Liquid crystals: Lecture 2 Topological defects, Droplets and Lamellar phases

Oleg D. Lavrentovich

Support: NSF

Liquid Crystal Institute Kent State University, Kent, OH

Boulder School for Condensed Matter and Materials Physics, Soft Matter In and Out of Equilibrium,
6-31 July, 2015

Nematic LC: $v \varepsilon \mu \alpha=$ thread; aka "disclination"

1922, G. Friedel:
Named "nematics", the simplest LC , after observing linear defects, $\nu \varepsilon \mu \alpha=$ thread, under a polarized light microscope

Frank's model of disclinations in N

The simplest form (one constant) approximation: $\quad f=\frac{1}{2} K\left[(\operatorname{div} \hat{\mathbf{n}})^{2}+(\operatorname{curl} \mathbf{n})^{2}\right]$

$$
\left\{n_{r}, n_{\varphi}, n_{z}\right\}=\{\cos \psi(\varphi), \sin \psi(\varphi), 0\}
$$

$$
\operatorname{div} \hat{\mathbf{n}}=\frac{1}{r} \frac{d n_{\varphi}}{d \varphi}+\frac{n_{r}}{d r}=\frac{\cos \psi}{r}\left(1+\frac{d \psi}{d \varphi}\right)
$$

$$
\operatorname{curl}_{z} \hat{\mathbf{n}}=-\frac{1}{r} \frac{d n_{r}}{d \varphi}+\frac{n_{\varphi}}{r}=\frac{\sin \psi}{r}\left(1+\frac{d \psi}{d \varphi}\right)
$$

$$
F_{\text {lenggh }}=\frac{1}{2} K \int_{S}\left(1+\frac{\partial \psi}{\partial \varphi}\right)^{2} \frac{1}{r^{2}} r d \varphi d r=\frac{1}{2} K \int_{\varphi=0}^{\varphi=2 \pi}\left(1+\frac{\partial \psi}{\partial \varphi}\right)^{2} d \varphi \int_{r=0}^{r=R} \frac{d r}{r}
$$

$k=1 / 2 \quad k=1$

Euler-Lagrange equation $\Rightarrow \frac{\partial^{2} \psi}{\partial \varphi^{2}}=0 \quad \Rightarrow \psi=A \varphi+c$
$\oint d \psi=2 \pi k \Rightarrow A=0, \pm 1 / 2, \pm 1, \ldots \quad\left(n_{r}, n_{\varphi}\right)=(\cos [\varphi(k-1)+c], \sin [\varphi(k-1)+c]) \quad\left(n_{x}, n_{y}\right)=(\cos [\varphi k+c], \sin [\varphi k+c])$ $F_{\text {llenght }}=\pi k^{2} K \int_{r=0}^{r=R} \frac{d r}{r}=\pi k^{2} K \ln \frac{R}{r_{\text {core }}}+F_{\text {core }}$
$F_{\text {core }}=k_{B}\left(T_{N I}-T\right) \times \pi r_{\text {crere }}^{2} \times \rho N_{A} / M$
Energy per degree of freedom

$$
r_{\text {core }}=k \sqrt{\frac{M K}{\rho N_{A} k_{B}\left(T_{N I}-T\right)}} \sim \text { few molecular lengthes; } F_{\text {core }} \sim \pi k^{2} K
$$

Escape into the $3^{\text {rd }}$ dimension

P. Cladis, M. Kleman (1972), R.B. Meyer (1972)

$$
k=1
$$

Escape into the $3^{\text {rd }}$ dimension

$$
n_{r}=\cos \chi(r), \quad n_{\varphi}=0, \quad n_{z}=\sin \chi(r)
$$

$$
f=\frac{1}{2} K\left[(\operatorname{div} \hat{\mathbf{n}})^{2}+(\operatorname{curl} \hat{\mathbf{n}})^{2}\right]
$$

(a)

$\chi(r=0)=\pi / 2$
$\operatorname{div} \hat{\mathbf{n}}=\frac{1}{r} \frac{d\left(r n_{r}\right)}{d r}=-\sin \chi \frac{d \chi}{d r}+\frac{\cos \chi}{r} \quad \operatorname{curl}_{\varphi} \hat{\mathbf{n}}=-\frac{d n_{z}}{d r}=-\cos \chi \frac{d \chi}{d r}$
$F_{\text {llength }}=\frac{1}{2} K \int_{\varphi=0}^{\varphi=2 \pi} d \varphi \int_{r=0}^{r=R}\left[\left(\frac{\partial \chi}{\partial r}\right)^{2}+\frac{\cos ^{2} \chi}{r^{2}}-\frac{1}{r} \sin 2 \chi \frac{d \chi}{d r}\right] r d r \quad r \rightarrow \exp \xi$
$F_{\text {length }}=\pi K \int_{r=0}^{r=R}\left[\left(\frac{\partial \chi}{\partial \xi}\right)^{2}+\cos ^{2} \chi-\sin 2 \chi \frac{d \chi}{d \xi}\right] d \xi$
Euler-Lagrange equation $\quad \frac{\partial^{2} \chi}{\partial \xi^{2}}=-\cos \chi \sin \chi$
$\Rightarrow\left(\frac{\partial \chi}{\partial \xi}\right)^{2}=\cos ^{2} \chi+$ const $;\left.\quad \frac{\partial \chi}{\partial \xi}\right|_{r \rightarrow 0} \rightarrow 0 \Rightarrow$ const $=0$
$\frac{\partial \chi}{\partial \xi}=-\cos \chi \quad \Rightarrow \int_{r}^{R} \frac{d y}{y}=-\int_{\chi}^{0} \frac{d p}{\cos p} \quad \chi=2 \arctan \left(\frac{R-r}{R+r}\right)$

$$
F_{\text {llength }}^{\text {escaped }}=3 \pi K \quad F_{1 l e n g l h}^{\text {sin sular }}=\pi K \ln \frac{R}{r_{\text {core }}}+F_{\text {core }}
$$

Escape is preferred when $R>10 r_{\text {core }}$
P. E. Cladis, M. Kleman J. Physique 33, 591 (1972), R.B. Meyer, Phil. Mag. 27, 405 (1972)

Escape into the $3{ }^{\text {rd }}$ dimension

Homotopy classification: Uniaxial nematic N_{u}

Topological stability is established by mappings from real space onto the degeneracy (or order parameter) space

Homotopy classification: Lines in N_{u}

Topologically unstable

Topologically stable

Topologically stable defect: A non-uniform configuration of the order parameter that cannot be reduced to a uniform state by a continuous transformation. In practical terms, to destroy a topological effect, one needs an energy exceeding the self energy of the defects by many orders of magnitude; e.g. melt the entire sample.

Homotopy classification: Lines in N_{u}

$$
k=1 / 2
$$

$$
k=-1 / 2
$$

G. Toulouse, M. Kleman J. Phys. Lett. 37, L149 (1976),
G.Volovik, V. Mineev, JETP 46, 1186 (1977)

Homotopy classification: Lines in N_{u}

$$
k=1 / 2
$$

$k=-1 / 2$

All semi-integer disclinations are
Disclinations in N are described by the $1^{\text {st }}$ homotopy group, comprised of two elements

$$
\pi_{1}\left(S^{2} / Z_{2}\right)=Z_{2}=(0,1 / 2)
$$

 topologically equivalent to each other and can be smoothly transformed one into another

Homotopy classification: Points in 3D N

Hedgehogs (point defects) in uniaxial N

$$
\pi_{2}\left(S^{2} / Z_{2}\right)=N=0, \pm 1, \pm 2, \ldots
$$

Hyperbolic hedgehog

Topological charges of points, vector fields, t-space

t -dimensional vector field:

$$
\mathbf{n}=\left(n^{1}, n^{2}, \ldots n^{t}\right)
$$

(t-1)-coordinates
specified on the sphere around the defect

$$
\left(u^{1}, u^{2}, \ldots . u^{t-1}\right)
$$

$$
N^{(t)}=\frac{1}{\Omega} \int_{s^{-1}} \left\lvert\, \begin{array}{cccc}
n^{1} & \cdots & . . & n^{\prime} \\
\frac{\partial n^{1}}{\partial u^{1}} & \cdots & \cdots & \cdots \\
\frac{\partial n^{\prime}}{\partial u^{1}} & \cdots & \cdots & \cdots \\
\frac{\partial n^{1}}{\partial u^{\prime-1}} & \cdots & \cdots & \frac{\partial n^{\prime}}{\partial u^{-1}}
\end{array}\right. \|^{1} \ldots d u^{t-1}
$$

Definition of t -dimensional topological charge:
E. Dubrovin et al, Modern Geometry, Springer, 1984

Point defects in 2D:

$$
N^{(2)} \equiv k=\frac{1}{2 \pi} \int_{\text {loop }}\left(n^{1} \frac{d n^{2}}{d l}-n^{2} \frac{d n^{1}}{d l}\right) d l= \pm 1, \pm 2, \ldots
$$

Circle of all

$$
k=1
$$ possible orientations of magnetization

$$
k=-1
$$

Point defects in 3D: Ferromagnetic vs Nematic

Sphere of all possible orientations of

magnetization

Topologically charge: how many times the magnetization vector goes through all possible orientations
$N^{(3)}=\frac{1}{4 \pi} \int_{\sigma} \hat{\mathbf{m}}\left[\frac{\partial \hat{\mathbf{m}}}{\partial u} \times \frac{\partial \hat{\mathbf{m}}}{\partial v}\right] d u d v$
Topologically stable point defect; to remove it, one needs to destroy ferromagnetic order on the entire line
M. Kleman, Phil. Mag. 271057 (1973).
N. Mermin et al PRL 36, 594 (1976)

$$
\begin{aligned}
& \hat{\mathbf{m}}(u, v)=\{\sin \theta(u, v) \cos \varphi(u, v) ; \sin \theta(u, v) \sin \varphi(u, v) ; \cos \theta(u, v)\} \\
& N^{(3)}=\frac{1}{4 \pi} \int_{\sigma}\left(\frac{\partial \theta}{\partial u} \frac{\partial \varphi}{\partial v}-\frac{\partial \theta}{\partial v} \frac{\partial \varphi}{\partial u}\right) \sin \theta d u d v \quad \hat{\mathbf{m}}=\hat{\mathbf{r}} \quad N=1
\end{aligned}
$$

Uniaxial nematic $\quad N^{(3)}=\frac{1}{4 \pi} \int_{\sigma} \hat{\mathbf{n}}\left[\frac{\partial \hat{\mathbf{n}}}{\partial u} \times \frac{\partial \hat{\mathbf{n}}}{\partial v}\right] d u d v= \pm 1$

Homotopy: Points in 3D N

Result of merger of 2 hedgehogs in a uniaxial N in presence of a disclination depends on the pathway of merger

$$
N+N=\left\{\begin{array}{c}
2 N \\
0
\end{array}\right.
$$

G. Toulouse, M. Kleman J. Phys. Lett. 37, L149 (1976),
G.Volovik, V. Mineev, JETP 46, 1186 (1977)

Similar example for dislocations in presence of disclinations:

Typical texture of a (thick) N_{u}

Eventually, all the defects will disappear, except
 maybe one line and one point defect, mostly through annihilation, as $1 / 2+1 / 2=0$ and $1+1=0$!

Defects in equilibrium: LC droplets

The structure is determined by the balance of anisotropic surface tension and internal elasticity

\square Anisotropic surface energy $\quad F_{\text {sufface }}=\sigma_{o}+f(\hat{\mathbf{n}} \cdot \hat{\mathbf{v}})$
$f(\hat{\mathbf{n}} \cdot \hat{\mathbf{v}})=W_{2}(\hat{\mathbf{n}} \cdot \hat{\mathbf{v}})^{2}=W_{2} \cos ^{2} \theta \quad$ Rapini-Papoular surface anchoring potential
S. Faetti et al, PRA 30, 3241 (1984): N-I thermotropic interface is weakly anisotropic:

$$
\sigma_{o} \sim 10^{-5} \mathrm{~J} / \mathrm{m}^{2} ; W_{2} \sim 10^{-6} \mathrm{~J} / \mathrm{m}^{2} ; W_{2} / \sigma_{o} \sim 0.1-0.01
$$

\square Elasticity:

$$
F_{\text {elastic }} \sim K R \quad K_{i} \sim 5 \mathrm{pN} \quad R \geq 10 \mu \mathrm{~m} \Rightarrow
$$

$$
\frac{\sigma_{0} R^{2}}{K R} \geq 10 ; \quad \frac{W_{2} R^{2}}{K R} \geq 1 \quad \begin{aligned}
& \text { The droplets of thermotropic } \mathrm{N} \text { in isotropic melt are } \\
& \begin{array}{l}
\text { spherical and contain defects to satisfy surface anchoring } \\
\text { conditions }
\end{array}
\end{aligned}
$$

Defects in equilibrium: LC droplets

Balance of elasticity and surface anchoring

$$
F_{\text {elastic }} \sim K R \quad F_{\text {anchoring }} \sim W R^{2}
$$

leads to the following expectation for scaling behavior:

Defects correspond to the equilibrium state of the (large) system

Defects in equilibrium: LC droplets

N droplets in glycerine with temperature varied anchoring axis; topological dynamics of boojums, disclination loops and hedgehogs
NB: Defects correspond to the equilibrium state of the system; they help to minimize the sum of the anisotropic surface tension and bulk energy.

Do we really want to minimize the energy for each and every surface angle?!

(b)

(c)

(e)

Topological dynamics of defects in LC drops

Bulk point defect hedgehog: $N=1$

Hedgehog spreadable into a disclination loop:

Replace director with a vector
Surface point defect boojum: two topological charges, 2D and 3D;

G.E. Volovik et al, Sov. Phys. JETP 581159 (1983)

Topological dynamics of defects in LC drops

$\sum_{i=1}^{b} C_{k_{i}, N_{i}}+C_{s}+\sum_{j=b+1}^{h+b} N_{j}=\left(-1+\frac{1}{2} \sum_{i=1}^{b} k_{i}\right)(\mathbf{n} \cdot \boldsymbol{v}-1)+\sum_{j=b+1}^{h+b} N_{j}-1=0$
Poincare theorem: conservation law for vector ${ }_{b}$ fields tangential to the surface

$$
\sum_{i} k_{i}=E
$$

Gauss theorem: conservation law for vector fields perpendicular to the surface

$$
\sum_{j=1}^{h+b} N_{j}=E / 2
$$

Euler characteristic for sphere $\quad E=2$

(a)

(b)

(c)

(d)
(e)

G.E. Volovik et al, Sov. Phys. JETP 581159 (1983)

Applications of LC drops

Privacy windows:
Polymer Dispersed Liquid Crystals (JW Doane et al, LCI, Kent)

Droplets as Biosensors:

Microscale LC Droplets
(Oil-in-Water Emulsion)

'Caged' LC Droplets

(Droplets in Polymer Capsules)

Sensing in Biological Environments:

Immobilized LC Droplets

Internalized LC Droplets

DMEM

Bipolar

DMEM + HTAB

Radial

Transitions triggered by:

- Cationic surfactants
- Anionic surfactants
- Bacterial endotoxin

Not by:

- Proteins, serum, etc.

Angew. Chem. 2013; Langmuir 2014

Reconnection of disclinations in N_{u}

Disclinations are not "material" lines and can cross each other.
Two disclinations connecting opposite plates of a nematic cell; plates are twisted; disclination ends reconnect

Reconnection of disclinations in biaxial N_{bx}

Degeneracy space: Solid sphere; each point describes a state of three directors, $\mathrm{n}, \mathrm{m}, 1$. In biaxial nematics, the strength 1 disclinations cannot escape (strength 2 can). There are three different classes of $1 /$ disclinations with k semi-integer and one with $\mathrm{k}=1$

$$
k=1 \quad \text { does not escape }!
$$

$$
\pi_{1}\left(S^{3} / D_{2}\right)=\text { Quaternion units }=\left(0 ; 1 ; 1 / 2_{x} ; 1 / 2_{y} ; 1 / 2_{z}\right)
$$

G. Toulouse, J. Phys. Lett. 38, L67 (1977)

Cholesteric drops and Dirac monopole

Two orthogonal vector fields: helical axis and director (magnetic field and vector-potential)

Point hedgehog in helical axis (magnetic) field and an attached disclination (Dirac string) in the director field
P. Dirac, Proc. Roy. Soc. (London) A133, 60 (1931)

Ch droplet, called Robinson spherulite or Frank-Price structure,
C. Robinson et al, Disc. Faraday Soc. 25, 29 (1958); Kurik et al, JETP Lett 35, 444 (1982)

T. Orlova et al, Nat. Comm. 6, 7603 (2015)

Rare exception of round cohesive droplets: Ch-SmA phase transition

Ch droplets in glycerine+lecithin; cooling down leads to extended shapes, then nucleation of spherical SmA sites; the process often results in division of droplets (Nastishin et al Sov Phys JETP Lett 1984; EurophysLett 1990)

(LC) ${ }^{2}$: Lyotropic Chromonic Liquid Crystals

$$
\sigma_{o} \sim \alpha \frac{k_{B} T}{L D} \sim\left(10^{-7}-10^{-6}\right) \mathrm{J} / \mathrm{m}^{2}
$$

$$
W \sim 10^{-5} \mathrm{~J} / \mathrm{m}^{2}
$$

Model of surface tension: P. van der Schoot J. Phys. Chem B 103, 8804 (1999)

Lyotropic I-N interface might be strongly anisotropic and be influenced by elasticity
J. Bernal and I. Fankuchen, J. Gen. Physiol. (1941): tactoids as N nuclei in tobacco mosaic virus dispersions

Droplets of chromonic N in isotropic melt (tactoids)

Surprise \#1: Surface-located, not bulk

Vertical cross-section image;
fluorescent confocal microscopy

Surprise \#2 (mild): Contact angle changes along the perimeter

Vertical cross-section image;
fluorescent confocal microscopy

Surprise \#3: Twist

CW

Right-twisted tactoid

Left-twisted tactoid

A

Mechanism: "Geometrical" anchoring+large K_{1} / K_{2}

Nematic between two isotropic parallel boundaries:
Degenerate in-plane orientation

One plate tilts: alignment perpendicular to the thickness gradient is the only one without distortions; other directions cause splay

One plate tilts, the other sets "physical anchoring" say, along the long axis of the tactoid's footprint: balance of twist and splay establishes a twist angle τ

Mechanism: "Geometrical" anchoring+large K_{1} / K_{2}

Elastic energy of a tilted element:

$$
f \approx K_{1}\left(\frac{\partial \theta}{\partial z}\right)^{2}+K_{2}\left(\frac{\partial \varphi}{\partial z}\right)^{2}
$$

Bulk equilibrium:

$$
\frac{\partial^{2} \theta}{\partial z^{2}}=0 ; \frac{\partial^{2} \varphi}{\partial z^{2}}=0
$$

$\theta(z=d)=-\arcsin (\sin \Theta \cos \tau) \approx \Theta\left(1-\tau^{2} / 2\right) ; \varphi(z=d) \approx \tau$

Twist
deformations reduce the cost $F \approx \frac{K_{1}}{2 d} \Theta^{2}\left(1-\tau^{2}\right)+\frac{K_{2}}{2 d} \tau^{2}$ of splay deformations

Condition for the twist: $\quad K_{2} / K_{1}<\Theta^{2}$
Easy to fulfill as in chromonics,

$$
K_{2} / K_{1} \sim 0.1-0.03
$$

S. Zhou et al., Soft Matter 10, 6571 (2014)

Twisted tactoids: An example of chiral symmetry braking in a molecularly non-chiral system; only spatial confinement and elastic anisotropy are needed to produce macroscopic chiral purity.
L. Tortora et al., PNAS 108, 5163 (2011)

2D tactoids and Kibble mechanism

Isotropic-Nematic transition: Anchoring-induced topological defects in each and every nuclei of the N phase, as long as it is large enough, $\quad R>K / W$

Kibble (1976) Model of formation of cosmic domains and strings

2D tactoids and Kibble mechanism in (LC) ${ }^{2}$

 produced surface defects-boojums

Conservation law for positive and negative cusps:

$$
c^{+}-c^{-}=2\left(1-\sum_{k}^{n} m_{k}\right)
$$

negative cusp

2D tactoids and $\mathrm{k}=1$ disclinations

(a) $\mathrm{T}=32.7^{\circ} \mathrm{C}$

(b) $\mathrm{T}=29.8{ }^{\circ} \mathrm{C}$

(c) $\mathrm{T}=29.7^{\circ} \mathrm{C}, \mathrm{t}=0 \mathrm{~s}$

(d) $\mathbf{T}=29.7^{\circ} \mathrm{C}, \mathrm{t}=\mathbf{6 0 3} \mathrm{s}$

$$
f_{1}-f_{\text {pair }}=\frac{\pi K}{2} \ln \frac{L}{\sqrt{2} r_{1}}+\sqrt{2} \pi r_{1} \sigma_{0}(\sqrt{2}-2-w)
$$

Drops of isotropic phase in N environment with distroted director: A balance of surface tension, anchoring, and elasticity

Equilibrium shape+director?

Difficult problem, requires to minimize both the anisotropic surface energy and elastic interior/exterior

$$
\iiint_{V} f_{F O}(\hat{\mathbf{n}}(\mathbf{r})) d V+\iint_{S}\left[\sigma+W(\hat{\mathbf{n}} \cdot \mathbf{v})^{2}\right] d S \rightarrow \min
$$

First step: Assume "infinite" elasticity (frozen director); then calculate the equilibrium shape of the I tactoid at the core, using the angular dependence of the surface tension for each disclination

$$
\sigma(\theta)=\sigma_{0}\left\{1+w \cos ^{2}[(k-1) \theta]\right\}
$$

$$
k=-1 / 2
$$

$w=2$

Polar plot of surface tension of an isotropic island inside a nematic region representing a disclination of $-1 / 2$ strength; Problem: Find the shape that minimizes the anisotropic surface tension

Equilibrium shape by Wulff construction for distorted director

Radius of curvature: $\quad R=\sqrt{r^{\prime 2}+r^{2} \psi^{\prime 2}}=\sigma+\sigma^{\prime \prime}$
Round shape, all orientations of I-N interface: $\sigma+\sigma^{\prime \prime}>0$
Missing orientations and cusps: $\quad \sigma+\sigma^{\prime \prime}<0$
$1+w\left[1-4(k-1)^{2}\right] \cos ^{2}(k-1) \psi+2(k-1)^{2} w<0$

Wulff construction by Mathematica

YK Kim et al., J Phys C ond Matt 25404202 (2013)

Equilibrium shape by Wulff construction for distorted director

$k=-1 / 2 ; w=2$

$k=0 ; w=2$

Missing orientations and cusps: $\quad 1+w\left[1-4(k-1)^{2}\right] \cos ^{2}(k-1) \psi+2(k-1)^{2} w<0$
Never the case for $k=1 / 2$ and $k=1$; for $k=0, w_{c}=1$; for $k=-1 / 2, w_{c}=2 / 7$; for $k=-1, w_{c}=1 / 7$

Summary/What have you learned

- Disclinations: Frank model, line energy $\sim \ln$ of size, $\sim \mathrm{k}^{2}$
\square Integer disclinations: Escape into the third dimension
- Semi-integer: Stable
- Homotopy classification: A natural language to describe defects in any medium, LCs and superfluid $\mathrm{He}-3$ including
- Surface anchoring: Controls topology and energy of defects;
- Defects occur as equilibrium features in LC droplets, ...Including the nuclei during the phase transition from the isotropic phase
- Cholesteric: Dirac monopoles
- Chromonic droplets: Spontaneous chiral symmetry broken; shape is strongly dependent on director deformations, the problem of full energy (elastic+surface tension+anchoring) minimization not solved yet

Liquid crystals: Lecture 2.2 Lamellar phases

Oleg D. Lavrentovich
Support: NSF

Boulder School for Condensed Matter and Materials Physics, Soft Matter In and Out of Equilibrium, 6-31 July, 2015

Content

Lamellar Phases

1. Free Energy Density
2. Weak distortions: Dislocations, Undulations
3. Strong distortions: Focal conic domains, grain boundaries

Lamellar phases

(a)
(b)

$1-10 \mathrm{~nm}$

Smectic A Twist-bend (lyotropic) nematic

Weak perturbations: Dislocations, undulations

Stripe magnetic domain
(M. Seul et. al., P.R.L., 68, 2460 (1992))

Layered structure in magnetic fluid
(C. Flament et. al., Europhys. Lett., 34, 225 (1992))

Elasticity of lamellar phase; 1D translational order

Compression/dilation:

$$
f=\frac{1}{2} B\left(\frac{\partial u}{\partial z}\right)^{2}+\frac{1}{2} K\left(\frac{\partial^{2} u}{\partial x^{2}}\right)^{2}
$$

Curvature:

Correction to make the model invariant w.r.t. uniform rotations:

Elasticity of lamellar phase; 1D translational order

Energy density $\quad f=\frac{1}{2} B\left\{\frac{\partial u}{\partial z}-\frac{1}{2}\left(\frac{\partial u}{\partial x}\right)^{2}\right\}^{2}+\frac{1}{2} K\left(\frac{\partial^{2} u}{\partial x^{2}}\right)^{2}$

$$
[B]=\left[\frac{J}{m^{3}}\right] \quad[K]=\left[\frac{J}{m}=N\right]
$$

Material length $\quad \lambda=\sqrt{\frac{K}{B}} \sim$ period $?$

Elasticity of Smectics: Dislocation

$u(x, y)=2 \lambda \ln \left\{1+\frac{\exp (b / 4 \lambda)-1}{2}\left[1+\operatorname{erf}\left(\frac{x}{2 \sqrt{\lambda z}}\right)\right]\right\}$
Brener and Marchenko PRE‘99
By fitting $u(x, z)$, one can measure $\lambda=\sqrt{\frac{K}{B}}$

$$
\begin{aligned}
& \text { period }=14.9 \mu \mathrm{~m} \\
& \lambda=2.7 \mu \mathrm{~m} \\
& \lambda \approx 0.2 \times \text { period }
\end{aligned}
$$

Long range effect of layers deformations

$$
u(x, z) \quad \text { E-L equation } K \frac{\partial^{4} u}{\partial x^{4}}-B \frac{\partial^{2} u}{\partial z^{2}}=0
$$

 Look for solution of the type: $u=u_{q} \cos q x \exp \left(\frac{z}{L}\right)$

$$
u(z=0)=u_{q} \cos q x \quad u(z \rightarrow-\infty)=0
$$

$$
K_{1} q^{4}-B \frac{1}{L^{2}}=0 \quad \Longrightarrow L=\frac{1}{q^{2}} \sqrt{\frac{B}{K}} \propto \frac{\Lambda^{2}}{\lambda}
$$

$$
L==\frac{\text { macroscopic scale }^{2}}{\text { microscale }}=\Lambda\left(\frac{\Lambda}{\lambda}\right) \gg \Lambda
$$

Saint-Venaint principle $L \sim \Lambda$ is not applicable to SmA materials; Smectics: A good model of "la Princesse sur la graine de pois" If a pea is 1 mm , layer thickness 10 nm , then the pea is felt over 100 m !
G. Durand (1968)

Undulations in Cholesteric caused by E field

Senyuk et al PRE 74, 011712 (2006)

Undulations in Cholesteric (2D)

$$
f=\frac{1}{2} K\left(\frac{\partial^{2} u}{\partial x^{2}}\right)^{2}+\frac{1}{2} B\left\{\frac{\partial u}{\partial z}-\frac{1}{2}\left(\frac{\partial u}{\partial x}\right)^{2}\right\}^{2}-\frac{1}{2} \varepsilon_{0} \varepsilon_{a} E^{2}\left(\frac{\partial u}{\partial x}\right)^{2} \quad f_{\text {anchoring }}=\frac{1}{2} W\left[\left(\frac{\partial u}{\partial x}\right)^{2}\right]_{z=0, d}
$$

$$
u(x, z)=u_{0} \varphi(z) \sin q_{x} x \underset{\varphi=\text { const } \times \cos q_{z} z}{\square}\left\{\begin{array}{l}
B \phi^{\prime \prime}-q_{x}^{2}\left(K q_{x}^{2}-\varepsilon_{0} \varepsilon_{a} E^{2}\right) \phi=0 \\
B \varphi^{\prime} \pm W q_{x}^{2} \varphi=\left.0\right|_{z= \pm a / 2}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
q_{z}=q_{x} \sqrt{\kappa-\lambda^{2} q_{x}^{2}} \\
W=\frac{B \sqrt{\kappa-\lambda^{2} q_{x}^{2}}}{q_{x} \cot \left(\frac{d q_{x}}{2} \sqrt{\kappa-\lambda^{2} q_{x}^{2}}\right)}
\end{array} \quad \kappa=\varepsilon_{0} \varepsilon_{a} E^{2} / B \quad \square \quad E_{c} \approx \sqrt{\frac{2 \pi K}{\varepsilon_{0} \varepsilon_{a} \lambda a}}\right.
$$

$$
u_{0}(W \rightarrow \infty)=\frac{8 \lambda}{3} \sqrt{\frac{E^{2}}{E_{c}^{2}}-1} \quad u_{0}=\frac{8 \lambda \eta}{3} \sqrt{\frac{E^{2}}{E_{c}^{2}}-1}
$$

3D version: Senyuk et al PRE 74, 011712 (2006)

Undulations in Cholesteric (2D)

Ishikawa et al PRE 63, 030501(R) (2001)

Undulations in Cholesteric above threshold

Immediately above the threshold

Well above the threshold, 3D,
Anchoring takes over, forcing parabolic domain walls

Well above the threshold, 2D cell; broken surface anchoring

Senyuk et al PRE 74, 011712 (2006)

Strong perturbations: Focal conic domains

Elasticity of Smectics: Strong distortions

principal radii

Elasticity of Smectics

$$
\downarrow
$$

At large scales of deformations, the curved layers are equidistant

Curved smectic layers: Dupin Cyclides

2D focal surfaces shrink into lines

To reduce the energy, focal surfaces in SmA degenerate into 1D focal lines, that can be only of three types:
(a) circle and straight line, or
(b) confocal ellipse and hyperbola,
(c) two confocal parabolae
producing a Focal Conic Domain (FCD); the smectic layers are Dupin cyclides

Smectics and focal conic domains

1910, G. Friedel, F. Grandjean: Deciphered SmA structure from observation of focal conic domains; X-ray was not available

Toroidal Focal Conic Domains

Smoothly fits into the system of parallel layers

Classification of FCDs by Gaussian curvature

FCD-I

FCD-III

FCD-II

How to describe the FCD analytically?

Curvilinear coordinates r, u, v

Curvature energy functional

Let us introduce the third coordinate r that "counts" the layers
$\mathrm{M}^{\prime \prime} \mathrm{M}^{\prime}=a \cosh v-c \cos u=R_{2}-R_{1}=a \cosh v-r+r-c \cos u$

Surface elements of FCD I and FCD II

$$
\sigma^{\prime} \sigma^{\prime \prime}<0, ~ \sigma^{\prime} \sigma^{\prime \prime}>0
$$

Curvature energy of FCD-I

Kleman et al PRE 61, 1574 (2000)

Curvature energy of FCD-I

$$
F_{\text {curv }}=4 \pi a\left(1-e^{2}\right) \mathbf{K}\left(e^{2}\right)\left[K\left(\ln \frac{2 a \sqrt{1-e^{2}}}{r_{c}}-2\right)-\bar{K}\right]+F_{\text {core }} \quad F_{\text {core }} \approx 8 a K \mathbf{E}\left(e^{2}\right)
$$

valid for any $0 \leq e<1$
$\mathbf{K}(x), \mathbf{E}(x)$ complete elliptic integrals of the first and second kind

Kleman et al PRE 61, 1574 (2000)

Circular FCDs-I

$$
F=2 \pi^{2} a\left(K \ln \frac{a}{r_{c}}+K(\ln 2-2)-\bar{K}\right) \quad \begin{aligned}
& a=b \\
& e=0 \\
& \omega=0 \\
& \hline= \\
& \hline= \\
& \hline=
\end{aligned}
$$

Home assignment: Derive F for a circular FCD

Anchoring-Controlled FCD Assembly

Appolonius filling

L, sample size
Black: tangential anchoring

$$
\begin{aligned}
& F(b) \sim K b-\Delta \gamma b^{2} \\
& \frac{\partial F}{\partial b}=0 \Rightarrow b^{*} \sim K / \Delta \gamma \gg \lambda
\end{aligned}
$$

The smallest FCDs are macroscopic

Associations of FCDs

FCDs form families with common apex; Bragg, Nature (1934)

Law of Corresponding Cones

Friedel, 1922: When two coplanar ellipses are in contact at M, the two corresponding hyperbolae have two points of intersection P and Q and the domains have two generatrices MP and QM of contact.

Curvature energy of FCD-I

$$
F_{c u r v}=4 \pi a\left(1-e^{2}\right) \mathbf{K}\left(e^{2}\right)\left[K\left(\ln \frac{2 a \sqrt{1-e^{2}}}{r_{c}}-2\right)-\bar{K}\right]+F_{\text {core }} \quad F_{\text {core }} \approx 8 a K \mathbf{E}\left(e^{2}\right)
$$

valid for any $0 \leq e<1$
Energy decreases as eccentricity increases.
However eccentricity is not a minimization parameter as it is often fixed by the geometry of layers outside the FCD

Grain Boundaries in SmA

FCD-filled Grain Boundary-Ist hint

FCD-filled Grain Boundary-Ist hint

To calculate the energy of the FCD wall, we need to know:
-FCD energy (curvatures and defect cores)
-Spatial filling pattern, size distribution
-The energy of residual areas
M. Kleman et al, Eur. Phys. J E 2, 47 (2000)

Residual Areas with Dislocations

(Boltenhagen et al, J. Physique (1991)
$f($ per unit length $) \sim B b_{u} \lambda \sim B a e \lambda$
$F_{\text {residual }}^{\text {disloc }}=f \times b \times N$ umber of gaps \sim Bae $\lambda \times b \times \frac{\Sigma(b)}{a b} \sim B e \lambda \Sigma(b)$

$$
F_{\text {residual }}^{\text {disloc }} \sim B e \lambda b^{2}\left(\frac{L}{b}\right)^{n}\left(1-e^{2}\right)^{-1 / 2}
$$

Residual Areas with Curvatures

M. Kleman et al, Eur. Phys. J E 2, 47 (2000)

From Circles to Ellipses

FCD wall with Dislocations

$$
F=F_{\text {bulk }}+F_{\text {core }}+F_{\text {residual }}^{\text {disloc }}
$$

$$
\begin{aligned}
& F_{\text {bulk }}=-\int_{x=b}^{L} d g(x) f_{\text {bulk }}(x) \sim \alpha_{b} K_{1}\left(1-e^{2}\right)^{1 / 2} \mathbf{K}\left(e^{2}\right) \int_{b}^{L} n\left[\ln 2 \frac{x}{\lambda}-2\right]\left(\frac{L}{x}\right)^{n} d x \\
& F_{\text {core }}=-\int_{x=b}^{L} d g(x) f_{\text {core }}(x) \sim \alpha_{c} K_{1}\left(1-e^{2}\right)^{-1 / 2} \mathbf{E}\left(e^{2}\right) \int_{b}^{L} n\left(\frac{L}{x}\right)^{n} d x
\end{aligned}
$$

$$
F_{\text {resididal }}^{\text {disco }}=B e \lambda b^{2}\left(\frac{L}{b}\right)^{n}\left(1-e^{2}\right)^{-1 / 2}
$$

FCD wall with Dislocations

Grain boundaries with FCDs

Domain walls in SmA

FCDs, gaps with FCDs, gaps with
dislocations
dislocations
curvatures
curvatures

Conclusions/What have you learned

\square Lamellar phases

- Both compressibility and curvatures are generally important in weak elastic deformation, such as dislocations, surface perturbations, undulations
- Strong deformations such as focal conic domains are described sufficiently well by the curvature term; layer thickness is preserved everywhere except at singular lines (confocal pairs) that are remnants of singular focal surfaces
- Observation of focal conic domains led to correct identification of smectics as 1D periodic stacks of fluid 2D layers
- Focal conic domains participate in relaxation of surface anchoring and grain boundaries

