Kicked rotor and Anderson localization

Dominique Delande

Laboratoire Kastler-Brossel Ecole Normale Supérieure et Université Pierre et Marie Curie (Paris, European Union)

Boulder – July 2013

Classical anisotropic diffusion

Diffusion tensor diagonal in the (1,2,3) axes: $D_{11} \neq D_{22} = D_{33}$

Approximate expressions: $D_{11} = \frac{K^2}{4} \left(1 + \frac{\varepsilon^2}{4}\right)$ $D_{22} = D_{33} = \frac{K^2}{16}$

Schematic view of the experiment

Final atomic cloud

Kicks (amplitude quasi-periodically modulated with time)

Time

Initial atomic cloud

$$H = \frac{p^2}{2} + k\cos\theta \left(1 + \epsilon\cos\omega_2 t \cos\omega_3 t\right) \sum_n \delta(t - nT)$$

Numerical results for the three-color kicked rotor

K (kick strength)

Numerical results for the three-color kicked rotor

K (kick strength)

How to identify unambiguously the transition?

Time (number of kicks)

How to identify unambiguously the transition?

- At criticality, one expects an anomalous diffusion with $\langle p^2(t)
angle\simeq t^\gamma$ with $\gamma=rac{2}{3}$

3 increasing K values

Phase diagram of the Anderson transition

$$H = \frac{p^2}{2} + K \cos \theta \, \left(1 + \varepsilon \cos \omega_2 t \, \cos \omega_3 t\right) \, \sum_n \delta(t - n)$$

From localization to diffusive regime: experimental results

Experimental momentum distributions

momentum (in units of 2 recoil momenta)

Experimental momentum distributions

momentum (in units of 2 recoil momenta)

From localized to diffusive regime

Critical regime of the quasi-periodic kicked rotor

Rescaled dynamics at various times (numerics)

Finite time scaling analysis of numerical results

Numerical data up 10⁶ kicks, latest result: $\nu = 1.58 \pm 0.02$

Rescaled **experimental** results

diffusive (slope -1)

$$\Lambda(K,t) = \frac{\langle p^2(t) \rangle}{t^{2/3}} \approx \frac{1}{\Pi_0^2(t) \ t^{2/3}}$$

 $\Pi_0(t)$: Population in the zero-velocity class

localized (slope 2)

- The critical regime is the horizontal line.
- Problem: it requires very long times to accurately measure the position of the transition as well as the critical exponent.

Experimental measurement of the critical exponent

Universality of the critical exponent: experimental test

The critical exponent is universal

Weighted average: $\nu = 1.63 \pm 0.05$

	k	$\frac{\omega_2}{2\pi}$	$\frac{\omega_3}{2\pi}$	Path in (K, ε)	K_c	ν
А	2.89	$\sqrt{5}$	$\sqrt{13}$	$4,\!0.1 ightarrow 8,\!0.8$	6.67	$1.63 {\pm} 0.06$
В	2.89	$\sqrt{7}$	$\sqrt{17}$	$4{,}0.1\rightarrow8{,}0.8$	6.68	$1.57{\pm}0.08$
С	2.89	$\sqrt{5}$	$\sqrt{13}$	$3,\!0.435 \rightarrow 10,\!0.435$	5.91	$1.55{\pm}0.25$
D	2.89	$\sqrt{5}$	$\sqrt{13}$	$7.5,\! 0\rightarrow7.5,\! 0.73$	$\varepsilon_c = 0.448$	$1.67{\pm}0.18$
Е	2.00	$\sqrt{5}$	$\sqrt{13}$	$3,\!0.1 ightarrow 5.7,\!0.73$	4.69	$1.64{\pm}0.08$
F	2.31	$\sqrt{5}$	$\sqrt{13}$	$4{,}0.1\rightarrow9{,}0.8$	6.07	$1.68{\pm}0.06$
G	2.47	$\sqrt{5}$	$\sqrt{13}$	$4{,}0.1\rightarrow9{,}0.8$	5.61	$1.55{\pm}0.10$
Η	3.46	$\sqrt{5}$	$\sqrt{13}$	$4{,}0.1\rightarrow9{,}0.8$	6.86	$1.66{\pm}0.12$
Ι	3.46	$\sqrt{5}$	$\sqrt{13}$	$4{,}0.1\rightarrow9{,}0.8$	7.06	$1.70 {\pm} 0.12$

Table of

Prediction of the self-consistent theory of localization

Momentum distribution at the critical point

- Very localized initial state => $\langle |\psi(p,t)|^2 \rangle$ is a direct measure of the average intensity Green function G(0,p;t)
- Numerical experiment at the critical point:

• Time invariant shape (neither Gaussian, nor exponential)

Momentum distributions at criticality

Distributions at various times

rescaled by the critical t^{1/3} law

Experimental measurements in the critical regime

- Characterized by a specific scaling: $p \propto t^{1/3}$

Lemarié et al, Phys. Rev. Lett. 105, 090601 (2010)

Experimentally measured critical Green function

