-shell” distribution function

F(r, t, k, ε) = s F̃(r, t, sk, ε2 − ω̃2
k)→ s F̃(r, t, sk, 0), (5.53)

where s = sign(ε). Such a “mass-shell” distribution function obeys the closed
kinetic equation [

∂t + vk∇r

]
F̃(r, t, k) = I coll[F̃], (5.54)

where for simplicity we disregarded the dispersion renormalization by the real part
of the self-energy. We also took ε = ωk > 0, that brings the collision integral to
the following form:

I coll[F̃] = 1
4ωk

(
i:K(x, p) + 2F(x, p) Im

[
:R(x, p)

])∣∣∣∣
ε=ωk

. (5.55)

Notice that taking ε = −ωk < 0 is equivalent to making a k→−k substitution in
the kinetic equation (5.54).

5.8 Collision integral

We discuss now the collision integral, using real bosons with cubic non-linearity,
Section 5.5, as an example. The collision integral for complex bosons is con-
sidered in Section 7.7. The proper collision integral is given by Eq. (5.55). To
be consistent with the approximations adopted in the derivation of the kinetic
term above, we need to restrict ourselves to products of WT only. In particular,
DK

0 (x, p) ≈ F(x, p)[DR
0 (x, p) − DA

0 (x, p)]. Even though the Green functions
here are the bare ones, the distribution function F is not determined by the dynam-
ics of the free bosons. We should allow F to be self-consistently determined by
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the kinetic part of the Dyson equation. Employing Eqs. (5.36)–(5.38) along with
Eq. (5.44), one finds for the corresponding parts of the collision integral

i:K(x, p) = 8π2γ 2
∑

q

8(x, p− q)8(x, q)
[

F(x, p− q)F(x, q)+ 1
]
, (5.56a)

2Im[:R(x, p)] = −8π2γ 2
∑

q

8(x, p − q)8(x, q)
[

F(x, p − q) + F(x, q)
]
,

(5.56b)
where the right hand side of the last equation is symmetrized with respect to
arguments p − q = k− q, ε − ω and q = q,ω. Here we defined

8(x, p) = i
2π

[
DR

0 (x, p)− DA
0 (x, p)

]
= 1

4ωk

(
δ(ε−ωk)− δ(ε+ωk)

)
. (5.57)

To include the renormalization of the dispersion relation ωk by the real part of the
self-energy, one may use here the dressed Green functions D. This corresponds to
the so-called self-consistent Born approximation, where the self-energy diagram is
evaluated using self-consistently defined Green functions. Such an approximation
neglects vertex corrections which may lead to a renormalization of the interaction
parameter γ → ;α,α

′,α′′(q, p−q), where α = cl, q. In some cases the full ; may be
found from independent considerations, in general one should write an additional
equation for the vertex tensor and solve it in an approximation consistent with that
for the self-energy.

Employing Eqs. (5.55) and (5.56), one finds for the collision integral

I coll[F] = 2π2γ 2

ωk

∑

q

8(x, p − q)8(x, q)

×
[

F(x, p − q)F(x, q) + 1− F(x, p)
(
F(x, p − q) + F(x, q)

)]
. (5.58)

The combination of the distribution functions in the square brackets is a very gen-
eral construction, which repeats itself in higher orders in γ . Thanks to the energy
delta-functions incorporated in the 8(x, p) symbols and the “magic” identity:

coth(a) coth(b) + 1 = coth(a + b)
(

coth(a) + coth(b)
)
, (5.59)

the collision integral is identically nullified by the equilibrium Bose distribution
F(r, t, k, ε) = Feq(ε) = coth(ε − µ)/2T , where T and µ are yet unspecified
temperature and chemical potential. For real bosons, due to the requirement that
F is an odd function of energy, one has to choose µ = 0. As explained after
Eq. (5.47), any function F = F(ε) also nullifies the kinetic term in a stationary
situation. As a result, the thermal equilibrium distribution function F eq(ε) solves
the kinetic equation. Such a solution is (locally) stable for any temperature (the
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latter is determined either by an external reservoir, or, for a closed system, from
the conservation of total energy). Since the equilibrium distribution obviously nul-
lifies both left and right hand sides of Eq. (5.35) the exact equilibrium self-energy
satisfies :K = coth(ε/2T )

[
:R − :A

]
. Since also the bare Green functions obey

the same relation, Eq. (2.48), one concludes that in thermal equilibrium the exact
dressed Green function satisfies

DK(r, k, ε) = coth
ε

2 T

(
DR(r, k, ε)− DA(r, k, ε)

)
. (5.60)

This is the statement of the fluctuation–dissipation theorem (FDT). Its consequence
is that in equilibrium the Keldysh component does not contain any additional infor-
mation with respect to the retarded one. Therefore, the Keldysh technique may be,
in principle, substituted by a more compact construction – the Matsubara formal-
ism. The latter does not work, of course, away from equilibrium. Notice that the
Green functions may still be space dependent, since the equilibrium implies only
stationarity, but not translational invariance in space.

To make progress away from equilibrium, one needs to restrict the two-point
function F to the mass-shell function F̃ according to Eq. (5.53). This is possible
due to the fact that8(x, p− q) and8(x, q) are sharply peaked at ε−ω = ±ωk−q

and ω = ±ωq, while the external argument is to put ε = ωk > 0. Once the
distribution functions are restricted to the “mass-shell,” the energy dependence in
Eq. (5.58) is explicitly specified by Eqs. (5.53) and (5.57). Thus one can perform
the ω-integration explicitly with the help of the delta-functions and find for the
collision integral

I coll[F̃(k)] = πγ 2

16ωk

∑

q

1
ωk−qωq

×
{
δ(ωk − ωq − ωk−q)

[
F̃(k− q)F̃(q) + 1− F̃(k)

(
F̃(k− q) + F̃(q)

)]

+ δ(ωk + ωq − ωk−q)
[

F̃(k− q)F̃(−q)− 1 + F̃(k)
(
F̃(k− q)− F̃(−q)

)]

+ δ(ωk − ωq + ωq−k)
[

F̃(q− k)F̃(q)− 1− F̃(k)
(
F̃(q− k)− F̃(q)

)] }
,

(5.61)

where we have suppressed slow space-time argument r, t in the distribution func-
tions F̃(r, t, k) → F̃(k). There are three types of process allowed by energy
conservation. To appreciate the structure of the corresponding terms it is conve-
nient to express their rates through the boson occupation number nq related to the
distribution function as F̃(q) ≈ 2nq + 1.3 Then the rate of the first process is

3 As discussed in the footnote after Eq. (5.49), this relation is only approximate, valid to the leading order in
(δε̃τqp)−1.
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proportional to [nk−qnq − nk(nk−q + nq + 1)]. It states that the state k may be
populated due to the merging of particles from states q and k− q and depopulated
due to stimulated emission of k− q and q phonons, or spontaneous emission. The
rate of the second process is proportional to [nk−q(n−q + nk + 1) − nkn−q]. Here
the state k may be populated due to stimulated or spontaneous decay of a higher
energy state k−q and depopulated by merging with a particle in a state−q. Finally
the rate of the third process is proportional to [nq(nq−k +nk +1)−nknq−k] and the
physics is the same as in the second process with states q and k− q interchanged.

Within the mass-shell approximation the equilibrium solution of the kinetic
equation (5.61) takes the form F̃eq(r, k) = cothωk(r)/2T , which is, in general,
a function of coordinates and momenta. Since on the mass-shell ε = ωk(r), this is
consistent with Feq(r, k, ε) = coth ε/2T . The latter statement is exact, while the
mass-shell one is only an approximation valid for well-defined quasiparticles.

For the dispersion relation of the quantum membrane ωk =
√
ω2

0 + κk4 , the
energy conservation law ωk = ωq + ωk−q may be satisfied for k > kc, where
k4

c = 4ω2
0/κ . For smaller momenta k < kc the cubic non-linearity alone does

not provide relaxation of the distribution function. Therefore it does not lead to
thermalization, if the resulting temperature is too small T ! 2ω0. On the other
hand, if a high-energy k 3 kc mode is excited it decays onto q and k − q modes
with almost perpendicular momenta. To find the corresponding relaxation time we
restrict the collision integral to the spontaneous emission part in the first term in
Eq. (5.61) and find ∂t nk = −nk/τk, where

1
τk

= πγ 2

8ωk

∑

q

δ(ωk − ωq − ωk−q)

ωk−qωq
= 3

128π
γ 2

κ2k5
ln
(

k
kc

)
, (5.62)

for d = 3.
Finally, let us discuss approximations involved in the Wigner transformations. It

is a justified procedure as long as δk δr 3 1, where δk is a characteristic micro-
scopic scale of the momentum dependence of the distribution function, while δr
is a characteristic scale of its spatial variations. One may ask if there is a similar
requirement in the time domain: δε δt 3 1, with δε and δt being the characteris-
tic energy and the time scale, respectively. Such a requirement is very demanding,
since typically δε ≈ T and at low temperature it would allow us to treat only
very slow processes with δt 3 1/T . Fortunately, this is not the case. Because of
the peaked structure of 8(k, ε), the energy argument ε is locked to ω̃k (i.e. to the
“mass-shell”) and does not have its own dynamics as long as the peak is sharp.
The actual criterion is therefore that δε is much larger than the width of the peak
in 8(k, ε). The latter is the inverse quasiparticle lifetime, 1/τqp , and therefore the
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actual condition is τqp 3 1/T . This condition is indeed satisfied in systems with
well-defined quasiparticles. Notice that this is exactly the same condition which
we employed to justify the restriction of the distribution function to the mass-shell,
see Eq. (5.49) and the discussion below it. This is thus a necessary condition for
the applicability of the quasi-classical kinetic equation.


