Experimental Colloids I

http://www.seas.harvard.edu/projects/weitzlab

Boulder Summer School 7/24/17

Experimental Colloids I (and I)

http://www.seas.harvard.edu/projects/weitzlab

Boulder Summer School 7/24/17

- Colloidal particles are ubiquitous
- Biology
 - Viruses, macromolecules, organelles
 - Probe particles for bioassays
 - Quantum dots for fluorescent assays
 - Spores, bacteria
- Processing
 - Paints, coatings, materials control
 - Ceramics

- Key \rightarrow control rheology
- Solid particles behave like continuous fluid
- Process solids, while flow like fluids
- eg Paints and coatings
 - Spread paint like a fluid
 - Solidify into a solid coating

- Properties set by particle density
- Concentration of particles low compared to normal material
- Typical solid: ~ 10^{27} atoms/ m³ (1 / nm³)
- Colloids: ~10¹⁸ particles/ m³ (1 / μ m³)
- Latent heat of phase transitions too small to measure
- Very low pressure: $\Pi = nk_BT$
- $\Pi \sim 10^{-18} \text{ x } 1.4 \text{ x} 10^{-23} \text{ x } 300 = 4 \text{ x} 10^{-3} \text{ Pa}$
- Gas: $3x10^{25}$ molecules/m³ \rightarrow 10⁵ Pa = 1 atm

Soft Solids

Soft materials invariably have a larger length scale

Continuous phase fluid

- Thermalization with fluid
- Equilibrates particles
- Brownian motion

Continuous phase fluid

Hydrodynamic interactions

- Ignore hydrodynamic interactions
 - Thermalize system
 - Important only for dynamics
 - No effect on static properties
- Consider just two-body interactions between particles

Colloidal Interactions

Hard-sphere interactions

Only excluded volume

Colloidal Interactions

- van der Waals interactions
- Dispersion interactions
 - Dipole-induced dipole interactions
- Depend on polarizability of material
 - Require different materials
 - Always present for particles in a fluid

van der Waals interactions

$$U_{\rm A} = -\frac{A_{\rm pmp}}{6} \left[\frac{2a^2}{R^2 - 4a^2} + \frac{2a^2}{R^2} + \ln\left(\frac{R^2 - 4a^2}{R^2}\right) \right]$$

- RepulsiveShort-ranged
- •Dipole-dipole $1/r^6$

Stabilizing interactions

Colloidal Interactions - Stabilization

• Screened Coulomb interaction

$$U_{\rm R} = 2\pi \varepsilon \psi_{\rm o}^2 a (2a/R) \exp[-\kappa(R - 2a)]$$

Surface potential

Inverse screening length

$$\kappa = (\varepsilon k_{\rm B} T / 2z^2 e^2 n_{\rm b})^{-1/2}$$

Ion density

Stabilizing interactions

Disjoining pressure: Can't compress ions

Colloidal interactions – stabilizing

 $E_b > k_B T \rightarrow$ Colloid stable against aggregation

Repulsive Spheres

Repulsive interactions

Screen charges

No Salt

Salt

Experimental Techniques

- Light scattering
 - Static light scattering
 - Dynamic light scattering
 - Ultra-small angle dynamic light scattering
 - Diffusing-wave spectroscopy
- Microscopy
- Rheology
 - microrheology

Dynamic Light Scattering

Light Scattering

Probes characteristic sizes of colloidal particles

Dynamic Light Scattering

Obtain an intensity autocorrelation function

Dynamic Light Scattering

Measure temporal correlation function of scattered light: Intermediate structure factor

$$f(q,t) \sim \langle E(0)E(t) \rangle$$

$$\left\langle E(0)E(t)\right\rangle = \left\langle A^2 \sum_{m,n} e^{i\vec{q}\cdot\{\vec{r}_m(0)-\vec{r}_n(t)\}}\right\rangle$$

Time average over all particles

$$\sim e^{-q^2 \left\langle \Delta r^2(t) \right\rangle}$$

Correlations only between the same particles Cumulant expansion: $\Delta r^2(t) \sim Dt$

$$\sim e^{-q^2 D t}$$

Physics: How to change the phase of the field by π Each particle must move by $\sim \lambda$

Ultra Small Angle Light Scattering Probe Structure

L. Cipelletti

Multispeckle Detection

0.07 deg to 5.0 deg $100 \text{ cm}^{-1} < q < 7000 \text{ cm}^{-1}$

Average over constant q:

- non-ergodic samples
- avoid excessive time averaging

Diffusing Wave Spectroscopy: Very strong scattering

TRANSMISSION

D. Pine, P. Chaikin, E. Herbolzheimer

P(s): DIFFUSION EQUATION

 $z_0 = \gamma \ell *$

 $I(t) \sim \# PATHS OF LENGTH s = ct$ $\longrightarrow P(s)$

SINGLE PATH

[MARET & WOLFE]

n SCATTERING EVENTS

 $s = n\ell \rightarrow \text{PATH LENGTH}$

$$g_1(t) \approx \frac{\left(\frac{L}{\ell^*} + \frac{4}{3}\right)\sqrt{\frac{6t}{\tau_0}}}{\left(1 + \frac{8t}{3\tau_0}\right)\sinh\left[\frac{L}{\ell^*}\sqrt{\frac{6t}{\tau_0}} + \frac{4}{3}\sqrt{\frac{6t}{\tau_0}}\cosh\left[\frac{L}{\ell^*}\sqrt{\frac{6t}{\tau_0}}\right]\right]}$$

CHARACTERISTIC TIME SCALE:
$$au_0 \left(rac{\ell^*}{L}
ight)^2$$

DWS PROBES MOTION ON SHORT LENGTH SCALES

PHASE OF PATH CHANGES WHEN PATH LENGTH CHANGES BY ~1 WAVELENGTH

 $\lambda \sim 5000$ Å

BUT: LIGHT IS SCATTERED FROM MANY PARTICLES

(Estimate:
$$\left(\frac{L}{\ell^*}\right)^2 \approx \left(\frac{10^3}{10}\right)^2 \approx 10^4$$
)

... MOTION OF EACH INDIVIDUAL PARTICLE CAN BE MUCH LESS CAN MEASURE PARTICLE MOTION ON SCALE OF $\sim 5 \text{ Å}$

Confocal Microscopy

<u>Confocal microscopy for 3D</u> <u>pictures</u>

Scan many slices, reconstruct 3D image

Mechanical Properties of Soft Materials: Viscoelasticity

Solid:
$$\tau = G\gamma$$

Fluid: $\tau = \eta\dot{\gamma}$
 $\tau = \eta\dot{\gamma}$
 $\tau = \begin{bmatrix} G'(\omega) + iG''(\omega) \end{bmatrix} \gamma$
Elastic Viscous
Rheology of soft materials

Hard Sphere Phase Diagram Volume Fraction Controls Phase Behavior

maximum packing $\phi_{RCP} \approx 0.63$

maximum packing

 $\phi_{HCP} = 0.74$

Increase $\phi \implies$ Decrease Temperature

 $F = \bigvee_{i=1}^{0} TS$

Entropy Drives Crystallization $F = \cancel{U}^0 - TS$

Entropy => Free Volume

Disordered: •Higher configurational entropy •Lower local entropy •Higher Energy

maximum packing $\phi_{\rm RCP} \approx 0.63$

Ordered: •Lower configurational entropy •Higher local entropy •Lower Energy

maximum packing $\phi_{\rm HCP} = 0.74$

Metastable Hard Sphere Phases

State diagram for colloidal particles

$$rac{U}{k_{
m B}T}$$

Hard spheres

Controlled Attraction of Colloidal Particles

Depletion attraction

Polystyrene polymer, R_g =37 nm + PMMA spheres, r_c =350 nm

T. Dinsmore

State diagram for colloidal particles

State diagram for colloidal particles

Hard spheres: ϕ -dependent structure factor

FIG. 1. (Color) Static structure factor of a hard-sphere suspension at various volume fractions ϕ as indicated. Comparison between MD simulation data and RY, PY, and PY-VW integral equation schemes.

ϕ -dependent relaxation

Short-time and long time relaxation processes

ϕ -dependent relaxation

Slopes give relaxation rates → effective diffusion coefficients

o-dependence of viscosity Comparison of frequency dependent data

φ-dependence of short-time diffusion coefficient
→ Correlates with viscosity

FIG. 4. The relationship between the reduced short-time self-diffusion coefficient $D_s(\phi)/D^0$ and ϕ (van Megan and Underwood, 1990) and that between the reciprocal of the relative high-frequency viscosity η_m/η'_{∞} and ϕ for each of our suspensions. The long dashed and short dashed lines are, respectively, the theoretical prediction of Beenakker and Mazur (1984) and Beenakker (1984).

φ-dependence of long-time diffusion coefficient
→ Correlates with viscosity

Increasing ϕ : Approach to the glass transition: ϕ -dependent relaxation q-dependent relaxation

What is the nature of the relaxation?

Mean square displacement – Confocal Microscopy

Mean-squared displacement $\phi=0.53$ -- "supercooled fluid"

 ϕ =0.56, 100 min (supercooled fluid)

Cage trapping:

Trajectories of "fast" particles, $\phi=0.56$

shading indicates depth

Displacement distribution function

Choose Time with Maximum Non-Gaussian Parameter

Time Scale and Length Scale

Time scale:

top 5% = tails of Δx distribution

 Δt^* when nongaussian parameter α_2 largest

Length scale: Δr^* on average, 5% of particles have $\Delta r(\Delta t^*) > \Delta r^*$

 \approx cage rearrangements

 ϕ =0.53, supercooled fluid

Structural Relaxations in a Supercooled Fluid

Relaxing particles are highly correlated spatially

Non-Gaussian parameter for glasses

Structural Relaxations in a Glass

Relaxing particles are **NOT** correlated spatially

Fluctuations of fast particles

Supercooled fluid $\phi = 0.56$

Glass $\phi = 0.61$

Cluster Properties

Number $N_{\rm f}$ of fast neighbors to a fast particle:

Fractal dimension:

Relaxation events are spatially correlated

Cluster size grows as glass transition is approached

Dynamical Heterogeneity: possible *dynamic* length scale

Adam & Gibbs: "<u>cooperatively rearranging regions</u>" (1965)

Simulations: Photobleaching: NMR experiments:

•Glotzer, Kob, Donati, et al (1997, Lennard-Jones)
•Cicerone & Ediger (1995, o-terphenyl)
•Schmidt-Rohr & Spiess (1991, polymers)

Boulder summer school experiments

DWS from hard spheres

Mean-squared displacement

Microrheology

Measure mean square displacement of probe particles:

Light scattering:

Dynamic light scattering Motion over larger lengths - lower frequencies **Diffusing Wave Spectroscopy** Motion over smaller lengths - higher frequencies

Calculate Modulus

Generalized Stokes-Einstein equation $G(s) = \frac{k_B T}{\pi a s \langle \Delta r^2(s) \rangle}$

Transform to storage and loss moduli Analytic continuation: $s = i\omega$

 $G'(\omega) \quad G''(\omega)$

"Complex" modulus

Light scattering rheology

State diagram for colloidal particles

Colloidal Stability

Volume:
$$5a^{2}$$

contour length: $5 = \# steps \times step length$
 $= \left(\frac{R}{a}\right)^{2} a$
 $= \frac{R^{2}}{a}$

Volume: Ra time: R² D

.

Volume / time = Da

Volume required = {

 $t = \frac{1}{CaD}$

Rah: T'= CaD

FRACTAL:

SELF-SIMILAR <u>NO</u>CHARACTERISTIC LENGTH SCALE

$$M \sim R^{d_f}$$

d_f: FRACTAL DIMENSION

NON-INTEGRAL

DENSITY: DECREASES WITH SIZE

$$\rho = \frac{M}{V} = \frac{L^{d_f}}{L^d} = L^{d_f - d}$$

MASS CORRELATIONS:

3d:
$$c(r) \sim \frac{1}{r^{3-d_{f3}}}$$

2d: $c(r) \sim \frac{1}{r^{2-d_f}}$

LN C(R)

Colloidal Aggregation

Colloidal Gold

DIFFUSION – REACTION – LIMITED AGGREGATION

DIFFUSE MOTION

DIFFUSION-LIMITED STICKS WHERE IT FIRST TOUCHES

REACTION-LIMITED MUST COLLIDE MANY TIMES DIFFUSIVE MOTION <u>NOT</u> IMPORTANT.

DIMENSIONS:

- d: Euclidean dimension of space
 d = 3 real space
 d = 2 surface
- $d_{\rm f}$: Fractal dimension Amount of volume occupied by a space filling object is $M \sim R^{d_{\rm f}}$
- $\begin{array}{lll} d_t: & Trajectory\ dimension \\ & Fractal\ dimension\ of\ trajectory \\ & Random\ walk: & d_t = 2 \\ & Ballistic\ motion: & d_t = 1 \\ & No\ motion & d_t = 0 \end{array}$

DIFFUSION-LIMITED CLUSTER AGGREGATION

$$d_f^1 + d_f^2 + d_t = 1.75 + 1.75 + 2 > 3.$$

$$d_f^1 + d_f^2 + d_t = 1.75 + 0 + 2 > 3.$$

NO INTERPENETRATION BUT CLUSTERS STICK WITH OTHER CLUSTERS

 $\therefore d_f \sim 1.8$ in 3-d.

Brown bag calculation

 $N_c = \left(\frac{R_c}{D}\right)^d \epsilon$ $\Phi = \frac{N_c}{\left(\frac{R_e}{a}\right)^3} = \left(\frac{R_e}{a}\right)^{d_f - 3}$

 $N_c = \left(\frac{R_c}{2} \right)^d \epsilon$ $\Phi = \frac{N_c}{\left(\frac{R_e}{D}\right)^3} = \left(\frac{R_e}{a}\right)^{d_f - 3}$ RE = a \$ df -3 $R_c \sim a \phi^{-1}$

State diagram for colloidal particles

Gelation of Attractive Particles Carbon Black in Oil

Effect of Volume Fraction Carbon Black in S150N $U \sim 10 \pm 2 \text{ kT} 25^{\circ}\text{C}$

spacer 23 μm

 $100 \ \mu m$

Determination of Volume Fraction

Effect of Volume Fraction Carbon Black in S150N $U \sim 10 \pm 2 \text{ kT} 25^{\circ}\text{C}$

spacer 23 µm

100 µm

Fluid-Like Behavior Carbon Black in S150N T=25°C

 $1.2\% CB \Phi = 0.048$

 $0.8\% \ CB \quad \Phi = 0.033$

 $0.4\% \ CB \quad \Phi = 0.013$

 $\omega \, [rad \, s^{-1}]$

Solid-Like Behavior CB in S150N T=25°C

 $4\% CB \Phi = 0.149$

2.5% CB $\Phi = 0.097$

 $1.6\% CB \Phi = 0.064$

Scaling *\$\phi\$-Dependence*

Carbon Black in S150N $U \sim 10 \pm 2 \text{ kT}$ 25°C

 $\omega * a$

Scaling along the background-viscosity

ф-Dependence of Fluid-Solid Transition

Effect of Dispersant Decrease Interaction Energy Decrease Aggregation

Amount of Dispersant controls Interaction Energy

Effect of Dispersant Concentration Carbon Black in Oil $\phi = 0.14$ 100°C

spacer $6 \, \mu m$

 $100 \ \mu m$

Scaling: U-DependenceCarbon Black in S150N $\phi \sim 0.14$ $T=25^{\circ}C$

Fluid-Solid Transition U-Dependence

Fluid-Solid Transition Weakly Attractive Systems

Fluid-Solid Transitions Carbon Black in Oil

Fluidization through Shear

Dispersant-Shear Equivalence

Shear Induced Fluid-Solid-Transition

$$\sigma_{y} = \sigma_{\Phi} (\Phi - \Phi_{c})^{3.4}$$

$$\sigma_{\rm y} = \sigma_{\rm u} \, ({\rm U} - {\rm U}_{\rm c})^{2.4}$$

Phase Boundary in $U-\phi$ Plane

Yield Stress as Phase Boundary

$$\sigma_{y} = \sigma_{0} (\phi - \phi_{c})^{\mu}$$

Phase Boundary in $U - \sigma$ Plane $\phi = \text{const.}$

$$\sigma_{\rm y} = \sigma_{\rm o} (U - U_{\rm c})^{\rm v}$$

Jamming Phase Diagram for Attractive Systems

Completely new way to look at viscosity of soot in oil

Dependence on range of interaction

Attractive colloidal particles

Attractive colloidal particles

Attractive colloidal particles

Long-range attraction

Reduce gravity

Spinodal Decomposition of Colloid Polymer

35 hours

Time Evolution of Phase Separation

~3 cm

Comparison with Furukawa Theory

Structure at gelation \rightarrow Fluid

Structure at gelation \rightarrow Gel

Weak attractive interaction

Cluster distribution: Determine interaction

Cluster distribution: Independent of potential

M. G. Noro and D. Frenkel, J. Chem. Phys. 113, 2941 (2000).

Interaction energy at gelation

Interaction energy at gelation

Same behavior for all ϕ , all ξ

Gelation is proceeded by spinodal decomposition

Implications?

$S(q) \rightarrow$ spinodal decomposition

Gelation – spinodal decomposition

Schematic Phase Behavior for Colloidal Gels

Attractive glass

Gelation phase diagram

How do crystals melt?

Colloidal crystals melt at grain boundaries

Yodh, Science

What if there are no interfaces?

Born melting:

- Elastic catastophe
- Elastic modulus goes to zero, and crystal melts

But how does this actually occur??

Volume fraction controls melting

Phase diagram of Wigner Crystals

Phase diagram Wigner colloids

2.1 um charged PMMA suspended in decalin/tce/10 mM AOT (charging agent) Good density match ($\Delta \rho < 0.01 \text{ kg/m}^3$)

Mean squared displacement

Mean squared displacement

Lindemann parameter Fraction of lattice parameter

'Hot' particles are highly spatially correlated $\phi = 0.120$

'Hot' particles are highly spatially correlated $\phi = 0.101$

'Hot' particles are highly spatially correlated $\phi = 0.066$

'Hot' particles are highly spatially correlated $\phi = 0.050$

Melted

 $\phi = 0.101$ $\phi - \phi_m = 0.037$

'Hot' particles are strongly correlated in space

'Hot' clusters are fractal

Cluster-mass distribution

Power-law with exponential cut off

Scaling behavior of cluster size

Scaling behavior of cluster volume fraction

Scaling behavior of elasticity

Second-order character of 3D melting

3. Elasticity

Hot particles lead to non-affine motion

Breaks force balance \rightarrow weakens lattice

Non-affine motion increases as ϕ decreases

Calculate elastic modulus *including* non-affine motion

Behavior of elasticity

- C_{44} remains approximately constant with ϕ
- Non-affine modulus does vanish

2nd order behavior for melting

- 1D melting is always 2nd order
- 2D melting is through hexatic $\rightarrow 2^{nd}$ order
- 3D melting has 2nd order character if the lattice is perfect
- Non-affine shear modulus:
 - Provides weakened regions
 - Mechanical stability is lost
 - Generalizes Born melting
- 3D melting of Wigner lattice is weakly 1st order

The End