The chemotaxis network of *E. coli*

Ned Wingreen

Boulder Summer School 2007

Thanks to: Robert Endres, Clinton Hansen, Juan Keymer, Yigal Meir, Monica Skoge, and Victor Sourjik

Support from HFSP

Adaptation

Adaptation uses methylation to adjust $\Delta f_{total} \approx 0$, and thereby enhances sensitivity.

Scaling of wild-type adapted response

Sourjik and Berg: Δ [MeAsp] $\rightarrow \Delta$ FRET{Tar(QEQE)}

"Free energy" scaling: Δ [MeAsp] $\rightarrow \Delta(F_{on} - F_{off})$

Includes zero-ambient data! And yields K_D s: $K_D^{off} = 25 \ \mu M, \ K_D^{on} \approx 0.5 \ m M$

Motor output also yields K_D s

Berg and Tedesco (1975)

$$t \sim \Delta f \sim \log \left(\frac{1 + C / K_D^{off}}{1 + C / K_D^{on}} \right)$$

 $\rightarrow K_D^{off} = 27 \ \mu\text{M}, \quad K_D^{on} \approx 0.9 \ \text{mM}$

2-state receptor model

- Originally proposed by Asakura and Honda (1984).
- Modified by Barkai and Leibler (1998) to explain precise and robust adaptation:
 - Receptor complex has 2 states: "off", i.e. inactive as kinase, and "on", i.e. active as kinase.
 - Demethylation only occurs in "on" state,

 $\frac{d \text{ Methylation}}{dt} = a[\text{CheR}] - b[\text{CheB}] P_{\text{on}}$

- Therefore, at steady state,

off

on

 $P_{\rm on} = a \,[{\rm CheR}] / b \,[{\rm CheB}]$

 Which implies precise and robust adaptation of each receptor complex to a fixed activity.

Failure of precise adaptation?

Barkai-Leibler single-receptor adaptation model:

Yields imprecise adaptation of receptor clusters:

Help from "assistance neighborhoods"

Antommattei et al. (2004)

Li and Hazelbauer (2005)

Tethered CheR/CheB act on neighborhood of 5-7 receptors.

Precise adaptation saved!

Assistanceneighborhood model

Barkai-Leibler + assistance neighborhoods = precise adaptation:

Precision of adaptation with assistance neighborhoods

Assistance neighborhood of ~ 6 receptors sufficient for precise adaptation:

Initial response and sensitivity of adapted receptors

Experiment

Simulation (with assistance neighborhoods)

Two peaks of sensitivity

 $\frac{\Delta A / A}{[\Delta L] / [L]} \approx \frac{d(\log A)}{d(\log[L])}$

Simulation

Analytic result for single cluster

Prediction: Two limits of adaptation

Full methylation before saturation → adaptation stops

Open questions

- What determines cluster size and what is the mechanism of receptor-receptor coupling?
- Two limits of adaptation?
- What is being optimized?

Conclusions

- *E. coli* chemotaxis network remarkable for:
 - precise and robust adaptation
 - signal integration
 - sensitivity
- FRET studies reveal two regimes of receptor activity
- Model of mixed clusters of 2-state receptors accounts for network properties and for two regimes
- Precise adaptation of clusters requires assistance neighborhoods
- Prediction: two possible limits of adaptation

Outline

- Introduction to chemotaxis in *E. coli*
 - The chemotaxis network
 - Two regimes of activity
 - Receptors function collectively
- Modeling
 - Mixed clusters of receptors
 - Precise adaptation through "assistance neighborhoods"

E. coli chemotaxis: runs and tumbles

(Thanks to Howard Berg.)

The chemotaxis network

Chemoreceptor clustering

Receptors are clustered globally into a large array, and locally into trimers of dimers.

Kim *et al.* (1999); Studdert and Parkinson (2004)

Chemoreceptors

In vivo FRET studies of receptor activity

Real-time measurement of rate of phosphorylation of CheY.

(FRET also allows subcellular imaging, Vaknin and Berg (2004).)

Sourjik and Berg (2002)

FRET data: two regimes of activity

Regime I:

- Activity moderate to low at zero ambient MeAsp (0.06,1)
- K_i small and almost constant

Regime II:

- Activity high (saturated) at
- zero ambient MeAsp (1.3-1.9)
- K_{i1} large and increasing with methylation
- Plateau in activity
- *K_{i2}* approximately constant

Two regimes of receptor activity consistent with 2-state receptor model.

Two regimes of a 2-state receptor

Receptor-receptor coupling

Duke and Bray (1999)

Duke and Bray (1999) proposed that receptorreceptor coupling could enhance sensitivity to ligands.

MWC model: if N receptors are all "on" or all "off" together,

Activity =
$$P_{\text{on}} = \frac{1}{1 + e^{N\Delta\varepsilon} \left(1 + \frac{C}{K_D^{\text{off}}}\right)^N}, \quad \Delta\varepsilon = \varepsilon^{\text{on}} - \varepsilon^{\text{off}}$$

Receptor-receptor coupling gives enhanced sensitivity (low K_i) in Regime I, and enhanced cooperativity (high Hill coefficient) in Regime II.

- Regime I ($\Delta \varepsilon > 0$):
- Low activity $\sim e^{-N\Delta\varepsilon}$ at zero ligand concentration
- $K_i = K_D^{\text{off}} / N$
- Hill coefficient = 1

Regime II ($\Delta \varepsilon < 0$): • $K_i = K_D^{\text{off}} e^{-\Delta \varepsilon}$ • Hill coefficient = N

Mixed cluster MWC model

Mello and Tu (2005) Keymer *et al.* (2006)

Regime I: • $K_i = K_D^{off} / N$.

Regime II:
Plateaus: some clusters "on", some "off".
Hill coefficient ≈ 1.

Mixed clusters of size 14-16. Each cluster is an independent 2-state system.

Receptor homogeneity and cooperativity

Receptors are in Regime II:

• Hill coefficient increases with Tar homogeneity because more receptors bind ligand at transition.

• K_i (or K_{i1}) decreases with Tar homogeneity because fewer Tsrs need to be switched off.