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I. GENERALISATIONS OF IQHE

To discuss generalisations of the IQHE we need first to consider symmetry classes for disor-

dered conductors. In the following we aim to give a simple-minded account of how the classes

arise.

A. Symmetry Classes

The notion of symmetry classes for random Hamiltonians first arose in nuclear physics when

random matrices were studied as models for the statistical properties of highly excited states

in nuclei. At that time three ‘Wigner-Dyson’ symmetry classes were identified, according to

whether a system has no time-reversal symmetry, or has time-reversal symmetry without or with

Kramers degeneracy. These are known respectively as the unitary, orthogonal and sympletic

classes. Recall that Kramers degeneracy arises in systems with half odd-integer spin, and that

time-reversal of spin vectors may be written in terms of the conventional Pauli matrices as

τy~τ
∗τy = −~τ . Then for a HamiltonianH the time-reversal operations are

orthogonal : H∗ = H, symplectic : τyH∗τy = H .

It is a feature of the Wigner-Dyson classes that no energy is special, and that statistical properties

are unchanged under a shift in energy.

The so-called additional symmetry classes arise in systems that do have a special energy,

which we take to be zero. They were first classified by Altland and Zirnbauer [Phys. Rev. B

55, 1142 (1997)]. The significance of the special energy is that eigenvalues occur in ±E pairs

for each realisation of the disordered Hamiltonian. In consequence, there is an operator X that

transforms between states in the pair. Suppose

HΨ = EΨ .

Then there are two possibilities. Either

H(XΨ) = −E(XΨ), implying X−1HX = −H,

or we need to use complex conjugation to generate the second state in the pair, and

H(XΨ∗) = −E(XΨ∗), implying X−1H∗X = −H .
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A simple example is the one-dimensional chain with disordered nearest neighbour hopping.

With site labels n and eigenfunction amplitudes ψn, the eigenvalue equation is

Eψn = tn,n+1ψn+1 + tn,n−1ψn−1

and the transformation X takes the form (Xψ)n = (−1)nψn.

1. Chiral classes

We would now like to enumerate the additional symmetry classes. Instead of following the

original route via Cartan’s classification of symmetric spaces, I present some informal argu-

ments that I first heard from T. Senthil. In general, because eigenvalues appear in pairs, we

expect the Hamiltonians we are concerned with to have a 2 × 2 structure. Let σα be the Pauli

matrices acting in this space (the σ’s are distinct from the τ ’s). We can write an arbitrary Hamil-

tonian in the form

H = h011 + ~h · ~σ,

where h0, hx, hy and hz are Hermitian matrices.

We want to understand what the restrictions are on these matrices. We will deal separately

with the two possibilities for transforming between states in the pair. Consider first X−1HX =

−H. This implies that X is an element of SU(2) so that we can parameterise it as X = eiαn̂·~σ.

Moreover, since X2 ∝ 11 we can set α = π/2. The direction of n̂ is now a matter of convention.

We pick n̂ = ẑ giving X = iσz. The symmetry relation then reads

σzHσz = −H ,

implying that h0 = hz = 0. In this way we arrive at the chiral ensembles, with

H =

 0 hx − ihy
hx + ihy 0

 .

The same questions about time-reversal symmetry arise for the chiral classes as in the Wigner-

Dyson cases, and so we have chiral orthogonal, unitary and symplectic classes.

2. BdG classes

Consider next the alternative transformation X−1H∗X = −H. As before we use the pa-

rameterisation X = eiαn̂·~σ. We also have XX∗ ∝ 11, and we treat separately the two cases

XX∗ = +11 and XX∗ = −11.



3

In the first case we have X∗ = X−1, which implies that ny = 0. We pick n̂ = x̂ and

α = π/2, getting the condition

σxH∗σx = −H , (1)

which has the solution h∗x = −hx, h∗y = −hy, h∗z = hz and h∗0 = −h0, so that

H =

 h0 + hz hx − ihy
hx + ihy h0 − hz

 =

 a b

−b∗ −aT

 . (2)

Next we treat the second of our alternatives, XX∗ = −11, which implies X = iσy and hence

σyH∗σy = −H ,

with the solution h∗0 = −h0 and ~h∗ = ~h. Then

H =

 h0 + hz hx − ihy
hx + ihy h0 − hz

 =

 a b

b∗ −aT

 . (3)

We can find realisations of the Hamiltonians of Eqns (2) and (3) as Bogoliubov de-Gennes

(BdG) Hamiltonians for superconductors, for spinless and spin-singlet systems respectively. To

see this, let’s review the form taken by such superconductor Hamiltonians.

In the spinless case, in terms of fermion creation and annihilations operators cα and c†α for

orbitals α, β . . ., we have

H =
∑
α,β

[
hα,βc

†
αcβ +

1

2

(
∆αβc

†
αc
†
β + ∆∗αβcβcα

)]
.

Note that Hermiticity and fermion anticommutation relations imply h† = h and ∆T = −∆. We

can re-write this Hamiltonian in the form

H =
1

2

(
c†, c

) h ∆

−∆∗ −hT

 c

c†

+ const, (4)

which matches that of Eq. (2).

In the singlet case, a generic form for the BdG Hamiltonian is

H =
∑
αβ

[
hαβ

(
c†α↑cβ↑ + c†α↓cβ↓

)
+
(

∆αβc
†
α↑c
†
β↓ + ∆∗αβcβ↓cα↑

)]
.

Spin rotation symmetry requires ∆T = ∆. We can make conservation of spin explicit by doing

a particle-hole transformation on one spin direction, taking γ†α↑ = c†α↑ and γ†α↓ = cα↓. Then the
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singlet BdG Hamiltonian takes the form

H =
∑
αβ

[
hαβ

(
γ†α↑γβ↑ − γ

†
β↓γα↓

)
+
(

∆αβγ
†
α↑γβ↓ + ∆∗αβγ

†
β↓γα↑

)]
.

=
(
γ†↑,γ

†
↓

) h ∆

∆∗ −hT

 γ↑

γ↓

+ const,

which matches that of Eq. (3). Each of these BdG Hamiltonians (spinless or spin singlet) gives

rise to two symmetry classes – with or without time-reversal symmetry.

3. Summary

In summary, we have a grand total of 10 classes: the 3 Wigner-Dyson ones, the 3 chiral

ones, 2 for spineless superconductors, and 2 for spin singlet superconductors. The 10 classes

are listed using standard nomenclature in the table, and the three cases showing versions of the

quantum Hall effect are picked out. One of the criteria for showing a QHE is of course that the

symmetry class should not have time reversal symmetry. This selects one class from each of

the three groupings termed Wigner-Dyson, spineless BdG and singlet BdG. A further criterion

is that RG flow at zero generalised Hall conductance should be to an Anderson insulator, which

is true for these three examples but not in the chiral unitary class. Hence we end up with two

generalisations of the IQHE — in classes C and D.

Orthogonal AI

Wigner-Dyson Unitary A IQHE

Symplectic AII

Orthogonal BDI

Chiral Unitary AIII

Symplectic CII

Spinless BdG with TRS DIII

no TRS D Majorana QHE

Singlet BdG with TRS CI

no TRS C SQHE

Some remarks about the BdG versions of the QHE are in order. First we should ask what

transport effect will show a Hall plateau. We are not concerned with charge transport, since the

BdG Hamiltonians do not conserve quasiparticle number, and anyway quasiparticle transport
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will be short-circuited by the superconducting condensate. Instead, we consider the quantities

that are conserved, and so expect plateaus in the thermal Hall conductivity for both class C and

class D, and additionally in the spin conductivity for class C.

To make contact with other problems of current interest, it is useful to re-visit out dis-

cussion of spinless superconductors, picking up the discussion from Eq. (1), which reads

σxH∗σx = −H. Making the transformation H = s†Hs, where s2 = σx, we have an alter-

native representation satisfying H∗ = −H , or (since H† = H), HT = −H . This is exactly the

condition arising for Majorana Hamiltonians of the form i
2

∑
αβHαβbαbβ with Majorana oper-

ators bα, bβ satisfying the standard relations: b†α = bα, {bα, bβ} = 0 for α 6= β and (bα)2 = 1.

B. Network models

Two main ingredients in the definition of the network model are the amplitudes zl on links

and the phases eiφl acquired in propagation along a link. An obvious extension is the allow the

amplitudes to be N -component vectors. Then the link phases are replaced by N ×N matrices

W .

Since the link phases arise during propagation, we can think of them as given in terms of

a Hamiltonian H via W = eiH. Then the Wigner-Dyson unitary symmetry class for N × N

matrices H generates U(N) link phases. This generalisation does not change the symmetry. It

therefore gives N copies of the IQHE transition as the node parameter varies between α = 0

and α = π/2, with each transition occurring at a distinct value of α.

Alternatively, we can consider the BdG symmetry classes. For class C the condition

σyH∗σy = −H implies that W belongs to Sp(2n), and in the simplest case Sp(2) ∼ SU(2).

Thus we can model a plateau transition in symmetry class C using a network model with two-

component amplitudes on the links and SU(2) link phases. This does indeed give a transition

in a different universality class from the standard IQHE.

For class D, using the representationH∗ = −H we have link phasesW = eiH that areO(N)

matrices. In the simplest case, N = 1, they are just real phases W = ±1. Again, this gives

behaviour distinct from the standard IQHE (and from class C), with both a plateau transition

and a metallic phase, depending on details of the model.


