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Nematic LC: nema=thread; aka “disclination” 

1922, G. Friedel:  

Named “nematics”, the simplest 

LC, after observing linear defects, 

nema=thread, under a polarized 

light microscope  
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Frank’s model of disclinations in N 
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Escape into the 3rd dimension 
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k=1 

k=1/2 k=1 

P. Cladis, M. Kleman (1972),  R.B. Meyer (1972) 



nr = cos r , n = 0, nz = sin r 

 r = R  = 0

 r = 0  =  / 2

P. E. Cladis, M. Kleman J. Physique 33, 591 (1972),  R.B. Meyer, Phil. Mag. 27, 405 (1972) 
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Point defects in the nematic bulk 

-hedgehogs 

Escape into the 3rd dimension 



Homotopy classification: Uniaxial nematic Nu 
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Degeneracy space 

Topological stability is established by mappings from real space onto 

the degeneracy (or order parameter) space 



k=1 

Homotopy classification: Lines in Nu 

k=1/2 

n -n 

G. Toulouse, M. Kleman J. Phys. Lett. 37, L149 (1976),  G.Volovik, V. Mineev, JETP 46, 1186 (1977) 

Topologically unstable Topologically stable 

Topologically stable defect: A non-uniform configuration of the order parameter 

that cannot be reduced to a uniform state by a continuous transformation. In 

practical terms, to destroy a topological effect, one needs an energy exceeding 

the self energy of the defects by many orders of magnitude; e.g. melt the entire 

sample.   

 



1
2

k = 1
2

k = 

G. Toulouse, M. Kleman J. Phys. Lett. 37, L149 (1976),  

G.Volovik, V. Mineev, JETP 46, 1186 (1977) 

Homotopy classification: Lines in Nu 



Disclinations in N are described by 

the 1st homotopy group,  

comprised of two elements 

   2 1
21 2 2/ 0,S Z Z = =

1
2

k = 1
2

k = 

All semi-integer disclinations are 

topologically equivalent to each other and can 

be smoothly transformed one into another 

G. Toulouse, M. Kleman J. Phys. Lett. 37, L149 (1976),  

G.Volovik, V. Mineev, JETP 46, 1186 (1977) 

Homotopy classification: Lines in Nu 
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 2

2 2/ 0, 1, 2,...S Z N = =  Hedgehogs (point defects) in uniaxial N 

Homotopy classification: Points in 3D Nu 

Radial  hedgehog 

Hyperbolic  hedgehog 
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Topological charges of points, vector fields, t-space 

Definition of t-dimensional topological charge:  

E. Dubrovin et al, Modern Geometry, Springer, 1984 

 1 2 tn ,n ,...n=n

t-dimensional vector field: 

 1 2 1tu ,u ,...u 

(t-1)-coordinates 

specified on the sphere 

around the defect 

Point defects in 2D: 
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Point defects in 3D: Ferromagnetic vs Nematic 
Sphere of all possible orientations of 

magnetization  

Topologically stable point defect; to remove it, one 

needs to destroy ferromagnetic order on the entire line 

Topologically charge: how many times the 

magnetization vector goes through all 

possible orientations  

M. Kleman, Phil. Mag. 27 1057 (1973). 

N. Mermin et al PRL 36, 594 (1976) 
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Homotopy: Points in 3D Nu 

Result of merger of 2 hedgehogs in a uniaxial N in presence of a disclination 

depends on the pathway of merger 

Similar example for dislocations 

in presence of disclinations: 

G. Toulouse, M. Kleman J. Phys. Lett. 37, L149 (1976),  

G.Volovik, V. Mineev, JETP 46, 1186 (1977) 
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Typical texture of a (thick) Nu 

n 

singular  

disclination 
nonsingular 

disclination 

n 

200 μm

Eventually, all the defects will disappear, except 

maybe one line and one point defect, 

mostly through annihilation, as ½+½=0 and 1+1=0! 
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Defects in equilibrium: LC droplets 

 Anisotropic surface energy 
      Rapini-Papoular surface anchoring potential 

 

 

S. Faetti et al, PRA 30, 3241 (1984): N-I thermotropic interface is weakly anisotropic:  
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The droplets of thermotropic N in isotropic melt are 

spherical and contain defects to satisfy surface anchoring 

conditions 

The structure is determined by the balance of 

anisotropic surface tension and internal elasticity n̂

υ̂




Balance of elasticity and surface anchoring  

 

 

leads to the following expectation for scaling behavior: 

KRFelastic ~
2~ WRFanchoring

μm101.0~/ WK

WK //K R

ˆ ˆ||n n
00 =

ˆ ˆn n

2/0  =
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Liquid Crystals 24, 117 (1998) 

Defects correspond to the equilibrium state of the (large) system 

Defects in equilibrium: LC droplets 



(a) 

(b) 

(c) 

(d) 

(e) 

υ

n̂

υ

n̂

ˆ||υ n

N droplets in glycerine with temperature 

varied anchoring axis; topological dynamics 

of boojums, disclination loops and 

hedgehogs 

NB: Defects correspond to the equilibrium 

state of the system; they help to minimize 

the sum of the anisotropic surface tension 

and bulk energy. 

Defects in equilibrium: LC droplets 

Do we really want to minimize the 

energy for each and every surface 

angle?! 



Topological dynamics of defects in LC drops 

G.E. Volovik et al, Sov. Phys. JETP 58 1159 (1983) 
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Topological dynamics of defects in LC drops 



Applications of LC drops 

Privacy windows: 

Polymer Dispersed Liquid Crystals 

(JW Doane et al, LCI, Kent) 

0=E

effective polymern n

0E

o polymern n=



Droplets as Biosensors: 

Microscale LC Droplets 

(Oil-in-Water Emulsion) 

H2O H2O 

‘Caged’ LC Droplets 

(Droplets in Polymer Capsules) 

H2O 

LC 

Immobilized LC Droplets Internalized LC Droplets 

Sensing in Biological Environments: 

Abbott and Lynn (UW-Madison) 



Transitions triggered by: 

Cationic surfactants 

Anionic surfactants 

Bacterial endotoxin 

 HTAB 
 (10 μm) 

H2O 

LC 

Angew. Chem. 2013; Langmuir 2014  

Not by: 

Proteins, serum, etc. 

Abbott and Lynn (UW-Madison) 
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Disclinations are not “material” lines and can cross each other. 

 

Two disclinations connecting opposite plates of a nematic cell;  

plates are twisted;  disclination ends reconnect 

2/11 =k

2/12 =k

T.Ishikawa et al, Europhys. Lett. (1998) 

2/11 =k 2/12 =k2/11 =k 2/12 =k

Reconnection of disclinations in Nu 



Topological test for biaxiality of a nematic: 

Two disclinations ½ belonging to different classes cannot 

cross each other, the trace is a third line of strength 1; the 

two separated disclinations interact through a potential that 

resembles interaction of …. Quarks!  

G. Toulouse, J. Phys. Lett. 38, L67 (1977) 

Reconnection of disclinations in biaxial Nbx 

U KL
L

   3

1 2/ 0;1;1/ 2 ;1/ 2 ;1/ 2x y zS D Quaternion units = =

Degeneracy space: Solid sphere; each point describes a state of three 

directors, n,m,l.  In biaxial nematics, the strength 1 disclinations cannot 

escape (strength 2 can). There are three different classes of ½ 

disclinations with k semi-integer and one with k=1 

1k = does not escape! 



P. Dirac, Proc. Roy. Soc. (London) A133, 60 (1931)  

Ch droplet, called Robinson spherulite or Frank-Price 

structure,  

C. Robinson et al, Disc. Faraday Soc. 25, 29 (1958); 

Kurik et al, JETP Lett 35, 444 (1982) 

Cholesteric drops and Dirac monopole 

@ 2director each layerk =

1helical axisN =

T. Orlova et al, Nat. Comm. 6, 7603 (2015) 

Two orthogonal 

vector fields: helical 

axis and director 

(magnetic field and 

vector-potential) 

Point hedgehog in helical axis (magnetic) field and an 

attached disclination (Dirac string) in the director field 
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Rare exception of round cohesive droplets:  

Ch-SmA phase transition 

Ch droplets in glycerine+lecithin; cooling down leads 

to extended shapes, then nucleation of spherical SmA 

sites; the process often results in division of droplets 

(Nastishin et al  Sov Phys JETP Lett 1984; 

EurophysLett 1990)  84.0 C 

83.4 C 

82.8 C 

82.7 C 

82.6 C 

82.5 C 

82.4 C 

82.0 C 
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(LC)2: Lyotropic Chromonic Liquid Crystals 

n 

 7 6 2~ ~ 10 10 J/mB
o

k T

LD
 a  

5 2~ 10 J/mW 

Lyotropic I-N interface might  

be strongly anisotropic and 

be influenced by elasticity  

Model of surface tension: P. van der Schoot J. Phys. 

Chem B 103, 8804 (1999) 

J. Bernal and I. Fankuchen, 
J. Gen. Physiol. (1941): 
tactoids as N nuclei in 
tobacco mosaic virus 
dispersions 
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Droplets of chromonic N in isotropic melt 

(tactoids) 
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Surprise #1: Surface-located, not bulk 

Vertical cross-section image; 

fluorescent confocal  

microscopy 



Tortora et al., PNAS 108, 5163 (2011) 
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Surprise #2 (mild): Contact angle changes along 

the perimeter 

Vertical cross-section image; 

fluorescent confocal  

microscopy 



Tortora et al., PNAS 108, 5163 (2011) 
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Surprise #3: Twist 

Right-twisted tactoid 

Left-twisted  tactoid 

Tortora et al., PNAS 108, 5163 (2011) 
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Mechanism: “Geometrical” anchoring+large K1/K2 

Nematic between two 

isotropic parallel 

boundaries: 

Degenerate in-plane 

orientation 

One plate tilts, the other 

sets “physical anchoring” 

say, along the long axis of 

the tactoid’s footprint: 

balance of twist and splay 

establishes a twist angle  

One plate tilts: alignment 

perpendicular to the 

thickness gradient is the 

only one without 

distortions; other directions 

cause splay 

x

Tortora et al., PNAS 108, 5163 (2011) 
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Mechanism: “Geometrical” anchoring+large K1/K2 

2 2

1 2f K K
z z

     
    

    

2

2 1/K K  Condition for the twist: 

Elastic energy of a tilted element: 

L. Tortora et al., PNAS 108, 5163 (2011) 

Twisted tactoids: An example of chiral symmetry braking in a molecularly non-chiral 

system; only spatial confinement and elastic anisotropy are needed to produce 

macroscopic chiral purity.  

 2 2 21 21
2 2

K K
F

d d
    

Bulk equilibrium: 

 

 

 

2 2

2 2
0; 0

z z

  
= =

 

       2arcsin sin cos 1 / 2 ;z d z d= =      =     

Easy to fulfill as in 

chromonics,  2 1/ ~ 0.1 0.03K K 

S. Zhou et al., Soft Matter  10, 6571 (2014) 

Twist 

deformations 

reduce the cost 

of splay 

deformations 



2D tactoids and Kibble mechanism  
Isotropic-Nematic transition: Anchoring-induced topological defects in each and every 

nuclei of the N phase, as long as it is large enough,  /R K W

60 mm 

(b) 
υn̂

n̂

a

Kibble (1976) Model of formation 

of cosmic domains and strings 

cosmic 

string 
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2D tactoids and Kibble mechanism in (LC)2  

Anchoring-

produced surface 

defects-boojums 

T = 33.9 oC T = 33.7 oC, t = 0 s T = 33.7 oC,  t = 21 s T = 33.4 oC 

Kibble-like production of disclinations as a result of tactoids merger 

2 1
n

k

k

c c m   
 =  

 


Conservation law for 

positive and negative cusps: 

negative cusp 

50 μm 

YK Kim et al., J Phys C ond Matt  25 404202 (2013)  
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2D tactoids and k=1 disclinations  

0 nm 

136 nm 

(a) T = 32.7 oC (c) T = 29.7 oC,  t = 0 s (d) T = 29.7 oC,  t = 603 s (b) T = 29.8 oC 

50 μm 

1 

2 

1 

2 1 

2 

1 2 1 2 1 2 

 1 1 0

1

ln 2 2 2
2 2

pair

K L
f f r w

r


  =   

YK Kim et al., J Phys C ond Matt  25 404202 (2013)  
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Drops of isotropic phase in N environment with 

distroted director: A balance of surface tension, 

anchoring, and elasticity 
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Equilibrium shape+director? 

Difficult problem, requires to minimize both the anisotropic surface energy and elastic 

interior/exterior 

First step: Assume “infinite” elasticity (frozen director); then calculate the equilibrium shape 

of the I tactoid at the core, using the angular dependence of the surface tension for each 

disclination 

 

k = -1/2 

    2
0 1 cos 1w k   =     

2w =

Polar plot of surface tension of an isotropic 

island inside a nematic region representing a 

disclination of -1/2 strength; 

Problem: Find the shape that minimizes the 

anisotropic surface tension 

? 

? 

YK Kim et al., J Phys C ond Matt  25 404202 (2013)  

    
2
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V s
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  n r n υ



Radius of curvature:  

 

2 2 2' ' "R r r   =  = 

" 0  Missing orientations and cusps:   

 

" 0  Round shape, all orientations of I-N interface:   

 

     
2 221 1 4 1 cos 1 2 1 0w k k k w       
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Equilibrium shape by Wulff construction for 

distorted director 

υ

x

A

y





Equilibrium shape 

Polar plot of surface tension 

O

r
B

Wulff construction for crystals:  

L. Landau, E. Lifshits, Statistical 

Physics (1964) 

    2
0 1 cos 1w k   =     

  
   cosr     =    

   
cos

sin '
r

r
   

   


   =  
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2 '2 ; arctan
'

r


   


=  = 

YK Kim et al., J Phys C ond Matt  25 404202 (2013)  



Shape of  

Domain 

Wulff construction by Mathematica 

The interior envelope describes the shape in equilibrium 

Wulff  

Construction 

Draw the tangent lines at each point in a polar plot of σ (θ)  

Cusp 

3c N tactoid 

Cusp 

YK Kim et al., J Phys C ond Matt  25 404202 (2013)  
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Equilibrium shape by Wulff construction for 

distorted director 

Missing orientations and cusps:   

 
     

2 221 1 4 1 cos 1 2 1 0w k k k w       
 

1/ 2; 2k w= =1/ 2; 2k w=  = 0; 2k w= = 1/ 2; 20k w= =1; 2k w=  =

  

              

5 10 15 20

10

5

5

10

1 1 2 3

2

1

1

2

Never the case for k=1/2 and k=1; for k=0, wc=1; for k=-1/2, wc=2/7; for k=-1, wc=1/7 

YK Kim et al., J Phys C ond Matt  25 404202 (2013)  
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Summary/What have you learned 
 

 Disclinations: Frank model, line energy ~ln of size, ~k2 

 Integer disclinations: Escape into the third dimension 

 Semi-integer: Stable 

 Homotopy classification: A natural language to describe 

defects in any medium, LCs and superfluid He-3 including 

 Surface anchoring: Controls topology and energy of defects; 

 Defects occur as equilibrium features in LC droplets, 

…Including the nuclei during the phase transition from the 

isotropic phase  

 Cholesteric: Dirac monopoles 

 Chromonic droplets: Spontaneous chiral symmetry broken; 

shape is strongly dependent on director deformations, the 

problem of full energy (elastic+surface tension+anchoring) 

minimization not solved yet 
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Lamellar Phases 

1. Free Energy Density 

2. Weak distortions: Dislocations, Undulations 

3. Strong distortions: Focal conic domains, grain boundaries 

Content 
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Smectics A  

(thermotropic) 

Smectic A  

(lyotropic) 

Cholesteric  

(chiral N) 

1-10 nm >0.1 mm 

Twist-bend 

nematic 

Lamellar phases 
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Stripe magnetic domain  

Layered structure in magnetic fluid 

(M. Seul et. al., P.R.L., 68, 2460 (1992)) 

(C. Flament et. al., Europhys. Lett., 34, 225 (1992)) 

Weak perturbations: Dislocations, undulations 
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Elasticity of lamellar phase; 1D translational order 

Curvature: 
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Elasticity of lamellar phase; 1D translational order 
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Elasticity of Smectics: Dislocation 

By fitting u(x,z),  one can measure 

Brener and Marchenko PRE‘99 
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Long range effect of layers deformations 
 

Look for solution of the type: 

  qxuzu q cos0 ==   0=zu
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E-L equation 

  qxuzu q cos0 ==

  0=zu

0
1

2

4

1 =
L

BqK



Saint-Venaint principle                 is not applicable to SmA materials; 

Smectics: A good model of “la Princesse sur la graine de pois” 

If a pea is 1 mm, layer thickness 10 nm, then the pea is felt over 100 m! 

~L

2macroscopic scale

microscale
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G. Durand (1968) 
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Undulations in Cholesteric caused by E field 

Photo by Luba Kreminska 

Senyuk et al PRE 74, 011712 (2006) 



Undulations in Cholesteric (2D) 

3D version: Senyuk et al PRE 74, 011712 (2006) 
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Undulations in Cholesteric (2D) 

Ishikawa et al PRE 63, 030501(R) (2001) 
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Senyuk et al PRE 74, 011712 (2006) 

Undulations in Cholesteric above threshold 

Immediately above 

the threshold 

Well above the threshold, 

3D, 

Anchoring takes over, 

forcing parabolic domain 

walls 

Well above the 

threshold, 2D cell; 

broken surface 

anchoring 
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mm40

Strong perturbations: Focal conic domains 
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principal radii 

Compression/Dilation:  Curvature: 
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Elasticity of Smectics: Strong distortions 
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At large scales of deformations,  

the curved layers are equidistant 

d

R d

Elasticity of Smectics 



2D focal surfaces 

shrink into lines 

layers 

2D focal surface,  

high energy (infinite 

curvatures) 

Curved smectic layers: Dupin Cyclides 

C.P. Dupin, Applications de Géométrie (Paris, 1822) 

J. Maxwell, On the cyclide, Q. J. Pure Appl. Math 9, 111 (1868) 

To reduce the energy, focal surfaces in SmA  

degenerate into 1D focal lines, that can be only of three types: 

(a) circle and straight line, or  

(b) confocal ellipse and hyperbola, 

(c) two confocal parabolae 

producing a Focal Conic Domain (FCD);  the smectic layers are Dupin cyclides 
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1910, G. Friedel, F. Grandjean:  

Deciphered SmA structure 

from observation of  

focal conic domains; 

X-ray was not available 

Smectics and focal conic domains 

mm40

60 
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Toroidal Focal Conic Domains 

Smoothly fits into the system of 

parallel layers  
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Classification of FCDs by Gaussian curvature 
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How to describe the FCD analytically?  
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Parametrization of conics with coordinates u and v 

defined within the cyclides 

Ellipse Hyperbola 

Curvilinear coordinates r, u, v 
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Curvature energy functional  
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Kleman et al PRE 61, 1574 (2000) 
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Let us introduce the third coordinate r that “counts” the layers 
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Surface elements of FCD I and FCD II 
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Mathematica© 

cannot do it…. 

substitutions such as lead to the desired result... 

Curvature energy of FCD-I 

Kleman et al PRE 61, 1574 (2000) 
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Curvature energy of FCD-I 

curvF

Kleman et al PRE 61, 1574 (2000) 



Circular FCDs-I 
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Home assignment: Derive F for a circular FCD 



L, sample size 

Black: tangential anchoring 

White: Normal anchoring 

F b ~ Kb  b
2

F

b
= 0  b

*
~ K /   

Sov Phys JETP’83 

Appolonius 

filling 

Anchoring-Controlled FCD Assembly 

The smallest FCDs 

are macroscopic  



40 μm

R1

R2

FCDs form families with common apex; Bragg, Nature (1934) 

Associations of FCDs 



R1

R2

Friedel, 1922: When two coplanar ellipses are in contact at M,  

the two corresponding hyperbolae have two points of intersection P and Q  

and the domains have two generatrices MP and QM of contact. 

Law of Corresponding Cones 
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At the line of contact of two FCDs, 

the curvature energy densities are equal  

since the radii of curvature are the same; there  

is no line energy at the line of contact                   
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Curvature energy of FCD-I 

Energy decreases as eccentricity increases. 

However eccentricity is not a minimization 

parameter as it is often fixed by the geometry of 

layers outside the FCD 
curvF



Grain Boundaries in SmA 

  0 dislocation wall    / 2

de Gennes, 1970 

curvature wall 

FCDs: 

intermediate 



FCD-filled Grain Boundary-Ist hint 



FCD-filled Grain Boundary-Ist hint 



To calculate the energy of the FCD wall, we need to know: 

  

•FCD energy (curvatures and defect cores) 

•Spatial filling pattern, size distribution 

•The energy of residual areas 

M. Kleman et al, Eur. Phys. J E 2, 47 (2000) 



Residual Areas with Dislocations 
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M. Kleman et al, Eur. Phys. J E 2, 47 (2000) 



Residual Areas with Curvatures 
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From Circles to Ellipses 

n  1.32

Projective properties of conic sections lead to:  

M. Kleman et al, Eur. Phys. J E 2, 47 (2000) 
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FCD wall with Dislocations 

M. Kleman et al, Eur. Phys. J E 2, 47 (2000) 
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FCD wall with Dislocations 



Photo: Claire Meyer 

Grain boundaries with FCDs 



Domain walls in SmA 

 = 0  =  / 2  = 

dislocations 
FCDs, gaps with 

dislocations 

FCDs, gaps with 

curvatures curvatures 
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Conclusions/What have you learned 

 Lamellar phases  

 
 Both compressibility and curvatures are generally important in weak elastic 

deformation, such as dislocations, surface perturbations, undulations  

 Strong deformations such as focal conic domains are described sufficiently well 

by the curvature term; layer thickness is preserved everywhere except at singular 

lines (confocal pairs) that are remnants of singular focal surfaces 

 Observation of focal conic domains led to correct identification of smectics as 

1D periodic stacks of fluid 2D layers  

 Focal conic domains participate in relaxation of surface anchoring and grain 

boundaries 

 

 


