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Modifications of synaptic connections 
store long-term memories

Chklovskii et al. (2004)

Can we understand properties of synapses by optimizing 
information storage in neuronal networks?



Synaptic properties (experiments)

Hardingham & Larkman (1998)

V

1. Synaptic connections are 
sparse (~10%)

3. Some synapses are strong
2. Most synapses are weak & noisy

Can these properties follow from optimization?



Stronger synapses have greater SNR
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Use stronger synapses for information storage?

A
AN

A - mean EPSP amplitude 
(synaptic weight)

AN  – standard deviation of
EPSP amplitude (synaptic noise)



But stronger synapses are costlier

Cost = Synaptic volume

Matsuzaki M., Ellis-Davies G.R.C, Nemoto T., 
Miyashita Y., Iino M. & Kasai H.  (2001)
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Volume SNR

VN –volume of a synapse 
with unitary SNR

We balance competing requirements for 
greater information capacity and less cost



Memory as a communication channel 
from the present to the future

Present

Future

Recording 
mechanism

Retrieval  
mechanism

Noise

Shannon (1948)

Memory

We maximize “physical” information storage 
capacity per volume in the presence of noise



Information storage capacity of a 
Gaussian channel (α = 2)
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Storage capacity per synapse:

A – synaptic weight

AN – noise amplitude

V – synapse volume

VN – volume of synapse with unitary SNR 

V0 – accessory (wire) volume per synapse



Storage capacity per unit 
volume
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<V> – average synapse volume

VN – volume of synapse with unitary SNR 

V0 – accessory (wire) volume per synapse

Small synapses maximize information storage 
capacity provided accessory volume is not big



Information storage capacity as a 
function of accessory volume
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Small accessory volume maximizes 
information storage capacity



Why cannot wire volume be infinitesimally small?

Conduction delay in very thin (and very thick) 
wires is prohibitively long:

Wires and synapses occupy comparable volume

τ =R/s=R/βd0.5

d

τ

do

~1/d0.5
~d0.5

Chklovskii, Schikorski & Stevens (2002)



Maximum information storage capacity 
without compromising time delays
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Small and, hence, noisy synapses 
maximize information storage capacity

Information 
capacity

Conduction 
speed



What is the optimal distribution of 
synaptic weights?



Approximate treatment of noise:  
discrete synaptic states
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Optimal distribution over discrete states: 
Boltzmann exponent

Maximize provided
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Distribution of synaptic weights 
is a stretched exponential
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0.38~NA Aor using                         
p = exp(-(A/AN)0.79)

Experimental data 

(thousands of neuronal pairs)

Theoretical fit:  

p =exp(-A0.49)
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Wire volume = Synapse volume

Sparse connections with typically small but 
occasionally big weights maximize information 

storage capacity

Results for equidistant synaptic states
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Can we solve the optimization 
problem without making 
restrictive assumptions?



Reverse problem: Given noise model 
and signal distribution, for what cost 
function is this distribution optimal?

Noise

Recordi
ng A

B

Gastpar et al. (2003)

Cost function is given by the KL divergence 
up to two arbitrary constants v > 0 and v0
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The Gaussian channel and the 
discrete-states model are special 

cases of this relationship
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V

Calculation of synaptic cost function 
from the experimentally measured 

signal distribution

V=A0.48

P(B|A=0.5) P(B|A=3.4)

P(B|A=0.2) P(B|A=1.3)

Consistent with the exponent 0.49 obtained in the 
discrete states model



Are optimal synapses discrete or 
continuous?
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Capacity achieving distribution for 
many reasonable channels is discrete



Summary

Maximization of information storage capacity 
per unit volume explains:

• Sparseness of synaptic connections
• Noisiness and weakness of typical 

synapses
• Wide distribution of synaptic weights
and does not preclude the possibility of 

discrete synaptic states
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