2.2. Linear Stability Analysin + Trausition to

Trbbulare
In the care of twoulat couvection, the suracentiol instability of the laminor state is segaated from turbulance by a seres of instabitities to different bypes of pattern.
(i) Pipe flow

Pressure gradient $\frac{d p}{d x}<0$

$$
\begin{aligned}
& \underline{v}=\left(1-\frac{r^{2}}{a^{2}}\right) u_{c} \hat{x} \\
& \frac{d p}{d x}=-\nu \frac{4 u_{c}}{a^{2}}
\end{aligned}
$$

Stability about this solution: stadle up to $\operatorname{Re}=10^{7}$ belief that smooth gipes are bresly otathe.
2021: Hall\& Ozcakir: Roughren of

$$
\begin{aligned}
& \text { scale } \epsilon \rightarrow R_{C} \sim\left(\epsilon^{-3 / 2}|\log \epsilon|^{-3 / 4}\right. \\
& C=O(30)
\end{aligned}
$$

(ii) Plane Couette Flow

Linearly stable (Romani 1973$\left.)<{ }_{\text {but }}\right)<$
but expt \rightarrow twotudnce $\operatorname{Rc}>350$
(iii) Plane Poisenille Flow

Pressie driven flow.

\qquad

Lines instability: $R_{c}=5772=U_{c} h \bar{v}$
\rightarrow discovered by Heiserdey.
But: twhence occas at $R_{c} \sim 1500$, expt.
Conclusion: * Finite amplitude instabilities.
Critical amplitude of distatrence

$$
\epsilon_{c} \sim 1 / \operatorname{Re} \quad(H \circ f)^{\operatorname{PRC} 2003}
$$

* We reed to systematically study sub-critical transition!
§2. Widow Scaling.
There are two stylized facts that were know about critical pheromera in the early 1960's.

Order parámeter scaling

$$
\begin{align*}
& M=M_{0}\left|\frac{T-T_{c}}{T_{c}}\right|^{\beta} \xrightarrow[T \rightarrow T_{c}^{t}]{T_{c}} \quad h \equiv H / k_{b} T_{c} \tag{1}
\end{align*}
$$

Widom and kadanoff realised that together there results are equivalent to

$$
M(t, h)=|t|^{\beta} F_{m}\left(h / t^{\Delta}\right) \quad t<0
$$

where Δ is a new exponent that we'll shortly calculate Q/ What is the function F_{m} and the exponent Δ ?
A/. For (1) to hold, we need $F_{M}(z)=\operatorname{com} t$ for $z=0$

- For large z, i.e. $h \neq 0 \quad t \rightarrow 0$ we reed to recover (2) which mean t must somehow cancel out. This can only happen if $F_{M}(z) \sim z^{1 / 8}$ as $z \rightarrow \infty$.

Then $\quad t^{\beta-\Delta / \delta}=o(1) \Rightarrow \beta \delta=\Delta$

$$
\Rightarrow M(t, h)=t^{\beta} F_{M}\left(h / t^{\beta \delta}\right)
$$

$M(t, h)$ is ostensibly a function of two variables h, t, but near the critical point is actually a function of a "similarity" or "scaling" variable $h / t^{\beta \delta}$.

We can test this as follows. Take sets of data for $t=t_{1}, t_{2}, t_{3}, \ldots \quad h=h_{1}, h_{2}, \ldots$. and plot $\left\{M\left(t_{i}, h_{i}\right)\right\}$ as
\rightarrow Back to slides
83. Predator - Prey Model
3.1 Center and neutral cycles

$$
\begin{aligned}
& A=\text { predator } B=\text { prey } \\
& \text { density density. } \\
& \dot{A}=\rho A B-d A \leq A+B \xrightarrow[\rightarrow]{\xrightarrow{p}} \phi+A \\
& \dot{B}=b B-p A B \geq B \xrightarrow{b} B+B
\end{aligned}
$$

We can easily calculate theady states and share
portrait. portrait.

$$
\begin{array}{ll}
\dot{A}=0 \Rightarrow A(p B-d)=0 & A^{*}=0 \text { or } B^{*}=\frac{d}{p} \\
\dot{B}=0 \Rightarrow \quad B(b-p A)=0 & B^{*}=0 \text { or } A^{*}=\frac{b}{p}
\end{array}
$$

Steady slate: $\quad\left(A^{x}, B^{*}\right)=(0,0) ;\left(A^{*}, B^{*}\right)=(b / p, d / p)$
long-time $\quad A^{z}=0, \quad B \rightarrow \infty$ as $e^{b t}$ as $t \rightarrow \infty$,
Liner stability:

$$
\begin{aligned}
& A=A^{*}+\delta A e^{\omega t} B=B^{x}+\delta B e^{\omega t} \\
& (b / p, d / p) \rightarrow \omega= \pm i \omega_{0} \\
& \omega_{0}=\sqrt{b d}
\end{aligned}
$$

$(0,0)$ unstable
$(0, \infty)$ unstable

$$
\omega_{0}=\sqrt{b b_{d}}
$$

There oscillations about the coexistence fixed point describe a "center"

The phere space is obtained from.

$$
\begin{aligned}
& \frac{d A}{d B}=\dot{A} \dot{B}^{2}=\frac{p A B-d A}{b B-p A B}=\frac{A(p B-d)}{B(b-p A)} \\
& \Rightarrow \int_{0}^{t} \frac{d A}{A} \cdot(b-p A)= \int_{0}^{t} \frac{d B}{B} \cdot(p B-d) \\
& \Rightarrow b \ln A(t)-p A(t)-b \ln A(0)=p B(t)-d \ln B(t) \\
&+p A(0)+d \ln B(0) \\
& \Rightarrow b \ln A(t)+d \ln B(t)-p(A(t)+B(t)) \quad-p B(0) \\
&=b \ln A(0)+d \ln B(0)-p(A(0)+B(0))
\end{aligned}
$$

So $C(t) \equiv b \ln A(t)+d \ln B(t)-p(A(t)+B(t))$

$$
\begin{aligned}
& =C(0) \text { i.e. a corvarved in tegral } \\
& \text { of the motion. }
\end{aligned}
$$

This model predicts periodic oscillations, with trajectory (amplitude/phase) determined by C (0). However, this solution is unphysical because it is structurally unstable.
3.2 Finite carrying capacity.

The FP $A=0, B=B_{0} e^{\text {bt }}$ is unphysical be cane in reality there is a finite amount of food for the prey. So B is bounded
above by what is called "carrying capacity". We model this as

$$
\dot{B}=b B(1-B / k)-p A B
$$

Fixed Points:

$$
\begin{array}{ll}
A^{*}=B^{*}=0 . & \text { Extinction } \\
A^{*}=0 \quad B^{*}=K & \text { Predator death. Prey saturate. } \\
A^{*}=\left(1-\frac{d}{k p}\right) \frac{b}{P} ; \quad B^{*}=d / p \quad \text { Coexistence }
\end{array}
$$

Stability:
Extinction: unstable.
Prey saturation: stable $P<P_{c}=d / k$
Coexistence: $P>P_{c}$ and linearly stable with

$$
\omega=-\frac{d b}{2 k p}\left(1 \pm \sqrt{1-\frac{4 k p}{b}\left(\frac{k p}{d}-1\right)}\right)
$$

Summery: No persistat popaction The phase portrait has stable spiral

To see what has gone using, go back to individual level model.

Q/ How did ecologists deal with this embarrasmout?
A) Let's charge the phagrical picture.

The predation tom $p A B$ only. applies of the concertiction of predator ard prey is small.
But suppose prey concentration is la ge. Predator clos not need yo look for to find a prey to eat. In other worth, prey concentration is not a limiting factor. So

$$
P A B \rightarrow \frac{p A B}{C+B}
$$

where C is a constant.
For $B \ll C, \quad P A B$ is recovered.
For $B \gg C A B \longrightarrow P A$ inder of B.
Thus

$$
\begin{aligned}
& \dot{A}=\frac{p A B}{C+B}-d A \\
& B^{\hat{B}}=b B(1-B / k)-\frac{p A B}{C+B}
\end{aligned}
$$

This non-linear system dies have limit cycles Back to slides!

