FIG. 1. Typical magneto-optical image (size $90 \times 72 \ \mu\text{m}^2$, $\lambda = 638.1 \ \text{nm}$). The gray part corresponds to the surface swept by the domain wall during 111 μs at 460 Oe ($T = 23 ^\circ \text{C}$). The dark part is the original domain.
\[D = 1+1 \text{ interface \, (d=1,N=1)} \]

short-range disorder

\[\langle [u(x + L) - u(x)]^2 \rangle \propto u_c^2 \left(\frac{L}{L_c} \right)^{2\zeta} \]

thermally equilibrated

FIG. 4. Typical correlation function drawn in a ln-ln plot. The unit of \(L \) is the pixel of the CCD camera, i.e., 0.28 \(\mu m \).

FIG. 5. Wandering exponent \(2\zeta \). Measurements on different MDW driven at \(H = 50 \) Oe during 20–45 min and then frozen \((T = 300 \text{ K}, \text{ estimated error on } 2\zeta \text{ for a given image: } \pm 0.03)\).
FIG. 2. (a), (b): MDW velocity versus applied magnetic field at room temperature (v in m/s). The dashed line in (a) is the linear fit of the high field part ($H > 0.86$ kOe) and the arrow marks its intersection with the line $v(H) = 0$. This is the definition of H_{crit}.
FIG. 3. Natural logarithm of MDW velocity as a function of \((1/H)^{1/4}\) (room temperature, \(H \leq 955\) Oe).
Fig. 2. Sketch of the experimental setup. Inset: photograph of the disordered substrate, the chromium defects appear as white square spots.
Fig. 1. Upper part: image of the contact line obtained with an ordinary CCD camera. Lower part: the position $\eta(x, t) \equiv y(x, t) - vt$ of the CL is defined with respect to its average position vt.
Fig. 3. Roughness W as a function of distance L for different drift velocities. The upper (respectively, lower) graph corresponds to data obtained with water (respectively, water-glycerol mixture). For both graphs, the data \circ have been obtained with a larger magnification (resolution 2.1 μm) than the others (resolution 6.1 μm).
Avalanches: reproducible

Figure 2: A contact line for the wetting of a disordered substrate by Glycerine [7]. Experimental setup (left). The disorder consists of randomly deposited islands of Chromium, appearing as bright spots (top right). Temporal evolution of the retreating contact-line (bottom right). Note the different scales parallel and perpendicular to the contact-line. Pictures courtesy of S. Moulinet, with kind permission.
\(u(w) = \text{center of mass of the contact line (over 2 Lc)} \)

\[w - u(w) \]
Fig. 6. Average height H of an avalanche of length L for different drift velocities and different viscosities. One finds that H scales roughly like $L^{0.5}$, which is consistent with the value of the roughness exponent ζ. Inset: schematic representation of an avalanche.
Fig. 7. Probability $P(L)$ of occurrence of an avalanche of length L for different drift velocities and different viscosities. P is the number of avalanches divided by the effective area swept by the CL and by the effective pixel size. This curves are obtained with the same magnification of the microscope; other magnifications lead to the same curves. The solid line is the power law dependence expected from numerical simulation.
Reviews

• Pinning of elastic manifolds

 Giamarchi and PLD, in book ”Spin glasses and random fields” cond-mat/9705096

 (with more applications to superconductors)

• Functional RG
