2D suspensions of microtubulekynesin bundles at oil/water interface

E. Coli swimming in nematic LC

Sanchez et al, Nature 2012

Zhou et al PNAS 2014

fibroblasts

Duclos et al, Soft Matter (2014)

Vertically vibrated granular rods

Narayan et al., Science (2007)

 (\mathbf{i}) ACTIVE NEMATIC I want to couside mysterns w/ momentum courrection. Strictly speaking a suspension : active particles in a fluid - should distinguish between total denity of suspinion and flore concentration of active units - for simplicity a one - component flind HYDRODYNAMICS : large à, loug times conserved fields { § density { pri momentum density We have a phose transition (isotropic - nematic) an oriented with a spontaneously broken continuous symmetry $\frac{2}{p_{vi}} = 0, P. \quad Q_{\alpha \beta} = \left\{ \frac{2}{p_{\alpha i}} \left(\frac{p_{\alpha i} p_{\beta i}}{q_{\alpha \beta}} - \frac{1}{q_{\alpha \beta}} \frac{\delta_{\alpha \beta}}{q_{\alpha \beta}} \right) \right\} \quad d=2$ $\frac{1}{q_{\alpha \beta}} \frac{1}{q_{\alpha \beta}} \frac{\delta_{\alpha \beta}}{q_{\alpha \beta}} = \frac{1}{q_{\alpha \beta}} \frac{\delta_{\alpha \beta}}{q_{\alpha \beta}} = \frac{1}{q_{\alpha \beta}} \frac{\delta_{\alpha \beta}}{q_{\alpha \beta}} = \frac{1}{q_{\alpha \beta}} \frac{\delta_{\alpha \beta}}{q_{\alpha \beta}}$ Broken symmetry field in - Goldstone mode Deep in ordered state - May S = wastant Consider only director deformations they lost every $F = \frac{1}{2} \int \left[\frac{1}{12} \left(\frac{1}{12} - \frac{1}{12} + \frac{1}{12} + \frac{1}{12} \right) \right]$ $F = \frac{1}{12} \left[\frac{1}{12} + \frac{$ assume $K_1 = K_3$ $-\frac{\delta F}{\delta n} = h = P^2 h$ a driving force that tends to restore the uniform state

HYDRO DY NAMICS Navver - Stokes St + dynamics of derector i Loughing of orientation and flow mincompressible: g= const. Ofg+ 7. pr=0 =1 7. v=0 Maurer Stokes: p(dt+N, T) Nx = 2 172 Nx - Dxp + D, JN \bigcirc Viscour forces elastic déformetions But most active LC are of the director couple to flow in the low Re regime Re inertial portan _ grill ~ gril viscous forces 7 v/L2 Re < ci _ Stokes equation director dynamics $\int a_{\beta} = \frac{1}{2} \left(n_{\alpha} h_{\beta} + n_{\beta} h_{\alpha} \right)$ (0 + i i) na + Warns = 1 ha + Juarns - 2 (nahr - ng ha) Vortraty rotates LC molecules 5T I forque shear Map= - (OaNp+ Opva) builds up alignment) War= - (OxNB-OpNa)

Flow alignment parameter 1 LC in shear flow y 1 -N5 NO $\hat{n} = (\omega , 0, \omega , \omega)$ NO -x $\partial_L \partial_z = -u(1-\lambda \omega s 2\theta) + \frac{k}{2} \partial_z \partial_z = \frac{1}{\sqrt{k}} \frac{1}{\sqrt{k$ homogeneous ss U = Uxy = 8/2 $(0520 = 1/{\lambda})$ if $|\lambda| \ge 1$ flow aligning 12/11 no so solution - flow tumbling I is a minoscopic parameter that defends on molecular shape and degree of order long, trive roots 121 >1 A rematic in shear flow picks an orientation that is determined by & flow exerts at orgue on the director until it reaches this stable orientation

[Activity] active stress activity yields an additional along input that provides additional driving forces on the flund fluid $\sigma_{ij}(\vec{P}\vec{v},\vec{h}) \longrightarrow \sigma_{ij}(\vec{P}\vec{v},\vec{h},\Delta \mu)$ e.g., MATH-(MABP+MP) Ojoij] = [force demity] $\vec{F}_{act} = \sum_{i} \left\{ f_{i}^{i} \delta(\vec{r} - \vec{R}_{i} - a_{\mu} \hat{\nu}_{i}) \right\} \qquad \vec{R}_{i}^{i} \left\{ a_{\tau} \right\}$ use $a_{H} = a_{T}$ $-f\hat{\nu}i\delta(\vec{r}-\vec{R}i+a_{\tau}\hat{\nu}i))$ 1-3 $F_{\alpha} = \sum_{i} f \hat{\nu}_{i\alpha} \left\{ -(a_{\mu} + a_{\tau}) \hat{\nu}_{i\beta} \partial_{\beta} \delta(\vec{r} - \vec{R}_{i}) \right\}$ $r >> a_T + a_H = L$ $F_{d} = -f_{d} \left(\frac{5}{2} \hat{v}_{id} \hat{v}_{ip} \delta(\vec{r} \cdot \vec{r}_{i}) \right)$ $= \delta_{in} \left(\frac{5}{2} \hat{v}_{id} \hat{v}_{ip} \delta(\vec{r} \cdot \vec{r}_{i}) \right)$ $= \delta_{in} \left(\frac{1}{2} \hat{v}_{id} \hat{v}_{ip} \delta(\vec{r} \cdot \vec{r}_{i}) \right)$ $= \delta_{in} \left(\frac{1}{2} \hat{v}_{id} \hat{v}_{ip} \delta(\vec{r} \cdot \vec{r}_{i}) \right)$ $= \delta_{in} \left(\frac{1}{2} \hat{v}_{id} \hat{v}_{ip} \delta(\vec{r} \cdot \vec{r}_{i}) \right)$ $+\frac{1}{2}(a_{H}^{2}-a_{T}^{2})\hat{\mathcal{V}}_{ip}\hat{\mathcal{V}}_{ip}\mathcal{O}_{f}\mathcal{S}(\vec{r}\cdot\vec{R};)+...$ Extensile: MT, E. Coli Padt de = d Qd B (+ d c² d d) \$ >0 contractile: actomyosiu, Chlamy do moras K =)/(

SPONTANEOUS FLOUR) Dy Gyy=0 - preserve dy dxy=0 - Oxy= lonst = 0 Try = 1 dy Nx + Kdy & quiescent uniform state active Jxy = ydy Nx + a hxny + Kdy d can satisfy Txy=0 with dy vx 70 and director deponentions (ny to) But director deformations cost clastic energy ~ K Q' n elasti stress active stress KPin ~ ann $l_{\alpha} - \frac{K}{|\alpha|}$ L) la activity wins - spoutaneousflow L<la anchoring winn - uniform state

Europhys. Lett., **70** (3), pp. 404–410 (2005) DOI: 10.1209/epl/i2004-10501-2

nematic Spontaneous flow transition in active polar gels

R. VOITURIEZ¹, J. F. JOANNY¹ and J. PROST^{1,2}

[Contractile Vs Extensile systems] ordered state ho = x (xy = 2/(OxNy + OyNx) + anxny fluctuation ? Sr = ý Jny Gxy = 2/2(@x Ny + @y Nx) + & Sny $|\hat{n}| = 1$ SPLAY Sny (Y) BEND Sny(x) Y XX a<0 extrusi le contractile OxN(y)~ 2121 5ng Oy Nx ~ - 2x Sny stlag/bund fluctuations guerate shear flows that unhances deformation, as shown - nistability

Active nematic hydrodynamics yields selfsustained flow & defect proliferation

- Giomi, Bowick, Ma & MCM, PRL 110, 228101 (2013); Giomi et al, Phil Trans A 2014
- Thampi, Golestanian & Yeomans, PRL 2013; EPL 2014; Phil Trans A 2014
- Gao et al, PRL 2015

Spontaneous Vorticity & Defect Proliferation

Scaling controlled by length ξ_{lpha} of linear instability

E. Hemingway, Mishra, Fielding, MCM

To book at deject poliferation counder Q-Facior hydrody manies : 12d/ incompressible 9 D. v = 1 12 v - Pp + P.E Draij = Qik Wrj - Wie Qrij + Luij - 22 Qij Tr[Q. u] + 1 4 Zij = -λHij + Qin Hnj - Hin Quj - Di Qne <u>SF</u> δ(Dj Que) $H_{ij} = \left\{ \begin{array}{c} \delta F \\ \delta Q_{ij} \end{array} - \begin{array}{c} - & \delta S_{ij} \end{array} \right\} \left[\overline{\delta Q_{ij}} \right]$ $F = \int_{-1}^{1} \left\{ \frac{A}{2} (Q_{ij})^{2} + \frac{C}{4} (Q_{ij})^{4} + \frac{K}{2} (Q_{i}^{2} Q_{ju}^{2})^{2} \right\}$

DEFECTS AS SPP Flow field of dejects obtained by solving 277 v - Pp+f=0 f= P. Fa 7.7 50 $\int = \frac{\alpha}{2r} \begin{cases} \dot{x} & k = \pm i_2 \\ -\cos i\phi \dot{x} + \sin i\phi \dot{y} & k = -\frac{i_2}{2} \end{cases}$ K=-1, - K=+1/2 [x]= [ed messure] Nore - X R Non = 0 But - Suraj's poster 13 25, Nore - d h (F/Qm) 25: 3d viscosities lore 5~ dp. 7. 2d [2] = m t-1 30 [7] = mt-1/p

DEFECT DYNAMICS passive l' défects es point particles with frictional dynamics and all matrice / republice interactions Epair = - 2TK Ess log IFi-Fil a-cornice S1 = + 1/2 1 S2 = - 1/2 $E = \frac{\pi K}{2} \log \frac{|X_{+} - X_{-}|}{2}$ $\int \frac{dx}{\partial t} = + \pi k \frac{d}{2} \frac{1}{x + -x}$ A = Xt-X- $\frac{\pi E}{2y} = \frac{\pi k}{\sqrt{e_{H}}} = \int_{0}^{\infty} \log \left(\frac{\Delta}{a}\right)$ da = - Zre ta = 10/2n Sprice portive $\left(\begin{array}{c} \frac{\partial x_{\pm}}{\partial t} - \sqrt{s}(x_{\pm}) \\ 0 t \\ \end{array} \right) = F$ N+ (x-x+) + N- (x-x+) flow generated Sy dejects $Y\left(\frac{\partial x_{+}}{\partial F}-N_{o}\right)=-\frac{\pi k}{2N}$ K (dx = TK) dA = No - 2M $t_{n} = - \frac{\Delta(0)}{n!} - \frac{2\pi}{n!} \log \left[1 - \frac{N_0}{2\pi} \Delta(0) \right]$

Interactio + Tongue of 2 +1/2 defects $\overline{E} = - \overline{\Gamma} K \left[\log \frac{|F_i - \overline{r}_i|}{\alpha} + \frac{1}{2} \ln \left(1 - \hat{\mu}_i, \hat{\mu}_i \right) \right]$ Mi, Mi $\frac{3}{dt} = \frac{\pi k}{2} \frac{5}{j} \cdot \frac{1}{j} \cdot \frac{1}{j} \left(\frac{4}{j} - \frac{4}{j} \right)$ 4:-4; = TT torque = 0 4;-4;=0 torque - so

Active Backflow

Giomi, Bowick, Ma & MCM, PRL 2013

Director distortions from disclinations yield active stresses that act as a source for flows \rightarrow solve for flow in Stokes limit

Bounding fluids cut-off divergence

Active Defects as ``Self-Propelled'' Particles

No backflow \rightarrow pair dynamics controlled by balance of *friction* and *attraction*

$$x = x_+ - x_-$$

$$\zeta \dot{x} = -\nabla \left[K \ln(x/a) \right]$$

In the presence of $\zeta \left[\dot{x}_{\pm} - v_b(x) \right] = -\nabla \left[K \ln(x/a) \right]$ active backflow defects ride with the flow $v_b(x) \simeq -(\alpha/\eta) R \delta(x - x_+)$

Extensile active nematic

Contractile system: fibroblasts monolayer

G. Duclos, ... Silberzan, Soft Matter 2013

+1/2 defects as SP particles

 $\begin{aligned} \frac{d\mathbf{r}_i}{dt} &= v_0 \mathbf{\hat{u}}_i - \frac{1}{\zeta_t} \nabla_i E \\ \frac{d\psi_i}{dt} &= \frac{1}{\zeta_r} M_i \end{aligned}$

Self-propulsion proportional to activity

Sign of SP controlled by extensile/contractile nature of active forces

 $\hat{\mathbf{u}}_i = (\cos \psi_i, \sin \psi_i)$

Forces and torques obtained from equilibrium interactions:

 \mathbf{r}_i

$$E_{pair} \sim -s_1 s_2 K \ln |\mathbf{r}_1 - \mathbf{r}_2|$$

Torque obtained from interaction energy of two $\pm 1/2$ dipoles in the limit $D_1, D_2 \rightarrow \infty$ Topological defects as fingerprints of symmetry (nematic vs polar)

Direction of motion of +1/2 defect reveals extensile/ contractile nature of active stresses

Keber ... MCM et al, Science 2014

Active MT suspension in a lipid vesicle \rightarrow 2d nematic on the surface of a sphere

vesicle

Nematic order on a sphere requires a +2 topological charge

Four +1/2 defects at the corners of a tetrahedron Two +1 defects at the poles

In active nematic defects oscillate between tetrahedral and planar configurations

$$\langle \alpha \rangle = \frac{1}{6} \sum_{i < j} \arccos\left(\frac{\mathbf{r}_i \cdot \mathbf{r}_j}{R^2}\right)$$

Frequency set by size of

Oscillations for $\zeta_t R^2 > \zeta_r$ Defect core translation lags $\langle \alpha \rangle = \frac{1}{6} \sum_{i < j} \arccos\left(\frac{\mathbf{r}_i \cdot \mathbf{r}_j}{R^2}\right)$ reorientation *(a) (b)* 125 3.0 2.5 120 Average Angle (°) 2.0 Frequency 115 1.5 1.0 110 0.5 0.0 105 L 50 0.3 40 45 55 60 0.2 0.4 0.5 0.6 Time v_0 $v_0 \sim \frac{\text{activity}}{\text{viscosity}}$ Rfrequency $\sim v_0/R$

Smaller vesicles

Silke Henkes (Aberdeen) Rastko Sknepnek (Dundee)