
Review	
  of	
  first	
  lecture	
  

Supercooled	
  liquids	
  fall	
  out	
  of	
  equilibrium	
  in	
  two	
  dis8nct	
  ways:	
  
	
  1)	
  They	
  have	
  not	
  been	
  allowed	
  to	
  nucleate	
  and	
  crystallize	
  (this	
  is	
  the	
  more	
  trivial	
  

way	
  of	
  being	
  out	
  of	
  equilibrium	
  
	
  2)	
  	
  Once	
  cooled	
  sufficiently	
  far,	
  the	
  supercooled	
  sample	
  is	
  no	
  longer	
  even	
  in	
  

equilibrium	
  with	
  the	
  liquid	
  state.	
  	
  That	
  is,	
  the	
  8me	
  scale	
  for	
  the	
  relaxa8on	
  in	
  the	
  
sample	
  (τ)	
  crosses	
  the	
  experimental	
  8me	
  scales	
  (set	
  by	
  either	
  the	
  cooling	
  	
  rate	
  or	
  the	
  
frequency	
  of	
  the	
  probe.)	
  
	
  
In	
  glasses,	
  cannot	
  stay	
  in	
  equilibrium	
  with	
  the	
  liquid	
  down	
  to	
  a	
  temperature	
  close	
  to	
  
the	
  transi8on	
  temperature,	
  T0,	
  (if	
  there	
  is	
  one)	
  where	
  the	
  relaxa8on	
  8me	
  diverges.	
  	
  
What	
  makes	
  this	
  different	
  from	
  ordinary	
  cri8cal	
  slowing	
  down	
  associated	
  with	
  any	
  
phase	
  transi8on	
  is	
  that	
  even	
  in	
  the	
  best	
  of	
  circumstances	
  one	
  can	
  only	
  get	
  to	
  about	
  
45	
  K	
  from	
  T0.	
  	
  This	
  is	
  very	
  far	
  away	
  so	
  one	
  cannot	
  probe	
  close	
  to	
  the	
  transi8on.	
  	
  Also,	
  
in	
  e.g.,	
  a	
  ferromagnet,	
  when	
  one	
  cools	
  below	
  the	
  Curie	
  temperature	
  one	
  can	
  again	
  
be	
  in	
  equilibrium.	
  	
  In	
  a	
  glass,	
  one	
  does	
  not	
  return	
  to	
  equilibrium	
  at	
  lower	
  
temperatures.	
  	
  







Quenched	
  vs.	
  unquenched	
  disorder	
  







Spin	
  glass	
  magne8c	
  suscep8bility:	
  	
  LiHo	
  I	
  Fl	
  



Normal	
  modes	
  in	
  “normal”	
  solid	
  
Low-­‐frequency	
  normal	
  modes	
  are	
  long-­‐wavelength	
  plane	
  waves.	
  
Long	
  wavelengths	
  “average”	
  over	
  disorder.	
  
Density	
  of	
  modes,	
  D(ω),	
  from	
  coun8ng	
  waves:	
  

	
   	
  D(ω)	
  ∝	
  ωd-­‐1	
  	
  	
  in	
  d-­‐dimensions.	
  
All	
  solids	
  should	
  behave	
  this	
  way.	
  

D(ω)	
  

ω

D(ω)	
  ∝ ω2	
  in	
  3-­‐D	
  

Debye	
  T3	
  specific	
  heat	
  at	
  low	
  temperatures.	
  



Low-­‐temperature	
  proper8es	
  of	
  glasses	
  

        excess	
  low-­‐T	
  excita8ons	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  thermal	
  conduc8vity	
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  Crystals:	
  	
   	
  Cp	
  =	
  aT3	
  +	
  …	
  
	
   	
   	
   	
  κ	
  =	
  Cp	
  V	
  L	
  ∝	
  T3	
  	
  	
  (V	
  =	
  velocity,	
  L	
  =	
  mean-­‐free	
  path	
  are	
  
	
   	
   	
   	
   	
   	
   	
   	
   	
  constant)	
  



Quantum-­‐mechanical	
  two-­‐level	
  tunneling	
  centers	
  
In	
  glass,	
  par8cles	
  can	
  sit	
  in	
  more	
  than	
  one	
  place.	
  	
  They	
  tunnel	
  between	
  sites.	
  

Creates	
  two	
  states	
  split	
  by	
  tunneling	
  matrix	
  element.	
  
Assume	
  constant	
  distribu8on	
  of	
  such	
  energy	
  spli`ngs,	
  n0.	
  
Leads	
  to	
  linear	
  specific	
  heat.	
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Figure 4. K (  T )  as a function of temperature for a range of glasses (Stephens 1973). 

measured in all these experiments, and the phonon mean free path is much greater 
than the wavelength. Further evidence is provided by measurements of thermal 
conductivity in very thin glass rods which have roughened surfaces to ensure that 
boundary scattering dominates (Pohl er a1 1974, Zaitlin and Anderson 1975). Experi- 
mental values agree with those calculated assuming the existence of sound‘waves. It 
is clear, therefore, that the unexpected thermal properties arise from additional excita- 
tions which both scatter phonons and contribute to the heat capacity. 

Of the various models originally proposed to account for the thermal data, the one 
most widely and successfully used has been the tunnelling or two-level-system model 
(Phillips 1972, Anderson et a1 1972). In this model, to be described in detail in the 
next section, atoms occupying one of two adjacent minima are assumed to tunnel 
quantum mechanically to the other, leading to a splitting of the ground state as in the 
ammonia molecule. The inevitable variations in local environment present in the 
amorphous solid give rise to a distribution of these splittings which is almost constant 
in energy, and  hence to a heat capacity which can be evaluated as 

C ( T )  = n0(E2/4kBT2) sech2(E/2kBT)  d E  (1 - 2 )  I: 
where no is the constant density of states and  the other factor in the integrand is the 
contribution of a single two-level state (Schottky anomaly). Evaluating the integral 
gives 

C ( T ) = ( ~ ’ / 6 ) n o k g ~ T  (1.3) 
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in broad agreement with experiment. These states scatter phonons, leading to a thermal 
conductivity proportional to T2 and to an acoustic attenuation which can be saturated 
at high acoustic intensities. It is this last property that provides the strongest evidence 
for the model which will form the basis for the interpretation of the wide range of 
experimental results discussed in this review. To a large extent the model can be used 
in phenomenological form, and possible microscopic representations will be described 
only in the last section. 

This review is not intended as a detailed evaluation and comparison of experimental 
results in specific glasses, but as a critical description of the way in which the tunnelling 
or two-level-system model can be used to explain a wide range of data. By far the 
largest number of experiments have been performed on vitreous silica, and this material 
will be used as a ‘running example’, although reference will be made to other materials 
when necessary. 

2. Tunnelling states 

2.1. Static description 

In a perfect crystal each atom is constrained by symmetry to occupy a single potential 
minimum. Many defects, however, can be represented microscopically as interstitial 
or substitutional impurity atoms or molecules moving in a multi-minima potential 
provided by the neighbours. Such states have been extensively studied in, for example, 
alkali halides (Narayanamurti and Pohl 1970). At low temperatures a quantum 
mechanical description is necessary, and tunnelling of the atom from one minimum 
to another gives rise to the very small energy splittings (less than eV) needed if 
the states are to be observed in thermal experiments at 1 K and below. 

The tunnelling model proposes that similar states are intrinsic to glasses: an atom 
or group of atoms can occupy one of two (or more) potential minima. This choice at 
the microscopic level is consistent with the experimentally determined excess entropy 
of the glass with respect to the crystal, although the number of atoms contributing at 
low temperatures is only a small fraction of the total. The remainder are essentially 
immobile below the glass-transition temperature Tg . 

Each tunnelling state (TS) can be represented by a particle in a potential of the 
form shown in figure 5(a), where the abscissa may represent the position of one atom 
but more generally is a configurational coordinate describing a combination of the 
coordinates of a number of atoms. The energy levels of the particle are conveniently 
calculated using as a starting point the solutions of the single-well problem, a choice 
of basis set 41 and d2 known as the well, non-diagonal or localised representation 
(figure S(b)). Each state is the ground state of the appropriate potential Vl or V, 
(assumed harmonic in figure 5 ) .  The complete Hamiltonian H can be written as 

H = HI + ( v - v, ) = Hz + ( v - V2) (2.1) 
where H I  and H2 are the individual well Hamiltonians. In the localised representation 
the Hamiltonian matrix becomes 

If the extension of each localised wavefunction into the barrier is small, the terms 
(4il V -  V,14i) can be neglected in comparison to Ei, and if the zero of energy is chosen 
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Figure 5. A double-well potential ( a ) ,  together with the wavefunctions in the localised ( b )  
and diagonal (c )  representations. 

as the mean of E ,  and E * ,  (2.2) becomes 

(2.3) 

where the tunnel splitting A, is given by 

A , =  2{4llf442)* (2.4) 

Notice that only if the wells are identical, apart from a relative shift in energy, is the 
A of (2.3) identical to that of figure 5(a). 

A, can be evaluated for specific potentials: two overlapping harmonic potentials 
in two and  three dimensions (Mertzbacker 1970, Phillips 1981b) and Mathieu’s equation 
for a rigid rotator in two-fold and three-fold potentials (Isnard and  Gilchrist 1981) 
are typical examples. The results all imply a similar exponential dependence of A, on 
the barrier height and well separation, although precise numerical values change from 
one model to another. The use of a particular detailed form cannot be justified in 
amorphous solids (as opposed to crystals) because the microscopic picture is uncertain, 
and  so a simplified expression is usually adequate: 

A , =  h R  e-A = ha exp[-d(2mV,/h2)”*] ( 2 . 5 )  

where hR is approximately equal to ( E ,  + E 2 ) / 2 ,  d is the separation and V, the barrier 
between the two wells, and m is the particle mass. 

Typical values of the tunnelling parameter A can be estimated from the requirement 
that A, must be approximately equal to k B T  if the tunnelling state is to contribute to 
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thermal properties at a temperature T. At 1 K this requires a tunnel splitting of eV, 
which with h R  equal to eV gives approximately 5 for A. This is equivalent to a 
bare proton tunnelling across a barrier of 0.1 eV with d = 0.7 A. 

The matrix (2.3) can be diagonalized to obtain the eigenstates, the true, diagonal 
or  energy representation. These eigenfunctions, illustrated in figure 5 ,  have energies 
* E l 2  where 

E ’ = ( A 2 + A ~ ) 1 ’ 2  (2.6) 

9, = cos 0 + 4 2  sin 0 (2.7) 

~ 2 = ~ 1 s i n O - ~ , c o s 0  (2.8) 

and  can be written in the analytic forms 

where tan 2 0 = A , / A .  In  the symmetric case where A = O  these equations give the 
expected symmetric and  antisymmetric solutions. 

The dipole moment of the tunnelling state can be written in terms of G1 and I,!J2 as  

PI = I 9Tqx*1 d x  

= q [ (4Tx41 cos’ 0 + 4Tx4, sin2 O +  4 7 ~ 4 ~  sin 20)  d x  

if the term involving 4Tx42 can be neglected, and where p o  is the dipole moment when 
the particle is located in one well: 

po  = [ 4Tx4, d x  = - 4 $ x 4 2  dx. I 
Obviously p1 is zero for the symmetric case. 

For this, as for any problem involving two energy levels, there is a formal analogy 
with the problem of a spin-; particle in a magnetic field. The Hamiltonian matrix (2.3) 
can therefore be rewritten in terms of the Pauli spin matrices 

(2.10) 

(or  equivalently in terms of the spin operators S, =+ha,).  After diagonalisation, the 
Hamiltonian takes the obvious form 

H =$EuZ .  

This analogy has important advantages when discussing non-linear and  coherent effects 
in the interaction of tunnelling states with acoustic and electric fields ( §  5). 

A basic feature of the tunnelling state model as applied to amorphous solids is the 
existence of a wide range of values of both the tunnelling parameter A and the 
asymmetry A .  Calculated properties of the states will depend critically on the form 
of the distribution function f ( A ,  A,) for A and Ao,  the latter distribution derived from 
that for A. 

In the case of the asymmetry A it is argued that the distribution function must be 
symmetric because both positive and  negative values of A are equally likely. (No 
singularities are expected for A = 0 because the eigenstates remain non-degenerate.) 
The scale of energy variation is determined by the thermal energy available at the 



Other	
  consequences	
  

	
  Thermal	
  conduc8vity:	
  κ ∝	
  T2	
  (Because	
  mean	
  free	
  path,	
  L	
  ∝	
  1/T) 	
  
	
  Time-­‐dependent	
  specific	
  heat	
  	
  (Because	
  energy	
  spli`ng	
  is	
  due	
  to	
   	
  
	
   	
  both	
  tunneling	
  matrix	
  element	
  and	
  barrier	
  asymmetry)	
  

	
  
	
  

	
  	
  
	
  
	
  
	
  
	
  

	
  Satura8on	
  	
  (Because	
  there	
  are	
  only	
  two	
  states)	
  
	
  Echoes	
  	
  	
  

Get	
  same	
  E	
  by	
  having	
  different	
  energy	
  barrier	
  combined	
  with	
  different	
  asymmetry.	
  
But	
  these	
  have	
  different	
  tunneling	
  8mes.	
  	
  	
  
Therefore	
  specific	
  heat	
  varies	
  with	
  8me.	
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eter'~ in a 'He- He dilution refrigerator for low-
temperature C~ measurements, &&2 K, or a
pulse calorimeter for» 1.5 K. Good agree-
ment was obtained in the region of overlap. The
addendum contributed 2070 of the total heat ca-
pacity at the lowest temperatures. The onset of
superconductivity was observed at T,=2. 53+ 0. 01
K with a (10-90)Vo resistive transition width of
10 mK and a Cp width of 30 mK. The thermal
conductivity of a 0. 5 cm length of ribbon was
measured by a two-heater one-thermometer tech-
nique. " The carbon thermometer was calibrated
during each run against a cerium magnesium ni-
trate-superconducting quantum interence device
(SQUID) thermometer ".Because of the very low
thermal conductance of the sample, the electrical
leads had to be of extremely low thermal conduc-
tance to avoid short thermal paths to the bath.
Each of the six 8-cm-long leads consisted of a
few -5-pm filaments extracted from NbTi fila-
mentary wire. The ambient magnetic field was
less than 1 Oe.
The specific heat (Fig. 1) varies over more

than four orders of magnitude between 0. 1 and
10 K. Below the discontinuity at &„C~ drops
rapidly until &= 0. 4 K, below which a roughly lin-
ear T dependence is visible. The data were fit-
ted above &, by the expression

Cq —A&+BT +CT,
and below T, by

I I I I I I II)

10

10

10

10

q04 I I If
0.1 10

FIG. 1. Heat capacity of the superconducting dis-
ordered metal Zro 7Pdo 3. The solid line is a fit to
the data using Eqs. (1) and (2). The individual compo- .

nents are indicated as follows: . . . ., electrons aboveT„——,electrons below p ~ —.-- phonons; and ——- -,
extra contribution linear in 7'.

CI, = DT +BT'+Eexp(- E/T)
[T/T ](4+&8'g) (2)

In Eq. (1), the first term accounts predominantly
for the normal electronic contribution, while the
second and third terms describe the phonon spe-
cific heat. The first term in Eq. (2) is included
as the simplest representation of the extra spe-
cific heat at the lowest temperatures. We take
the same phonon T' term above and below &„
but neglect the (small) &' term in the supercon-
ducting state. The third and fourth terms in Eq.
(2) represent the contribution of the electrons
below T,. The analytical form of the fourth term
was found to be a convenient representation of the
deviations of the Muhlschlegel numerical calcula-
tions" from a simple exponential. The fourth
term is significant only for 1.5 & T & 2. 53 K.
A nonlinear least-squares fit of Eqs. (1) and

(2) to the data was performed with &,= 2. 53 K.
The various terms" are indicated by broken lines

in Fig. 1 and the sum by the solid line. Good
agreement with the data is obtained except for a
few points at the lowest temperatures which lie
no more than l(Po above the calculated fit. Data
were not taken below 90 mK because of long inter-
nal equilibration times, which may also account
for the high values of the last few points. The
three contributions below T, are comparable at
T = 0. 5 K but the linear term rapidly dominates
at lower T. We note that the coefficient of this
term is 2. $0 of the coefficient of the linear term
above T, . We assume that the linear term below
7, is not due to normal-state electrons, "and
thus it should also be present above T,. The elec-
tronic term is therefore 2. 2' less than A, which,
for comparison, is 4. 3 times larger than that of
Cu. The T' coefficient corresponds to a Debye
temperature OD of 180 K. The ratio of supercon-
ducting- to normal-state electronic specific heat

1481
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at T, is 2. 61, or only 7%%uo larger than expected
from theory. "Alternatively, the exponent I" can
be identified with &o/&II, where &o is the energy
gap at T=0, yielding &o=1.47kBT„or 16%%uo less
than the theoretical value. The material there-
fore seems to be a fairly well-behaved supercon-
ductor.
The thermal conductivity (Fig. 2) is described

quite well below 1 K by a single power law,

g(W cm ' K ')—[(6.6+1)x10 4]T"9"o»

for over an order of magnitude in temperature.
Above T„ the data vary linearly as ~ (W cm '
K ') = (6.7&&10 ')T. The Wiedemann-Franz law
predicts an electronic thermal conductivity which
is only one-sixth of the observed &, indicating
that w is dominated by phonon conduction above

The observed & above &, agrees both in mag-
nitude, within 5(P/o, and in temperature depen-
dence, linear in &, with the phonon conductivity
expected from normal electron-phonon interac-
tions. ' The rise in ~ just below T, can then be
understood as decreased phonon-electron scat-
tering due to the rapidly decreasing number of
normal-state electrons below &,. The &"de-

pendence of & must therefore arise from some
other scattering mechanism. Even though we
expect the phonon mean free path to become corn-
parable with the sample thickness below 0. 3 K,
we do not observe behavior characteristic of
boundary scattering. '"
The linear specific heat and approximately

quadratic thermal conductivity of this material
below &, are strikingly similar to those proper-
ties in typical insulating glasses, ' for which the
coefficient of the linear term in C~ lies in the
range (0. 4-6) && 10 ' mJ/gE' and the coefficient of
the T'9 thermal conductivity is in the range 10 4-
10"'W cm ' K '. The present values are thus
near the low end of the C~ range and the high end
of the I(.

' range. If we interpret the linear specific
heat as arising from two-level configurational
systems as in amorphous insulators, we obtain
a density of states"

In the Debye approzimatipn" we find eD—180 K
and estimate a transverse phonon velocity e~
—= 1.6&10' cm/sec. We can then use the expres-
sion for phonon conductivity as limited by reso-
nant scattering from two-level states, "

K (T) = 1.645 (pkB '/IT'h') (vt. /nyl, ' +2vr/nz r') T',

10 I I I I I I I

E
1O'

I-
0
I-
O
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C3
O

UJ~ 104
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I I I I I I I II
10
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FIG. 2. Thermal conductivity of the superconducting
disordered metal Zrp yPdp

to determine ny&' if we make the reasonable as-
sumptions that ~1. ——2v& and yl. '—2y~', where yl.
and y~ are the deformation potentials for the two-
level systems coupled to longitudinal and trans-
verse phonons, respectively. Here, ~™is the den-
sity of two-level systems which are active in res-
onantly absorbing phonons and which for fused
silica is" approximately 4%%uo of n„ the density of
states calculated from the linear heat capacity.
We calculate ny&' ——5~10' erg cm ' for a-
Zr Q 7PdQ 3 This value is surprisingly c1ose to
the value of 9&10' erg cm ' found in fused silica.
We conclude that the anomalous specific heat

and thermal conductivity of this disordered metal
below 1 K are due to the intrinsic defects char-
acteristic of the disordered state. While the
microscopic nature of these two-level states is
yet unknown, it is surprising that their density
and their coupling to acoustic phonons in a dense-
ly packed disordered metal are so similar to
those properties in the much more loosely packed
network structures of dielectric glasses.
Two of the authors (J.E. 6 and B.6) would like

to tharik their colleagues at the Centre National
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