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Liquid crystal:  

a state of matter with long-range orientational order and 

 complete (nematic) 

 partial (smectics, columnar phases) 

absence of long-range positional order of “building units” 

(molecules, viruses, aggregates, etc.) 

 

 
Our goal: Develop an 

intuitive understanding 

of what kind of new 

physics the orientational 

order brings to soft 

matter 



Crystals, liquid crystals, liquids 

pentyl-cyanobiphenyl (5CB): 

room temperature nematic 

1.2 nm 

Temperature 

orientational and  
positional order: 
Molecular crystal 

orientational order; 
no positional order: 

Nematic LC  

no orientational and  
no positional order 

Isotropic liquid 

Director n = optic axis 

7 
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Nematic LC: nema=thread; aka “disclination” 

1922, G. Friedel:  

Named “nematics”, the simplest 

LC, after observing linear defects, 

nema=thread, under a polarized 

light microscope  

 

Nematic droplet-pancake sheared between two 

glass plates; polarizing optical microscope 

50 microns 

../../eudora/attach/Georges Friedel Photo.jpg
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Nematic LC: Calamitic and Discotic 
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Nematic LC: Calamitic and Discotic. Biaxial? 

Uniaxial  

calamitic 

Uniaxial  

discotic 

Existence established 

 

Existence debated,  
Uniaxial N often mimics biaxiality 

Biaxial 



Chiral molecule (does not overlap with its chiral 

image) 

Carbon atom with 4 different attachments 

Cholesterol benzoate: Rod-like molecule 

with a chiral C atom; 

A similar cholesterol derivative was the 

subject of the first known publication on 

LCs, reporting double melting point and 

selective reflection of light, J. Planer, Ann 

Chem Pharm 118, 25 (1861)  

11 



Add chiral molecules to nematic and obtain a 

cholesteric: 

12 

Where do the colors come from? pitch~0.5 mm 

Bragg reflection at the periodic structure with period close to the 

wavelength of visible light 

Why P>>molecular scale? Weakness of chiral contribution to the 

intermolecular potential, see Harris et al, Rev Mod Phys 71, 1745 

(1999) 



Comparative chemistry 

CN 

Cholesteric CB15 molecule 

Nematic 5CB molecule 

What would happen when two CB molecules are connected by a flexible 

aliphatic chain and form a “bimesogen” or “dimer”? 

Answer: depends on odd-even character of aliphatic chain 

even number m of CH2 groups 

How can we pack these molecules in space? 

odd number m of CH2 groups 



Packing bimesogens 

Even m, rod-like molecules: 

Easy! Nematic! 

Odd m, bent shape: 

Difficult…cannot 

sustain uniform bend in 

2D… 

Predictions: 

R.B. Meyer (1973, Les Houches) 

R. Kamien, J. Phys II 6, 461 (1996) 

I. Dozov, EPL 56, 247 (2001)  

J. Selinger et al, PRE 87, 052503 

(2013)  

E. Virga, PRE 89 052502 (2014) 

 

 0 0 0
ˆ sin cos , sin sin , costz tz  =n

Go to 3D: 

Uniform bent 

is achieved 

through twist! 



Freeze Fracture TEM, “planar” fractures 

0 . 1  µ m0 . 1  µ m

FFT 

t̂

Period 8.05 nm  
(molecular scale!!! Frozen 
rotations? 

Not visible under regular optical 
microscope; need an electron 
microscope) 

Borshch, Gao et al, Nature Comm 4, 2635  (2013) 

Chen, Walba, Clark et al, PNAS 110, 15931  (2013) 

CB7CB quenched from the “X” temperature range and viewed under TEM 



Freeze-Fractures in TEM: most likely to occur parallel to the long axes of 
molecules, thanks to the lowest molecular density 

8 nm period 

Freeze Fracture TEM, “planar” fractures 

The 8 nm period is not visible in X-ray studies; thus there is no 

modulation of density 

How do we know that the structure is indeed twist-bend as opposed 

to a simple cholesteric, or, say, splay-bend, also predicted to exist?  



Tilted fractures: Bouligand arches are 

different in Ch and Ntb 

Cholesteric: 

Bouligand 

arches are 

symmetric 



0

0 



z'

0

0 

 0 0

0

ln 2cos sin sin 'sin tan cot

sin cos

tb

tb

t y
x x

t

    

 

  
 =

Ntb: Bouligand arches 

are either asymmetric or 

incomplete 

Bouligand et al, Chromosoma 24, 251 (1968) 



FF TEM, Asymmetric Bouligand arches 

Both types of Ntb asymmetric Bouligand arches are observed 

Borshch et al, Nature Comm 4, 2635  (2013) 



Nematic and Cholesteric are merely two point ends 

of The Twist-Bend Nematic World… 

Cholesteric 

:   molecular tilt angle 

Twist-bend Nematic 

0 0 =

 0 0 0
ˆ sin cos , sin sin , cos    =n

0 / 2 =00 / 2  

2 /t P=
0

Nematic 

tz =



Add a 1D positional order to obtain a smectic… 

1-4 nm 

Smectic A (SmA) 

Periodic modulation of density (verified by X-

ray experiments), unlike in Ntb phase 

 



1910, G. Friedel, F. Grandjean:  

Deciphered SmA structure 

from observation of  

focal conic domains; 

X-ray was not available 

Smectics and focal conic domains 

mm40

21 
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Smectics: Optical Microscopy at its best  

Smectic A 

1 nm 

1910, G. Friedel, F. Grandjean:  

Deciphered SmA structure 

from observation of  

focal conic domains; 

X-ray was not available,  

but the mere fact of existence of 

ellipses and hyperbolae led to a 

correct conclusion: SmA is a 

system of equidistant flexible 

fluid layers, i.e, a 1D periodic 

structure 

 

Ask a question about  

Landau-Peierls instabiulity 

 

mm40



Smectics A, C, C*, etc 

23 

SmC SmC* 

Smectic A: Molecules normal to the layers; Smectic C; molecules are tilted 

Chiral smectic C; molecules are tilted and follow an oblique helicoid 



Twist Grain Boundary Phases 

24 

Combination of smectics and cholesterics; formed by chiral molecules; 

sophisticated analog of Abrikosov phase in superconductors; smectic is 

penetrated by a lattice of screw dislocations that allows the smectic to twist 

1989, Renn, Lubensky, Pindak, Goodby et al.:  



Crystals, thermotropic liquid crystals, liquids 

pentyl-cyanobiphenyl (5CB): 

room temperature nematic 

1.2 nm 

Temperature 

orientational and  
positional order: 
Molecular crystal 

orientational order; 
no positional order: 

Nematic LC  

no orientational and  
no positional order 

Isotropic liquid 

Director n = optic axis 

25 



Lyotropic Liquid Crystals: Power of Entropy 

Concentration, c 

Onsager (1949): Nematic order in solution 

of long thin rods, thanks to translational vs 

orientational entropy trade-off 



Lyotropic Liquid Crystals: Power of Entropy 

Onsager (1949): Nematic order in solution 

of long thin rods, thanks to translational vs 

orientational entropy trade-off 

Concentration, c 

Tobacco mosaic virus (TMV) 

J. Bernal and I. Fankuchen, 
J. Gen. Physiol. (1941): 
tactoids as N nuclei in 
tobacco mosaic virus 
dispersions (1939: First 
images of TMVs) 
 

Phase diagram does not depend on 

temperature 



Molecular structure of phospholipids 

Molecular structure of phospholipids.  The 

number of carbon atoms in the aliphatic 

chains varies, usually between 16 and 20.  

Two chains might be of different length.  

phosphatidylcholine (lecithin) 
phosphatidylserine 

phosphatidylethanolamine 



N

O

N

O

N

N

SO3NH4NH4O3S

+ + 

2 nm 

Chromonic molecules: 

1. Rigid plank-like polyaromatic core  

2. Ionic groups at periphery 

 

 

Lyotropic Chromonic LCs: special case 

Violet 20 

Mechanism of LC formation: through 

aggregation: balance of entropy and 

association energy d; average length 

of aggregates  

n 

d

exp
2 B

L c
k T

d


29 



 LCLCs=Mesomorphic phases  (N and 
Col) resulting from 1D non-covalent 
molecular self-assembly 

 

 Common occurrence in dyes, drugs, 
proteins, nucleic acids 

 

 Similar to living polymers, wormlike 
micelles of surfactants 

 

 Promising applications as sensing 
material, in optical components, 
organic semiconductors, alignment of 
nanotubes, assembly of nanorods, etc. 

Nakata, Clark et al. Science 318, 1276 

(2007)  

Kuriabova, Betterton, Glaser,  

J. Mat. Chem. 20,10366 (2010) 

Lyotropic Chromonic LCs: special case 



Chromonics : 

controlled by both c  

and T  

Thermotropic LC (in your 

displays): same molecules, 

c=const, aligned at low T 

Onsager systems: 

same rods, 

athermal, 

aligned at high c 

T

c

T

c

HS Park, ODL in Liquid crystals beyond displays, Editor Q. Li  (2012) 

Lyotropic Chromonic LCs: special case 



HS Park, ODL in Liquid crystals beyond displays, Editor Q. Li  (2012) 

Columnar phase: 2D positional order of 

columns (aggregates) 

Nuclei of columnar 

phase in isotropic 

fluid: Bend 

deformations that 

preserve the 

equidistance of 2D 

lattices 

Toroids rather than 

spheres 

 

 

 

 

 

 

Disodium 

cromoglycate + water 

+PEG 
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pentyl-cyanobiphenyl (5CB) 

Anisotropy of uniaxial nematic 

Director n=optic axis 

Anisotropy of all properties: Optical, Dielectric, Diamagnetic, 

Electric conductivity, Elasticity, Viscosity, etc. 









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


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
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Field-induced reorientation of LC optic axis caused by diamagnetic or 

dielectric anisotropy:  Frederiks effect (Leningrad, USSR, 1920-1930ies); 

 

 

 

Optic axis: Easily deformable by E-field: Frederiks effect 

Optical response to the electric field puts liquid crystals  

at the heart of modern informational displays technologies 

n̂

E

Guide to eye, director line 



1927, Vsevolod Frederiks and Antonina Repiova  

Magnetic field reorients LC 

Frederiks effect: Field reorients LC 

1934, V. Frederiks and V. Tsvetkov: Electric field reorients LC 

(1885-1943) 

cB d const=

../../eudora/attach/Photo 169.jpg
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1969, Kent, Ohio: James Fergason 

patents Twisted nematic cell, the first field-operated LCD 

(M. Schadt and W. Helfrich filed a similar patent in Europe and 

also published an article) 

 

Field effects = LC displays 

First product,  

Fergason’s ILIXCO (Kent, 1970) 

1934-2008 

2006: Lemelson-MIT $500,000 award  



LC displays: Control of polarized light 



Dielectric anisotropy and birefringence of LC enabled 

revolution in informational portable displays 

3.5 billion LCD panels sold in 

2014 (all sizes) 

39 



Elasticity vs. Anchoring 

Elasticity: Director gradients cost energy 
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Elasticity vs. Anchoring 

Elasticity: Director gradients cost energy 

 

 

 

 

Surface anchoring 
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Elasticity vs. Anchoring 

Elasticity: Director gradients cost energy 

 

 

 

 

Surface anchoring 
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Elasticity vs. Anchoring 

Elasticity: Director gradients cost energy 

 

 

 

 

Surface anchoring 
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Elasticity vs. Anchoring 

Elasticity: Director gradients cost energy 

 

 

 

 

Surface anchoring 

 

 

Anchoring extrapolation length 
 

 

 

 

 

 

 

 

 

W/K=

2 21
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Material parameters: orders of magnitude 

  263 J/m1010  ~W

Anisotropy of surface tension: Intuition fails; experiments say 

 

(weak as compared to surface tension) 

? ? ?K W   
21

9

5 10 J
~ ~ ~ 5 pN

10 m

B NIk T
K

a







asizemolecular~
W

K



==





 μm10nm10
J/m1010

N10
263

11



21
-2 2

2 18

5 10
~ ~ ~10 J/m

10

Bk T

a






Surface tension 

Elastic constants 



Elasticity of N: Oseen, 1933, Frank, 1958 

F. C. Frank, Disc. Faraday Soc. 25, 19 (1958) 

 ˆ ˆ x, y,z=n n

Elastic free energy density-? 

2

0 ....i i
ij ijkl

j j

n n
f f

x x
a 

  
=    

   
1

molecular size

i

j

n

x




Requirements:  

-n and n are invariant; 

-central inversion about any point; 

-invariance under any rotation around n. 

ˆdivn ˆ ˆcurln nTwo scalar invariants  linear in derivatives: 

 
2

curln n…thus can also be      
2 2 2

ˆ ˆ ˆ ˆ ˆcurl curl curl=   n n n n n

Invariant and Quadratic in derivatives:  
2

ˆ ˆcurln n  
2

ˆcurln 
2

ˆdivn

     
2 2 2

1 2 3

1 1 1
ˆ ˆ ˆ ˆ ˆdiv curl curl

2 2 2
FOf K K K=    n n n n n

splay twist bend 

Frank-Oseen elastic free 

energy density: 

../../eudora/attach/Carl Wilhelm Oseen photo.jpg
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divn=
1

r

nx = cos,  ny = sin,   nz = 0 

divn=
2

r

nx =
x

r
, ny =

y

r
, nz =

z

r







2D and 3D splay 

q = n curl n

nx = cosqz,  ny = sinqz,   nz = 0 

q =
a

d
=

2

p

Twist (one-directional) 

n  curln

nx = sin,  ny = cos,   nz = 0 

Bend 



Elasticity vs Anchoring: Hybrid-Aligned Nematic Film 

1. Infinitely strong anchoring 

Fixed boundary conditions 

Problem:  Find the director dependence on z  in equilibrium 

Assumption #1: 

2

3

2

1 cos
2

1
sin

2

1

















=

dz

d
K

dz

d
KfFO







      ˆ , , sin , 0, cosx y zn n n z z = =nn̂

K1 = K3 = KAssumption #2: 

2

1
2FO

d
f K

dz

 
=  

 

  00z = =   dz d = =

The problem reduces to finding (z) that minimizes the integral 

                                                                        

2

1
2

0

z d

FO

z

d
F K dz

dz


=

=

 
=  

 


Euler-Lagrange eq. (next slide gives the outline, home assignment if you do not know it yet):  

2

2
0 0

'

FO FOf fd d

dz dz



 

 
 =  =

 
 

 0

0

d z
z

d

 
 


= 

 
2

01
2

d

FOF K
d

 
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 eq z 

 za=

 z  = eq z a z 

 z= 0 =  z = d = 0

where          is such that 

 
 z 

F  z  = f eq z a z , 'eq z a' z , z dz
0

d


F a 

a






a=0

=0 Condition of the extremum: 

Euler-Lagrange equation for 1D problem, fixed boundary conditions (leisure time reading) 

FFO = f FO ,' ,z dz
z =0

z=d

 FFO = 1
2 K ' 

2
dz

z=0

z=d


? 

F a 

a
=

f





a

f

'

'

a








dz

0

d

 =
f


 z 

f

'
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dz


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dz

0

d



d z 

dz

f

'
dz

0

d

 =  z 
f

' z=0

z=d

0

  z 
d

dz

f
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dz

0

d


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

d

dz
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0

d


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

d
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




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ddz

0

d
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F a 

a






a =0

= dF = 0or 

 f




d

dz

 f

 '
= 0

Euler-Lagrange equation for 1D problem; its solution 

                             has 2 constants of integration defined 

from the boundary conditions, for example, 
 =  z,c1,c2 

 z = 0 = 0  z = d  = dand 



F = f ,' ,z dz
0

d

  f s0 0  0  f sd d  d 

     zzz eq ad ==

 z  is not necessarily 0 at the boundaries! 

dfs 0 0 
da

=
d

da
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Euler-Lagrange equation for 1D problem; its solution 

                             has 2 constants of integration defined 

from the boundary conditions 
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Euler-Lagrange equation for 1D problem, soft boundary conditions (leisure time reading) 



Elasticity vs Anchoring: Hybrid-Aligned Nematic Film 

2. Finite (weak)  anchoring 

Problem:  Find the director vs z in equilibrium with new 

boundary conditions: 
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Finite anchoring makes the director gradients weaker 

and the energy smaller, effectively increasing the cell 

thickness 
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Summary of hybrid aligned N film 

Ld = K /Wd
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L: anchoring 
extrapolation length 

Infinitely strong   Finite anchoring 

NB: at large scales, 
surface anchoring 
takes over, enslaving 
the director field, the 
director follows the 
“easy axis” prescribed 
by surface anchoring 
potential 
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End of story for hybrid aligned films? 

No. At submicron thicknesses, the director is unstable 

w.r.t. in-plane deformations (similar to buckling) 
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Free Energy of a Nematic in an External Field 

Dielectric case (no ions, no flexoelectric/surface polarization) 
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Energy density should depend on two vectors, the field and the director 
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Electric displacement: 

Energy density (x 2): 



FFO = f FO dV

U=const 

FE = f E dV =
1
2 E D dV

dFE = 1
2 E dD dV

dDz 

The energy of the electric field 

and its change:  

 

 

 

Which leads to a change in the 

surface charge density by 

When n reorients, surface charge density changes;  

to keep the voltage constant at the electrodes, one 

needs to supply energy from the electric source: 

dFG = dDz
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Free Energy of a Nematic in an External Field 

Dielectric case (no ions, no flexoelectric/surface polarization) 



Splay Frederiks Transitions 

   
2 21

1 0

1 1
ˆ ˆdiv

2 2
af K =  m  n B n



Assuming deviations are small: 

m


 221

0

2

2

1 sin
2

1
cos

2

1
B

dz

d
Kf a









=

221

0

2

1
2

1

2

1
m


B

dz

d
Kf a









=

=0 at z=0, z=d 

E-L equation: 0
2

2
2 =




dz

d




z
a

z
a sincos 21 =General solution: Boundary conditions yield              and 01 =a  nd =/

,    the critical field for the Frederiks tra nsition  Non-trivial solution at 
a

c

K

d
BB

m


1

0

1


=

a

K

B m


1

0

11


=

      , , cos ,0, sinx y zn n n z z=  



Three basic geometries of Frederiks effect 
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Electric field case can be treated similarly 

Splay deformation 

Twist deformation 

Bend deformation 



Heliconical director in electric field 

0
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Bimesogens: Ideal for electrically induced twist bend, since the bend constant is 

very small 

A cholesteric with a small bend-twist ratio K3 /K2 =1 and e>0  adopts an 

oblique helicoidal shape in an electric  field with the field-dependent pitch: 
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E
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Color tuning: Vertical field 
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J. Xiang et al, Advanced Materials, 3014 (2015) 
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LCs: Birefringent materials 

1.7

extraordinary wave

en 

Director n 

=Optic axis 

1.5

ordinary wave

on 

Polarization E of light 

Birefringence: Double refraction of light in an ordered material, 

manifested through dependence of refractive indices on 

polarization of light 

0.2e on n n =  



Birefringence revealed through pair of 

polarizers: textures and LCDs 
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LCs: Ordinary and Extraordinary waves  
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Light propagation in a homogeneous medium 
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Fresnel equation; Propagation of Light in LC 

The three homogeneous equations have a nontrivial solution only if the 

determinant of coefficients vanishes (Fresnel equation): 
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Polarizing microscopy: Principle 
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Projected onto analyzer’ direction: 
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Polarizing microscopy: Principle 
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Dark Brushes:  

regions where n is || or    to polarizers 
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P A 

Polarizing microscopy: Principle 



Polarizing microscopy:  

Degeneracy of two director fields 
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Polarizing microscopy: Degeneracy of two 

director fields: Radial or Circular? 
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PM problem: Two orthogonal n fields 

Solution: optical compensator (quartz wedge, Red plate, etc.) 
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Lower retardation,  

yellow of the  

first order of  

interference 

Higher retardation,  

blue of the  

second order of  

interference 

Radial and circular patterns produce different pattern  

of interference colors when the compensator is added 



Ultimate Compensator: LC PolScope 

R. Oldenburg, G. Mei, US Patent 5,521,705  



 YK Kim et al, J Phys Cond Phys 25, 404202 (2013) 

LC PolScope image of chromonic: shows both 

the in-plane director and retardance 

(a) T = 32.9 oC (c) T = 30.6 oC,  t = 0 s (d) T = 30.6 oC,  t = 156 s (b) T = 30.7 oC 
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PolScope creates a map of the orientation of the optic axis in the sample and of the local value of the 

optical phase retardation; Limitations: Retardation should be in the range 0-272 nm; chiral structures 

(twisted) are not properly characterized. 
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Polarizing microscopy 
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Limitation: 2D image 

Why the interference colors change?  







= oe nn

d
II

0

22

0 sin2sin







Limitation: 2D image 
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Derived in approximation of planar director, 

and constant thickness d                                                             

 ,x y=n n



Limitation: 2D image 
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Derived in approximation of planar director, 

and constant thickness d                                                             

 ,x y=n n
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Limitation: 2D image 
When                                  , how does the texture look like?    , , 0, 0,1x y zn n n =

This is the ground state of an LCD TV produced by Samsung 



Limitation: 2D image 

?????????????? 



Confocal Microscopy: 3D image of 3D 

Usual 

microscope 

objective Confocal 

microscope 

Voxel=3D pixel 

 ~1 mm 3 

objective 



Pinhole #1 Pinhole #2 

 

(Minsky, 1957) 

Computer 3D image Scanning 

PMT PMT 

Light 

source 

Light 

source 

Confocal Microscopy: Principle 



Pinzhole #1 Pinhole #2 

 

 

Fluorescence Confocal Microscopy 

3D image of concentration (positional distribution) of  

fluorescent dopant…. 

Fluorescent tag increases contrast of tissues 

Living cell 

PMT PMT 

Light 

source 

Light 

source 

1980 M. Petran and A. Boyde  



Two distinctive features: 

 

 1. Anisometric fluorescent dye aligned by LC 

2. Polarized light 

….but we are interested in orientations  

rather than in concentrations… 

Fluorescence Confocal Polarizing Microscopy 



FCPM: Fluorescent anisometric dyes  

N,N'-Bis(2,5-di-tert-butylphenyl)-3,4,9,10-

perylenedicarboximide) 

BTBP 
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0.01 % of BTBP in ZLI-3412 



FCPM: Anisotropic Fluorescence 

Fluorescence signal = f (orientation of dye) 
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minimum signal 
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P P 

a

I ~ cos4a

n 

n 

P P 

maximum signal

I. Smalyukh et al, Chem Phys Lett 336, 88 (2001) 



FCPM: Anisotropic Fluorescence 

Objective: 

40X NA0.6; 

60x NA1.4 

Sample 

Focal plane 

PMT 

Light source 

Illuminating aperture 

Confocal aperture 

Beam splitter 

filter 

488 nm, 

100 nW 

510nm-550 nm 

z

Polarizer/Analyzer 
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I. Smalyukh et al Chem Phys Lett 336, 88 (2001) 



FCPM: Frederiks Effect 

Relative Intensity scale: 

Imin Imax 

I ~ cos4a 

P 
0V 

a=0

d=15mm 

3V 

a= f(z)

P 

d=15mm 
V 

I. Smalyukh et al Chem Phys Lett 336, 88 (2001) 



FCPM: Planar Cholesteric 

P

8 mm 

Pn/2 <1 (to avoid the Mauguin regime) 

I. Smalyukh et al, Phys. Rev. Lett. 90, 085503 (2003)  



Summary: What have we learned 
 Liquid crystals: Orientationally ordered media 

 Thermotropic (t-driven) and lyotropic (c-driven) 

 Uniaxial nematic, twist bend, cholesteric, smectic, columnar, 
dramatic dependence on molecular structure… 

 Orientational elasticity vs surface anchoring 
 Frank elastic constants ~ 5 pN 

 Equilibrium director defined by boundary conditions (anchoring) 
and external field 

 As the system become larger, anchoring imposes stronger 
restrictions on the director; at smaller scales, the director is less 
distorted 

 Frederiks transitions: heart of modern LCDs 

 Optics 
 LCs are birefringent; ordinary and extraordinary waves 

 Polarizing microscope: 2D image of 3D sample 

 Fluorescence confocal polarizing microscopy: 3D image of 3D 
orientational order 



Cholesteric structure of DNA in chromosomes: 

Bouligand arches 

Chromosoma (Berl.) 24, 251--287 (1968) 

La structure fibrillaire et l'orientation des chromosomes  

chez les Dinoflagellés 

Y. BOULIGAND, M.-O. SOYER et S. PUISEUX-DAO 
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Double twisted cylinders stabilized by a 3D network of topological defects – 

disclinations. 

BPII 

BPI 

100 nm 

Main problem for applications:  

Temperature range of BPs is narrow, 

~1oC 

One approach: Polymerization 

H. Kikuchi et al, Nature Mat. 1, 64 

(2002)  

0
ˆ || Zn

n̂

X

Y

Clolesteric: 1D twist; Blue phases: 3D twist 

90 

Polymer mesh formed in BPII 

Can be refilled with N for 

electro-optic applications 

J. Xiang et al, APL 103, 051112 

(2013) 


