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Plan of Lectures

1. Introduction

2. Coarsening processes

3. Formalism

4. Dynamics of disordered spin models
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Plan of 3rd Lecture

1. Langevin equation

(derivation, time-scales)

2. Stochastic calculus

(discretisation, chain-rule, Fokker-Planck, drift-force)

3. Generating functional formalism

(Onsager-Machlup, Martin-Siggia-Rose)

4. Time-reversal symmetry

(fluctuation-dissipation theorem, fluctuation theorems)
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Formalism
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Dissipative systems
Aim

Interest in describing the statics and dynamics of a classical or quan-

tum physical system coupled to a classical or quantum environment.

The Hamiltonian of the ensemble is

H = Hsyst +Henv +Hint

Environment

System

Interaction

The dynamics of all variables are given by Newton or Heisenberg rules, depen-

ding on the variables being classical or quantum.

The total energy is conserved,E = ct, but each contribution is not, in particular,

Esyst 6= ct, and we’ll take Esyst � Eenv .
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Reduced system
Model the environment and the interaction

E.g., an ensemble of harmonic oscillators and a linear in qa and non-linear in x,

via the function V(x), coupling :

Henv +Hint =
N∑
α=1

[
p2
α

2mα

+
mαω

2
α

2
q2
α

]
+
N∑
α=1

cαqαV(x)

Equilibrium. Imagine the whole system in contact with a bath at inverse tempe-

rature β. Compute the reduced classical partition function or quantum density

matrix by tracing away the bath degrees of freedom.

Dynamics. Classically (coupled Newton equations) and quantum (easier in a

path-integral formalism) to get rid of the bath variables.

In all cases one can integrate out the oscillator variables as they appear only

quadratically.
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Reduced system
Statistics of a classical system

Imagine the coupled system in canonical equilibrium with a megabath

Zsyst + env =
∑

env, syst

e−βH

Integrating out the environmental (oscillator) variables

Zredsyst =
∑
syst

e
−β
(
Hsyst− 1

2

∑
a

c2a
maω2

a
[V(x)]2

)
6= Zsyst =

∑
syst

e−βHsyst

One possibility : assume weak interactions and drop the new term.

Trick : add Hcounter to the initial coupled Hamiltonian, and choose it in such a

way to cancel the quadratic term in V(x) to recover

Zredsyst = Zsyst

i.e., the partition function of the system of interest.
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Reduced system
Dynamics of a classical system : general Langevin equations

The system, p, x, coupled to an equilibrium environment evolves according

to the multiplicative noise non-Markov Langevin equation

Inertia friction︷ ︸︸ ︷
mẍ(t) +V ′(x(t))

︷ ︸︸ ︷∫ ∞
t0

dt′ γ(t− t′)ẋ(t′)V ′(x(t′)) =

−δV (x)

δx(t)︸ ︷︷ ︸+V ′(x(t)) ξ(t)︸︷︷︸
deterministic force noise

The friction kernel is γ(t− t′) = Γ(t− t′)θ(t− t′)
The noise has zero mean and correlation 〈 ξ(t)ξ(t′) 〉 = kBT Γ(t− t′) with

T the temperature of the bath and kB the Boltzmann constant.
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Reduced system
Dynamics of a classical system : general Langevin equations

The system, p, x, coupled to an equilibrium environment evolves according

to the multiplicative noise non-Markov Langevin equation

Inertia friction︷ ︸︸ ︷
mẍ(t) +V ′(x(t))

︷ ︸︸ ︷∫ ∞
t0

dt′ γ(t− t′)ẋ(t′)V ′(x(t′)) =

−δV (x)

δx(t)︸ ︷︷ ︸+V ′(x(t)) ξ(t)︸︷︷︸
deterministic force noise

Important Noise arises from lack of knowledge on bath ; noise can be mul-

tiplicative ; memory kernel generated ; equilibrium assumption on bath va-

riables implies detailed balance between friction and noise
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Separation of time-scales
Additive white noise

In classical systems one usually takes a bath kernel with the smallest

relaxation time, tenv � tall other time scales.

The bath is approximated by the white form Γ(t− t′) = 2γδ(t− t′)

Moreover, one assumes the coupling is bi-linear, Hint =
∑

a caqax.

The Langevin equation becomes

mẍ(t) + γẋ(t) = − δV (x)
δx(t)

+ ξ(t)

with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = 2kBTγ δ(t− t′).
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Separation of time-scales
Velocities and coordinates

For t� τv = m/γ one expects the velocities to equilibrate to the

Maxwell distribution P ({~v}) =
∏
i

P (~vi) ∝
∏
i

e−βmv
2
i /2

In this limit, one can drop mv̇ai and work with the

overdamped equation γṙai = −V ({~ri})
δrai

+ ξai .

The positions can have highly non-trivial dynamics, see examples.

Message : be very careful when trying to prove equilibration.

Different variables could behave very differently.
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Stochastic calculus
Two ways of writing the multiplicative noise equation

The physical eq. that comes from integrating away the bath (oscillators)

(V ′[x(t)])2dtx(t) = F [x(t)] + V ′[x(t)]ξ(t)

and the equation usually found in the mathematics literature

dtx(t) = f [x(t)] + g[x(t)]ξ(t)

are equivalent after identification

g[x(t)] =
1

V ′[x(t)]

f [x(t)] =
1

(V ′[x(t)])2
F (x(t)) = (g[x(t)])2 F [x(t)]
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Stochastic calculus
Discretization prescriptions

dtx(t) = f [x(t)] + g[x(t)] ξ(t)

with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = 2D δ(t− t′) means

x(t+ dt) = x(t) + f [x(t)] dt+ g[x(t)] ξ(t)dt

with
x(t) = αx(t+ dt) + (1− α)x(t)

and 0 ≤ α ≤ 1. Particular cases are α = 0 Itō ; α = 1/2 Stratonovich.

Stratonovich 67, Gardiner 96, Øksendal 00, van Kampen 07
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Stochastic calculus
Orders of magnitude & different stochastic processes

ξk ≡ ξ(tk) = O(dt−1/2) because of the Dirac-delta correlations

dx ≡ x(tk+1)− x(tk) = O(dt1/2) Variable increment

What is the difference between the two terms in the right-hand-side when

they are evaluated using different discretisation schemes?

f [xα(tk)]− f [xα(tk)] = O(dt1/2) vanishes for dt→ 0

g[xα(tk)]ξ(tk)− g[xα(tk)]ξ(tk) = O(dt0) remains finite for dt→ 0

For multiplicative noise processes the discretisation matters:

different α yields different stochastic processes.
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Stochastic calculus
Discretization prescriptions

dtx(t) = f [x(t)] + g[x(t)] ξ(t)

with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = 2D δ(t− t′) means

x(tk+1) = x(tk) + f [x(tk)] dt+ g[x(tk)] ξ(tk)dt

with
x(tk) = αx(tk+1) + (1− α)x(tk)

The chain rule for the time-derivative is (just from Taylor expansion)

dtY (x) = dtx dxY (x) +D(1− 2α) g2(x) d2
xY (x)

Only for α = 1/2 (Stratonovich) one recovers the usual expression.

Not even for additive noise the chain rule is the usual one if α 6= 1/2
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Stochastic calculus
Fokker-Planck equations for different α

The Fokker-Planck equation

∂tP (x, t) = −∂x[(f(x) + 2Dαg(x)dxg(x))P (x, t)]

+D∂2
x[g

2(x)P (x, t)]

depends on α and g

Two processes will be statistically the same if

f + 2Dαgdxg = fdrifted + 2Dαgdxg

16



Stochastic calculus
Fokker-Planck & stationary measure

The Fokker-Planck equation

∂tP (x, t) = −∂x[(f(x) + 2Dαg(x)dxg(x))P (x, t)]

+D∂2
x[g

2(x)P (x, t)]

has the stationary measure

Pst(x) = Z−1 [g(x)]2(α−1) e
1
D

∫ x f(x′)
g2(x′) = Z−1e−

1
D
Ueff(x)

with Ueff(x) = −
∫ x f(x′)

g2(x′) + 2D(1− α) ln g(x)

Remark : the potentialUeff(x) depends uponα and g(x) Non-equilibrium

Noise induced phase transitions

Stratonovich 67, Sagués, Sancho & García-Ojalvo 07
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Stochastic calculus
Fokker-Planck & stationary measure

e.g. f = −g2U and Ueff = U + 2D(1− α) ln g

x2 + 2D(1− α) lnx x2 + 2D(1− α) ln (1− x2)

g(x) = x g(x) = (1− x2)

U(x) = x2 U(x) = x2
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Stochastic calculus
Drift

The Gibbs-Boltzmann equilibrium

PGB(x) = Z−1 e−βU(x)

is approached if (recall the physical writing of the equation)

f(x) 7→ −g2(x)dxU(x)︸ ︷︷ ︸+ 2D(1− α)g(x)dxg(x)︸ ︷︷ ︸
Potential drift

Remark: the drift is also needed for the Stratonovich mid-point scheme.

Important choice : if one wants the dynamics to approach thermal equi-

librium independently of α and g the drift term has to be added.
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Stochastic calculus
Fokker-Planck & stationary measure

The Fokker-Planck equation

∂tP (x, t) =−∂x[(f(x) + 2Dαg(x)dxg(x))P (x, t)]

+D∂2
x[g

2(x)P (x, t)]

for the drifted force f(x) 7→ −g2(x)dxU(x) + 2D(1 − α)g(x)dxg(x)

becomes

∂tP (x, t) =−∂x[(−g2(x)dxU(x) + 2Dg(x)dxg(x))P (x, t)]

+D∂2
x[g

2(x)P (x, t)]

with the expected Gibbs-Boltzmann measure stationary measure

Pst(x) = Z−1e−
1
D
U(x)

independently of g(x) and α
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Why care about
multiplicative noise ?
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Magnetisation precession
Bloch equation

Evolution of the time-dependent 3d magnetisation density per unit vo-

lume, M = (Mx,My,Mz), with constant modulus Ms = |M|

dtM = −µM ∧Heff

µ ≡ γµ0 is the product of γ = µBg/~, the gyromagnetic ratio, and µ0, the

vacuum permeability constant (µB Bohr’s magneton and g Lande’s g-factor)

For the initial condition M(ti) = Mi

the magnetisation precesses around Heff

with 2M · dtM = dt|M|2 = 0

and dt(M ·Heff) = 0 (if Heff = ct)

Bloch 32
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Dissipative effects
Landau-Lifshitz & Gilbert equations

dtM = − µ

1 + γ2
0µ

2 M ∧
[
Heff +

γ0µ

Ms
(M ∧Heff)

]
Landau &

Lifshitz 35

dtM = −µM ∧
(
Heff −

γ0

Ms
dtM

)
Gilbert 55

2nd terms in RHS : dissipative mechanisms slow

down the precession and push M towards Heff

with 2M · dtM = dt|M|2 = 0

and dt(M ·Heff) > 0
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Thermal fluctuations
À la Langevin in Gilbert’s formulation

dtM = −µM ∧
(
Heff + H− γ0

Ms

dtM

)

H is a white random noise, with zero mean 〈Hi(t)〉 = 0 and correlations

〈Hi(t)Hj(t
′)〉 = 2Dδijδ(t− t′)

The (diffusion) parameter D is proportional to kBT Brown 63

The noise H multiplies the magnetic moment M and one cannot always write

2M · dtM = dtM
2 (only if the Stratonovich calculus is used)

This is the Markov stochastic Landau-Lifshitz-Gilbert-Brown (sLLGB) multi-

plicative white noise stochastic differential equation.

Subtleties of Markov multiplicative noise processes are now posed.
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Thermal fluctuations
À la Langevin in Gilbert’s formulation

dtM = −µM ∧
(
Heff + H− γ0

Ms

dtM

)
− 2D(1− 2α)µ2

1 + µ2γ2
0

M

H is a white random noise, with correlations 〈Hi(t)Hj(t
′)〉 = 2Dδijδ(t− t′)

The (diffusion) parameter D is proportional to kBT Brown 63

The modulus of the magnetic moment is now conserved dtM
2 = 0 for all α

One also proves that the dynamics approaches the asymptotic Gibbs-Boltzmann

distribution

PGB(M) ∝ e−
1
D
M·Heff
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Methods
Dynamic generating functional

• Glassy models with and without disorder:

The "order parameter" is a composite object depending on two-times.

It’s handy to use functional methods to write a dynamic generating

functional as a path-integral

Onsager-Machlup & Martin-Siggia-Rose-Janssen-deDominicis formalisms

Similar to Feynman path-integral

The construction will follow LFC & Lecomte, “Rules of calculus in the path integral
representation of white noise Langevin equations : the Onsager-Machlup approach”,
arXiv :1704.03501, J. Phys. A (to appear) where special care of discretisation effects
was taken.

26



Generating functional
Onsager-Machlup representation

Definition of the transition probability

P (xk, tk|xk−1, tk−1) =
∫
dξk−1Pnoise(ξk−1)δ(xk−R(xk, xk−1, ξk−1))

A Jacobian is needed to transform the δ in which ξk−1 appears within a

function to J−1δ(ξk−1 − . . . ) :

Generalisation of |f ′(f−1(a))|δ(f(z)− a) = δ(z − f−1(a))

J = det
kk′

[
δxk − R[xk, xk−1, ξk−1;α]

δξk′

]
P (xk, tk|xk−1, tk−1) =

∫
dξk−1Pnoise(ξk−1)J−1δ(ξk−H(xk, xk−1))
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Generating functional
Onsager-Machlup representation

The transition probability now reads

P (xk, tk|xk−1, tk−1) =

√
1

4πkBTdt

1

|g(xk−1)|
eSOM[xk,xk−1;α]

For dtx(t) = f(x(t)) + g(x(t))ξ(t), the Onsager-Machlup action is

SOM[xk, xk−1;α] ≡ lnPi(x−T )

− dt

4kBT

[
1

g2(xk−1)

(
(xk − xk−1)

dt
− f(xk−1)

+2Dαg(xk−1)g′(xk−1)︸ ︷︷ ︸
)2

−αf ′(xk−1)︸ ︷︷ ︸
]

From the integration over the noise Jacobian
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Generating functional
Onsager-Machlup representation, continuous time notation

The transition probability now reads

P (xk, tk|xk−1, tk−1) =

√
1

4πkBTdt

1

|g(xk−1)|
eSOM[{x};α]

For dtx(t) = f(x(t)) + g(x(t))ξ(t), the Onsager-Machlup action is

SOM[{x};α] ≡ lnPi(x−T )

− dt

4kBT

[
1

g2
t

(dtxt − ft + 2Dαgtdxgt︸ ︷︷ ︸)2−αdxft︸ ︷︷ ︸
]

From the integration over the noise Jacobian
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Generating functional
MSR path-integral representation

The initial state at time−T is drawn from a probability distributionPi(x−T ).

The noise generates random trajectories with probability density

P ({x};α) = 〈
∏N

k=1 δ(xk − xsol
k )〉Pi(x−T )

where the angular brackets represent an average over the noise {ξ}
weighted with its probability distribution.

xsol
k is the (possibly implicit) solution to the Langevin equation

0 = Eqnt[xk, xk−1, ξk−1;α]

The integral over the noise can be computed if one inverts to write ξk−1 =

L(xk, xk−1;α) and imposes this constraint with a delta function.
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Generating functional
MSR path-integral representation

A Jacobian is needed to transform the δ in which ξk−1 appears within a

function to J−1δ(ξk−1 − . . . ) :

Generalisation of |f ′(f−1(a))|δ(f(z)− a) = δ(z − f−1(a))

J = det
kk′

[
δEqnt[xk, xk−1, ξk−1;α]

δξk′

]
The path-probability now reads

P ({x};α) = 〈
∏N

k=1 J
−1δ(ξk−1 − L(xk, xk−1;α))〉Pi(x−T )

where the angular brackets still represent an average over the noise {ξ}
weighted with its probability distribution.

This Jacobian is simple for additive noise but not so simple to compute

for multiplicative noise.
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Generating functional
MSR path-integral representation

A Jacobian is needed to transform the δ in which ξk−1 appears within a

function to J−1δ(ξk−1 − . . . ) :

Generalisation of |f ′(f−1(a))|δ(f(z)− a) = δ(z − f−1(a))

J = det
kk′

[
δEqnt[xk, xk−1, ξk−1;α]

δξk′

]
The path-probability now reads

P ({x};α) = 〈
∏N

k=1 J
−1δ(ξk−1 − L(xk, xk−1;α))〉Pi(x−T )

where the angular brackets still represent an average over the noise {ξ}
weighted with its probability distribution.

This Jacobian is simple for additive noise but not so simple to compute

for multiplicative noise.
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Generating functional
MSR path-integral representation

Using now the exponential representation of the delta δ(y) ∝
∫
dŷ e±iŷy,

the integral over the noise is now a Gaussian that can be computed and

POM({x};α) =

∫
D{x̂}

N−1∏
k=0

(4πkBTdtg2(xk))
−1/2 eSMSR[{x},{ix̂};α]

and the Martin-Siggia-Rose-Janssen 79 action is

SMSR[{x}, i{x̂};α] ≡ lnPi(x−T )

+

∫ [
±ix̂t(dtxt︸︷︷︸− ft + 2Dαgtdxgt) +D(ix̂t)

2g2
t︸ ︷︷ ︸−αdxft︸ ︷︷ ︸

]
proportional to γ0 (not written) Jacobian

where we have also transformed the auxiliary field ix̂t 7→ ix̂tgt
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Generating functional
Path-integral representation

POM({x};λ, α) ∝
∫
D{x̂} PMSR({x}, {ix̂};λ, α)

=

∫
D{x̂}

N−1∏
k=0

(4πkBTdtg2(xk))
−1/2 eSMSR[{x},{ix̂};λ,α]

SMSR[{x}, {ix̂};λ, α] ≡ lnPi(x−T , λ−T )

+

∫ [
±ix̂t(dtxt − ft + 2Dαgtdxgt) +D(ix̂t)

2g2
t − αdxft

]
λt is a time-dependent parameter, for example, a parameter in the poten-

tial that one can tune in time. The action depends on α and g.

Observable averages can now be calculated as

〈A(xt, ix̂t′)〉 =

∫
D{x}D{x̂} PMSR({x}, {ix̂};λ, α) A(xt, ix̂t′)
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Generating functional
Path-integral representation

For the drifted force ft = −g2dxVt + 2D(1− α)gtdxgt

SMSR({x}, {ix̂};λ, α) ≡ lnPi(x−T , λ−T )

+

∫ [
±ix̂t(dtxt + g2

t dxVt − 2D(1− 2α)gtdxgt)

+D(ix̂t)
2g2
t − αdxft

]
Remark: The action depends on α and g.

Observable averages can now be calculated as

〈A(xt, ix̂t′)〉 =

∫
D{x}D{x̂} PMSR({x}, {ix̂};α, λ) A(xt, ix̂t′)

and do not depend on α
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Stochastic calculus
Path-integral representation for additive noise

For g = 1 and the force ft = −dxVt the action is

SMSR[{x}, {ix̂};α] ≡ lnPi(x−T )

+

∫ [
±ix̂t(dtxt + dxVt) +D(ix̂t)

2 + αd2
xVt
]

Observable averages can now be calculated as

〈A(xt, ix̂t′)〉 =

∫
D{x}D{x̂} PMSR({x}, {ix̂};λ, α) A(xt, ix̂t′)

and do not depend on α
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Methods
Dynamical symmetry & exact results

The functional path-integral formalism allows one to obtain exact iden-

tities (fluctuation-dissipation theorem, fluctuation theorems) as conse-

quences of a dynamic symmetry and its symmetry breaking.

Details in :

“Symmetries of generating functionals of Langevin processes with colored multiplicative
noise” Aron, Biroli & LFC, J. Stat. Mech. P11018 (2010) ; “Dynamical symmetries of
Markov processes with multiplicative white noise”, Aron, Barci, LFC, González Arenas
& Lozano, J. Stat. Mech. 053207 (2016)

Possible (though not easy) to extend to quantum system.

“(Non) equilibrium dynamics : a (broken) symmetry of the Keldysh generating functional”

Aron, Biroli & LFC, arXiv:1705.10800
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Symmetry
Transformations in the path-integral representation

Let us define

d
(α)
t xt ≡ dtxt − 2D(1− 2α)gtdxgt

and group two terms in the action due to the coupling to the bath

Sdiss[x, ix̂] =

∫
−ix̂t [d

(α)
t xt −Dix̂tg

2
t ]

This expression suggests to use the generalized transformation on the

time-dependent variables {xt, ix̂t}

Tc =

 xt 7→ x−t ,

ix̂t 7→ ix̂−t +D−1g−2
−t d

(α)
t x−t ,

and α 7→ 1−α Remember D = β−1 = kBT
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Symmetry
Transformations in the path-integral representation

For initial conditions drawn from Pi(x) = Z−1e−βV (x) and

f(x) = −g2(x)dxV (x) + 2D(1− α)g(x)dxg(x) one proves

Sdet+jac[Tcix̂, Tcx; Tcα] = Sdet+jac[ix̂, x;α]

that implies

P [Tcix̂, Tcx; Tcα] = P [ix̂, x;α]

Note that we have to use the non-trivial chain rule.

Moreover, the transformation leaves the integral measure invariant (no

Jacobian) and the interval of integration as well.
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Symmetry
Consequences of the transformation: FDT

From this result we can prove exact equilibrium relations such as the

fluctuation-dissipation theorem linking the (causal) linear response to

a field that changes the force as ft 7→ ft + ht

R(t, t′) =
δ〈x(t)〉
δh(t′)

∣∣∣∣
h=0

∝ θ(t− t′)

and the correlation function in a model independent way :

R(t, t′)−R(−t,−t′) = β ∂t′〈x(−t)x(−t′)〉

that for a stationary problem (in equilibrium) becomes

R(t− t′)−R(t′ − t) = β ∂t′C(t′ − t) = β ∂t′C(t− t′)
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Broken symmetry
Relation under "any" transformation

P (Tcx, Tcx̂; Tcα, λ)

P (x, x̂;α, λ)
= e∆S(x,x̂;α,λ)

with ∆S the variation of the full action (and measure)

Tcx and Tcx̂ are transformed trajectories,

λ the transformed parameter in the potential,

Tcα a different discretisation parameter ;

and from here obtain relations between observables by averaging this re-

lation : equilibrium fluctuation dissipation (∆S = 0), or out of equilibrium

theorems (∆S 6= 0). e.g., Jarzinsky 97, Crooks 00 & many others

41



Broken Symmetry
Consequences of the transformation: Fluctuation-theorems

For initial conditions drawn from Pi(x) = Z−1e−βV (x) and

f(x, λt) = −g2(x)∂xV (x, λt) + 2D(1− α)g(x)dxg(x) one

proves

P [Tcix̂, Tcx; Tcα, λt = λ−t]

P [ix̂, x;α, λt]
= eβW−β∆F

with

W =

∫
dt dtλt ∂λV (x, λ)

∆F = lnZ(λT )− lnZ(λ−T )

the work, and free-energy difference between initial and fictitious final states.

Exact out of equilibrium relations such as the Jarzinsky relation follow

〈e−βW 〉 = e−β∆F
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Coloured noise
Langevin equation & generating functional

The generic Langevin equation for a particle in 1d is

mẍ(t) + V ′[x(t)]

∫ t

−T
dt′ Γ(t− t′)V ′[x(t′)]ẋ(t′) = F (t) + ξ(t)M ′[x(t)]

with the coloured noise 〈ξ(t)ξ(t′)〉 = kBT Γ(t− t′)

The dynamic generating functional is a path-integral

Zdyn[η] =

∫
dx−T dẋ−T

∫
DxDx̂ e−S[x,ix̂;η]

with ix̂(t) the ‘response’ variable.

x−T and ẋ−T are the initial conditions at time−T .

Martin-Siggia-Rose-Jenssen-deDominicis formalism
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