Experimental perspective on supercooled liquids and glasses (molecular and atomic systems)

- Dynamics
- Thermodynamics
- Structure
- Glass properties
- Transformation kinetics
- Glasses near the bottom of the potential energy landscape (vapor-deposited glasses)

Dynamics in SCLs depend strongly on temperature

R. Richert / Physica A 287 (2000) 26-36

Lunkenheimer et al., in Structural Glasses and Supercooled Liquids: Edited by Peter G. Wolynes and Vassiliy Lubchenko. 2012

Plazek and Magill, J. Chem. Phys. 49, 3678 (1968)

Strong and fragile glassformers

J. Phys. Chem., Vol. 100, No. 31, 1996 13201

- Strong limit = Arrhenius
- Structure is strong or fragile (with respect to temperature)
- kinetic fragility "m"

Relaxation times from different techniques that measure SCL dynamics often show good agreement

Rossler, ...J. Non-Cryst. Solids 1994, 172-4, 113.

- α relaxation: dielectric relaxation, dynamic Kerr effect, light scattering, NMR, probe rotation
- β relaxation: dielectric relaxation, partial probe reorientation

Wu, ...J. Non-Cryst. Solids 1991, 131-3, 32

 α relaxation: Comparison of dielectric relaxation and heat capacity spectroscopy for glycerol, propylene glycol, salol, and o-terphenyl/o-phenylphenol

Dynamics in SCLs continued: Self-diffusion has a weaker temperature-dependence

Swallen et al., J. Phys. Chem. B, (2009)

Thermodynamics

Molar volume data from Plazek and Magill, JCP 1966 6

Kauzmann entropy crisis

Yamamuro et al, J. Phys. Chem. B 1998, 102, 1605-1609 Tatsumi, et al. PRL 109, 045701 (2012); 7

Kauzmann entropy crisis and the potential energy landscape

Angell, et al., J. Appl. Physics (2002)

Are simulated systems good mimics of experimental glassformers?

	Propene	Butene	Pentene	3MP	MTHF	ETB	Toluene	PC
$T_{g}(\mathbf{K})$	56.0	60.0	71.7	79.0	93	115	119	158
$T_{\mathbf{K}}^{\circ}(\mathbf{K})$	49.8	49.3	55.9	59.8	73	101	108	135
$T_g/T_{\rm K} - 1$	0.12	0.22	0.28	0.32	0.27	0.14	0.10	0.17
$T_b/T_m - 1$	1.56	2.04	1.82	2.05	1.57	1.30	1.15	1.35
$S_{\rm res}({\rm J}{\rm K}^{-1}{\rm mol}^{-1})$	6.09	13.1	18.1	20.4	15.6	9.25	5.43	9.29
$z^{*}(0)$	7.26	4.76	3.82	3.41	3.20	5.99	7.12	5.05

TABLE I. Parameters related to glass transitions.

Tatsumi et al. PRL 109. 045701 (2012)

Structure of supercooled liquids and glasses: Can you find the origin of slow dynamics

Structure of supercooled liquids and glasses: Can you find T_g?

Eckstein, et al, JCP (2000)

Metallic glasses show correlation between temperaturedependent structural evolution and fragility

Deep connections between thermodynamics and dynamics?

Richert in: Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications, First Edition. Edited by Peter G. Wolynes and Vassiliy Lubchenko. 2012 John Wiley & Sons, Inc.

Wolynes and Lubchenko, Annu. Rev. Phys. Chem. (2007)