Liquid Crystals: Lecture 1 Basic properties

Oleg D. Lavrentovich

Support: NSF

Boulder School for Condensed Matter and Materials Physics, Soft Matter In and Out of Equilibrium, 6-31 July, 2015

Acknowledgements

\square Volodymyr Borshch, Mingxia Gu, Tomohiro Ishikawa, Israel Lazo, YoungKi Kim, Heung-Shik Park, Chenhui Peng, Oleg Pishnyak, Ivan Smalyukh, Bohdan Senyuk, Jie Xiang, Shuang Zhou (LCI, Kent State University)
$\square \quad$ Drs. Sergii Shiyanovskii, Antal Jakli (LCI, Kent State University)
\square Maurice Kleman (Paris), Grigory Volovik (Moscow), Vasyl Nazarenko (Kyiv), Igor Aranson (Argonne NL) Georg Mehl (Hull), Corrie Imrie (Aberdeen)

The lectures are based on the book by
Maurice Kleman and O. D. Lavrentovich
"Soft Matter Physics: An Introduction" (Springer, 2003)

Content: Lecture 1

\square Types of liquid crystalline order

- Nematic
- Cholesteric and blue phases
- Twist bend nematic
- Smectic A
- Lyotropic and Chromonic LCs
\square Basic Physics
- Dielectric anisotropy
- Surface anchoring
- Elasticity
- Frederiks effect and modern LCDs
\square Optics
- Birefringence
- Polarizing microscopy: 2D imaging
- Fluorescence Confocal Polarizing microscopy: 3D imaging

Content: Lecture 2

\square Topological defects and droplets

- Disclinations in uniaxial nematics
- Singular
- Nonsingular
- Homotopy classification
- Drops and Conservation laws of topological defects
- Cholesteric droplets, Dirac monopole
- Chromonic tactoids
- Broken chiral symmetry
- Wulff construction for liquid crystals
\square Lamellar phases
- Free energy density for weak and strong perturbations
- Long-range character of deformations; undulations
- Focal conic domains

Content: Lecture 3

\square Dynamics of director realignment

- Anisotropy of viscosity
- Coupling of director reorientation and flow
\square Statics of colloids in nematic LC
- Levitation
\square Dynamics of colloids in nematic LC
- Brownian motion
- LC-enabled electrophoresis
- LC with patterned orientation as an active medium
\square Living LC
- Swimming bacteria in LC; individual and collective effects

Liquid crystal:

a state of matter with long-range orientational order and

- complete (nematic)
- partial (smectics, columnar phases) absence of long-range positional order of "building units" (molecules, viruses, aggregates, etc.)

Our goal: Develop an intuitive understanding of what kind of new physics the orientational order brings to soft matter

Crystals, liquid crystals, liquids

Nematic LC: $v \varepsilon \mu \alpha=$ thread; aka "disclination"

1922, G. Friedel:
Named "nematics", the simplest LC , after observing linear defects, $v \varepsilon \mu \alpha=$ thread, under a polarized light microscope

50 microns

Nematic droplet-pancake sheared between two glass plates; polarizing optical microscope

Nematic LC: Calamitic and Discotic

solid $\stackrel{168^{\circ} \mathrm{C}}{\longleftrightarrow}$ discotic nematic $\stackrel{253^{\circ} \mathrm{C}}{\longleftrightarrow}$ isotropic
solid $\stackrel{22.5^{\circ} \mathrm{C}}{\longleftrightarrow}$ nematic $\stackrel{35^{\circ} \mathrm{C}}{\longleftrightarrow}$ isotropic

Nematic LC: Calamitic and Discotic. Biaxial?

Existence established

Biaxial
Existence debated,
Uniaxial N often mimics biaxiality

Chiral molecule (does not overlap with its chiral image)

(S)-alanine mirror plane $\quad(R)$-alanine
Cholesterol benzoate: Rod-like molecule with a chiral C atom;
A similar cholesterol derivative was the subject of the first known publication on LCs, reporting double melting point and selective reflection of light, J. Planer, Ann Chem Pharm 118, 25 (1861)

Add chiral molecules to nematic and obtain a cholesteric:

pitch $\sim 0.5 \mu \mathrm{~m}$

Where do the colors come from?

Bragg reflection at the periodic structure with period close to the wavelength of visible light
Why P>>molecular scale? Weakness of chiral contribution to the intermolecular potential, see Harris et al, Rev Mod Phys 71, 1745 (1999)

Comparative chemistry

Nematic 5CB molecule

Cholesteric CB15 molecule

What would happen when two CB molecules are connected by a flexible aliphatic chain and form a "bimesogen" or "dimer"?

Answer: depends on odd-even character of aliphatic chain

even number m of CH_{2} groups

odd number m of CH_{2} groups

How can we pack these molecules in space?

Packing bimesogens

Even m, rod-like molecules:
Easy! Nematic!

Go to 3D:
Uniform bent is achieved through twist!

Predictions:
R.B. Meyer (1973, Les Houches)
R. Kamien, J. Phys II 6, 461 (1996)
I. Dozov, EPL 56, 247 (2001)
J. Selinger et al, PRE 87, 052503 (2013)
E. Virga, PRE 89052502 (2014)

Freeze Fracture TEM, "planar" fractures

CB7CB quenched from the " X " temperature range and viewed under TEM

Period 8.05 nm

(molecular scale!!! Frozen rotations?
Not visible under regular optical microscope; need an electron microscope)

Chen, Walba, Clark et al, PNAS 110, 15931 (2013)
Borshch, Gao et al, Nature Comm 4, 2635 (2013)

Freeze Fracture TEM, "planar" fractures

Freeze-Fractures in TEM: most likely to occur parallel to the long axes of molecules, thanks to the lowest molecular density

The 8 nm period is not visible in X-ray studies; thus there is no modulation of density
How do we know that the structure is indeed twist-bend as opposed to a simple cholesteric, or, say, splay-bend, also predicted to exist?

Tilted fractures: Bouligand arches are different in Ch and N_{tb}

Cholesteric: Bouligand arches are symmetric

N_{tt} : Bouligand arches are either asymmetric or $x_{0}=\frac{\ln \left|2 \cos \psi \sin \theta_{0}\left[\sin \left(t_{t b} y^{\prime} \sin \psi\right)-\tan \psi \cot \theta_{0}\right]\right|}{t_{t b} \sin \psi \cos \psi}$

Bouligand et al, Chromosoma 24, 251 (1968)

FF TEM, Asymmetric Bouligand arches

Both types of N_{tb} asymmetric Bouligand arches are observed

Nematic and Cholesteric are merely two point ends of The Twist-Bend Nematic World...

Nematic

Twist-bend Nematic

Cholesteric

$$
\hat{\mathbf{n}}=\left(\sin \theta_{0} \cos \varphi, \sin \theta_{0} \sin \varphi, \cos \theta_{0}\right)
$$

$$
\boldsymbol{\theta}_{\dot{\mathrm{O}}} \text { molecular tilt angle } \quad \varphi=t z \quad t=2 \pi / P
$$

Add a 1D positional order to obtain a smectic...

Smectic A (SmA)

Periodic modulation of density (verified by Xray experiments), unlike in Ntb phase

$1-4 \mathrm{~nm}$

$$
\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}
$$

Mol. Wt.: 291
solid $\stackrel{24^{\mathrm{O}} \mathrm{C}}{\longleftrightarrow}$ smectic $\mathrm{A} \stackrel{34^{\mathrm{O}} \mathrm{C}}{\longleftrightarrow}$ nematic $\stackrel{42.6^{\mathrm{O}} \mathrm{C}}{\longleftrightarrow}$ isotropic

Smectics and focal conic domains

1910, G. Friedel, F. Grandjean:
Deciphered SmA structure from observation of focal conic domains; X-ray was not available

Smectics: Optical Microscopy at its best

Smectics A, C, C* , etc

(a)

SmC

SmC*

Smectic A: Molecules normal to the layers; Smectic C; molecules are tilted Chiral smectic C; molecules are tilted and follow an oblique helicoid

Twist Grain Boundary Phases

Combination of smectics and cholesterics; formed by chiral molecules; sophisticated analog of Abrikosov phase in superconductors; smectic is penetrated by a lattice of screw dislocations that allows the smectic to twist 1989, Renn, Lubensky, Pindak, Goodby et al.:

$$
2 \pi \gamma
$$

Crystals, thermotropic liquid crystals, liquids

Director $\mathbf{n}=$ optic axis

orientational and positional order:
Molecular crystal

orientational order; no positional order: Nematic LC

no orientational and no positional order Isotropic liquid

Temperature

Lyotropic Liquid Crystals: Power of Entropy

Onsager (1949): Nematic order in solution of long thin rods, thanks to translational vs orientational entropy trade-off

Lyotropic Liquid Crystals: Power of Entropy

Onsager (1949): Nematic order in solution of long thin rods, thanks to translational vs orientational entropy trade-off

Tobacco mosaic virus (TMV)
J. Bernal and I. Fankuchen, J. Gen. Physiol. (1941): tactoids as N nuclei in tobacco mosaic virus dispersions (1939: First images of TMVs)

Molecular structure of phospholipids

Molecular structure of phospholipids. The number of carbon atoms in the aliphatic chains varies, usually between 16 and 20. Two chains might be of different length.

Lyotropic Chromonic LCs: special case

Violet 20

Chromonic molecules:

1. Rigid plank-like polyaromatic core
2. Ionic groups at periphery

Mechanism of LC formation: through aggregation: balance of entropy and association energy δ; average length of aggregates $\bar{L} \propto \sqrt{c} \exp \frac{\delta}{2 k_{B} T}$

Lyotropic Chromonic LCs: special case

\square LCLCs=Mesomorphic phases (N and Col) resulting from 1D non-covalent molecular self-assembly
\square Common occurrence in dyes, drugs, proteins, nucleic acids
\square Similar to living polymers, wormlike micelles of surfactants
\square Promising applications as sensing material, in optical components, organic semiconductors, alignment of nanotubes, assembly of nanorods, etc.

Kuriabova, Betterton, Glaser, J. Mat. Chem. 20,10366 (2010)

Nakata, Clark et al. Science 318, 1276 (2007)

Lyotropic Chromonic LCs: special case

Onsager systems: same rods, athermal, aligned at high c

Thermotropic LC (in your displays): same molecules, $c=$ const, aligned at low T

Chromonics :
controlled by both c
and T

Columnar phase: 2D positional order of columns (aggregates)

Nuclei of columnar phase in isotropic
fluid: Bend
deformations that preserve the
equidistance of 2D
lattices
Toroids rather than
spheres

Disodium
cromoglycate + water
+PEG

Content

ㅁypes of liquid crystalline order

- Nematic
- Cholesteric and blue phases
- Twist bend nematic
- Smectic A
- Lyotropic and Chromonic LCs
\square Basic Physics
- Dielectric anisotropy
- Surface anchoring
- Elasticity
- Frederiks effect and modern LCDs

Anisotropy of uniaxial nematic

Optic axis: Easily deformable by E-field: Frederiks effect

Field-induced reorientation of LC optic axis caused by diamagnetic or dielectric anisotropy: Frederiks effect (Leningrad, USSR, 1920-1930ies);

Optical response to the electric field puts liquid crystals at the heart of modern informational displays technologies

Frederiks effect: Field reorients LC

1927, Vsevolod Frederiks and Antonina Repiova Magnetic field reorients LC
1934, V. Frederiks and V. Tsvetkov: Electric field reorients LC

Рис. 14. Схема аксперимента Репьёвой и Фредери нитного поля на ориентацию нематика. Иа статі рикса [218]

Рие. 18. Влияиие алектрпческого
ноля ноля на планарный слой n-азок-
 Из етатьн Фредерикса и Цветноиа [244]
$E-H=0, E=0 ; 6-H=6400 \mathrm{rc}$,
$E=0 ; e-H=6400-E=10$ eд.
LCI KENTSTATE

Field effects = LC displays

1969, Kent, Ohio: James Fergason patents Twisted nematic cell, the first field-operated LCD (M. Schadt and W. Helfrich filed a similar patent in Europe and also published an article)

2006: Lemelson-MIT \$500,000 award

First product, Fergason's ILIXCO (Kent, 1970)

LC displays: Control of polarized light

Dielectric anisotropy and birefringence of LC enabled revolution in informational portable displays

Elasticity vs. Anchoring

\square Elasticity: Director gradients cost energy

$$
\begin{aligned}
& f=\frac{1}{2} K\left(\frac{\partial n_{i}}{\partial x_{j}}\right)^{2} \sim \frac{K}{L^{2}} \\
& F=\int f d V \sim K L
\end{aligned}
$$

Elasticity vs. Anchoring

\square Elasticity: Director gradients cost energy

$$
f=\frac{1}{2} K\left(\frac{\partial n_{i}}{\partial x_{j}}\right)^{2} \sim \frac{K}{L^{2}}
$$

$$
F=\int f d V \sim K L
$$

\square Surface anchoring

Elasticity vs. Anchoring

\square Elasticity: Director gradients cost energy

$$
\begin{aligned}
& f=\frac{1}{2} K\left(\frac{\partial n_{i}}{\partial x_{j}}\right)^{2} \sim \frac{K}{L^{2}} \\
& F=\int f d V \sim K L .
\end{aligned}
$$

\square Surface anchoring

$$
f_{s} \approx \frac{1}{2} W \theta^{2} ; F_{s} \sim W L^{2}
$$

Elasticity vs. Anchoring

\square Elasticity: Director gradients cost energy

$$
f=\frac{1}{2} K\left(\frac{\partial n_{i}}{\partial x_{j}}\right)^{2} \sim \frac{K}{L^{2}}
$$

$$
F=\int f d V \sim K L
$$

\square Surface anchoring

$$
f_{s} \approx \frac{1}{2} W \theta^{2} ; F_{s} \sim W L^{2}
$$

Elasticity vs. Anchoring

\square Elasticity: Director gradients cost energy

$$
f=\frac{1}{2} K\left(\frac{\partial n_{i}}{\partial x_{j}}\right)^{2} \sim \frac{K}{L^{2}}
$$

$$
F=\int f d V \sim K L
$$

\square Surface anchoring

$$
f_{s} \approx \frac{1}{2} W \theta^{2} ; F_{s} \sim W L^{2}
$$

\square Anchoring extrapolation length

$$
\xi=K / W
$$

Material parameters: orders of magnitude

$K-$? $W-? \xi-$?
Elastic constants $K \sim \frac{k_{B} T_{N I}}{a} \sim \frac{5 \times 10^{-21} \mathrm{~J}}{10^{-9} \mathrm{~m}} \sim 5 \mathrm{pN}$
Surface tension $\quad \sigma \sim \frac{k_{B} T}{a^{2}} \sim \frac{5 \times 10^{-21}}{10^{-18}} \sim 10^{-2} \mathrm{~J} / \mathrm{m}^{2}$
Anisotropy of surface tension: Intuition fails; experiments say

$$
W \sim\left(10^{-3} \div 10^{-6}\right) \mathrm{J} / \mathrm{m}^{2}
$$

(weak as compared to surface tension)

$$
\xi=\frac{K}{W}=\frac{10^{-11} \mathrm{~N}}{10^{-3} \div 10^{-6} \mathrm{~J} / \mathrm{m}^{2}} \sim 10 \mathrm{~nm} \div 10 \mu \mathrm{~m} \ggg \text { molecular size a }
$$

Elasticity of N: Oseen, 1933, Frank, 1958

Requirements: $\left|\frac{\partial n_{i}}{\partial x_{j}}\right| \ll \frac{1}{\text { molecular size }}$
 -n and n are invariant; -central inversion about any point; -invariance under any rotation around n.

Two scalar invariants linear in derivatives: $\operatorname{div} \hat{\mathbf{n}} \hat{\mathbf{n}} \cdot \operatorname{curl} \hat{\mathbf{n}}$ Invariant and Quadratic in derivatives: $(\operatorname{div} \hat{\mathbf{n}})^{2} \quad(\hat{\mathbf{n}} \cdot \operatorname{curl} \hat{\mathbf{n}})^{2} \quad(\operatorname{curl} \hat{\mathbf{n}})^{2}$

$$
(\operatorname{curl} \hat{\mathbf{n}})^{2}=(\hat{\mathbf{n}} \times \operatorname{curl} \hat{\mathbf{n}})^{2}+(\hat{\mathbf{n}} \cdot \operatorname{curl} \hat{\mathbf{n}})^{2} \quad \ldots \text { thus can also be } \quad(\mathbf{n} \times \operatorname{curl} \mathbf{n})^{2}
$$

$\begin{aligned} & \text { Frank-Oseen elastic free } \\ & \text { energy density: }\end{aligned} f_{F O}=\frac{1}{2} K_{1}(\operatorname{div} \hat{\mathbf{n}})^{2}+\frac{1}{2} K_{2}(\hat{\mathbf{n}} \cdot \operatorname{curl} \hat{\mathbf{n}})^{2}+\frac{1}{2} K_{3}(\hat{\mathbf{n}} \times \operatorname{curl} \hat{\mathbf{n}})^{2}$

(b)

$$
\left(n_{x}=\cos \varphi, n_{y}=\sin \varphi, n_{z}=0\right)
$$

$\operatorname{divn}=\frac{2}{r} \quad$ 2D and 3D splay

$$
\left(n_{x}=\frac{x}{r}, \quad n_{y}=\frac{y}{r}, \quad n_{z}=\frac{z}{r}\right)
$$

(c)

Twist (one-directional)

$$
\begin{gathered}
\left(n_{x}=\cos q z, n_{y}=\sin q z, n_{z}=0\right) \\
q=\frac{\alpha}{d}=\frac{2 \pi}{p} \quad q=-\mathbf{n} \cdot \operatorname{curl} \mathbf{n}
\end{gathered}
$$

Bend

$\mathbf{n} \times \operatorname{curl} \mathbf{n}$
$\left(n_{x}=\sin \varphi, n_{y}=\cos \varphi, n_{z}=0\right)$

Elasticity vs Anchoring: Hybrid-Aligned Nematic Film

1. Infinitely strong anchoring

(a) Fixed boundary conditions $\theta(z=0)=\bar{\theta}_{0} \quad \theta(z=d)=\bar{\theta}_{d}$ Problem: Find the director dependence on z in equilibrium Assumption \#1: $\quad \hat{\mathbf{n}}=\left\{n_{x}, n_{y}, n_{z}\right\}=\{\sin \theta(z), 0, \cos \theta(z)\}$ $f_{F O}=\frac{1}{2} K_{1}\left(\sin \theta \frac{d \theta}{d z}\right)^{2}+\frac{1}{2} K_{3}\left(\cos \theta \frac{d \theta}{d z}\right)^{2}$

$$
\text { Assumption \#2: } \quad K_{1}=K_{3}=K \quad f_{F O}=\frac{1}{2} K\left(\frac{d \theta}{d z}\right)^{2}
$$

The problem reduces to finding $\theta(z)$ that minimizes the integral $F_{F O}=\frac{1}{2} K \int_{z=0}^{z=d}\left(\frac{d \theta}{d z}\right)^{2} d z$ Euler-Lagrange eq. (next slide gives the outline, home assignment if you do not know it yet):

$$
\frac{\partial f_{F O}}{\partial \theta}-\frac{d}{d z} \frac{\partial f_{F O}}{\partial \theta^{\prime}}=0 \Rightarrow \frac{d^{2} \theta}{d z^{2}}=0 \quad \theta(z)=\bar{\theta}_{0}-\frac{\left(\bar{\theta}_{0}-\bar{\theta}_{d}\right) z}{d} \quad F_{F O}=\frac{1}{2} K \frac{\left(\bar{\theta}_{0}-\bar{\theta}_{d}\right)^{2}}{d}
$$

Euler-Lagrange equation for 1D problem, fixed boundary conditions (leisure time reading)

where $\eta(z)$ is such that

$$
\eta(z=0)=\eta(z=d)=0
$$

$F[\theta(z)]=\int_{0}^{d} f\left[\theta_{\text {eq }}(z)+\alpha \eta(z), \theta_{e q}^{\prime}(z)+\alpha \eta^{\prime}(z), z\right] d z$
Condition of the extremum: $\quad\left[\frac{\partial F(\alpha)}{\partial \alpha}\right]_{\alpha=0}=0$

$$
\begin{aligned}
& \frac{\partial F(\alpha)}{\partial \alpha}=\int_{0}^{d}\left[\frac{\partial}{\partial \theta} \frac{\partial \theta}{\partial \alpha}+\frac{\partial f}{\partial \theta} \frac{\partial \theta}{\partial \alpha}\right\rceil d z=\int_{0}^{d}[\frac{\partial f}{\partial \theta} \eta(z)+\underbrace{\frac{\partial f}{\partial \theta} \frac{d \eta(z)}{d z}}] d z
\end{aligned}
$$

$\int_{0}^{d}\left\lceil\frac{\partial f}{\partial \theta}-\frac{d}{d z} \frac{\partial f}{\partial \theta^{\prime}}\right\rfloor \eta(z) d z=0 \quad$ or
$\int_{0}^{d}\left\lceil\frac{\partial f}{\partial \theta}-\frac{d}{d z} \frac{\partial f}{\partial \theta^{\prime}}\right\rfloor \delta \theta d z=\alpha\left[\frac{\partial F(\alpha)}{\partial \alpha}\right]_{\alpha=0}=\delta F=0$

$$
\frac{\partial f}{\partial \theta}-\frac{d}{d z} \frac{\partial f}{\partial \theta^{\prime}}=0
$$

Euler-Lagrange equation for 1D problem; its solution $\theta=\theta\left(z, c_{1}, c_{2}\right)$ has 2 constants of integration defined from the boundary conditions, for example,

$$
\theta(z=0)=\bar{\theta}_{0} \text { and } \theta(z=d)=\bar{\theta}_{d}
$$

Euler-Lagrange equation for 1D problem, soft boundary conditions (leisure time reading)

$$
\begin{array}{l|l|l}
& & F=\int_{0}^{d} f[\theta, \theta, z] d z+f_{s 0}\left(\theta_{0}-\bar{\theta}_{0}\right)+f_{s d}\left(\theta_{d}-\bar{\theta}_{d}\right) \\
& \\
\bar{\theta}_{d} \\
\hline
\end{array}
$$

(a)
Euler-Lagrange equation for 1D problem; its solution

$\frac{\partial f}{\partial \theta}-\frac{d}{d z} \frac{\partial f}{\partial \theta^{\prime}}=0 \quad$| E |
| :---: |
| $\theta=\theta\left(z, c_{1}, c_{2}\right)$ has 2 constants of integration defined |
| from the boundary conditions |

$$
\left[-\frac{\partial f}{\partial \theta^{\prime}}+\frac{d f_{s 0}}{d \theta}\right\rfloor_{z=0}=0 \text { and }\left[\frac{\partial}{\partial \theta^{\prime}}+\frac{d f_{s d}}{d \theta}\right\rfloor_{z=d}=0
$$

Elasticity vs Anchoring: Hybrid-Aligned Nematic Film

2. Finite (weak) anchoring

$$
\begin{aligned}
& \theta(z)=\bar{\theta}_{0}-\frac{\left(\bar{\theta}_{0}-\bar{\theta}_{d}\right) z}{d} \quad \theta(z)=\theta_{0}-\frac{\left(\theta_{0}-\theta_{d}\right) z}{d} \\
& {\left[-\frac{\partial f_{F O}}{\partial \theta^{\prime}}+\frac{d f_{s 0}}{d \theta}\right]_{z=0}=0 \quad\left[\frac{\partial f_{F O}}{\partial \theta^{\prime}}+\frac{d f_{s d}}{d \theta}\right]_{z=d}=0} \\
& K\left(\theta_{0}-\theta_{d}\right)+W_{0} d\left(\theta_{0}-\bar{\theta}_{0}\right)=0 \quad K\left(\theta_{d}-\theta_{0}\right)+W_{d} d\left(\theta_{d}-\bar{\theta}_{d}\right)=0 \\
& \theta_{0}=\bar{\theta}_{0}-\frac{\left(\bar{\theta}_{0}-\bar{\theta}_{d}\right) L_{0}}{d+L_{0}+L_{d}} \quad \theta_{d}=\bar{\theta}_{d}+\frac{\left(\bar{\theta}_{0}-\bar{\theta}_{d}\right) L_{d}}{d+L_{0}+L_{d}} \quad \begin{array}{l}
L_{0}=K / W_{0} \\
L_{d}=K / W_{d}
\end{array}
\end{aligned}
$$

$$
F_{F O}=\frac{1}{2} K \frac{\left(\bar{\theta}_{0}-\bar{\theta}_{d}\right)^{2}}{d+L_{0}+L_{d}}
$$

Finite anchoring makes the director gradients weaker and the energy smaller, effectively increasing the cell thickness

Summary of hybrid aligned \mathbf{N} film

$$
\begin{aligned}
& \theta(z)=\bar{\theta}_{0}-\frac{\left(\bar{\theta}_{0}-\bar{\theta}_{d}\right) z}{d} \\
& \theta(z=0)=\bar{\theta}_{0} \\
& \theta(z=d)=\bar{\theta}_{d} \\
& F_{F O}=\frac{1}{2} K \frac{\left(\bar{\theta}_{0}-\bar{\theta}_{d}\right)^{2}}{d}
\end{aligned}
$$

NB: at large scales, surface anchoring takes over, enslaving the director field, the director follows the "easy axis" prescribed by surface anchoring potential

Infinitely strong Finite anchoring

$\theta(z)=\theta_{0}-\frac{\left(\theta_{0}-\theta_{d}\right) z}{d}$
$\theta_{0}=\bar{\theta}_{0}-\frac{\left(\bar{\theta}_{0}-\bar{\theta}_{d}\right) L_{0}}{d+L_{0}+L_{d}}$
$\theta_{d}=\bar{\theta}_{d}+\frac{\left(\bar{\theta}_{0}-\bar{\theta}_{d}\right) L_{d}}{d+L_{0}+L_{d}}$
$F_{F O}=\frac{1}{2} K \frac{\left(\bar{\theta}_{0}-\bar{\theta}_{d}\right)^{2}}{d+L_{0}+L_{d}}$
$d \rightarrow d+L_{0}+L_{d}$
$L_{d}=K / W_{d}$
L : anchoring
extrapolation length

$$
F_{F O} \sim K l
$$

$$
F_{\text {anchoring }} \sim W l^{2}
$$

End of story for hybrid aligned films?
No. At submicron thicknesses, the director is unstable w.r.t. in-plane deformations (similar to buckling)

$K_{24} \operatorname{div}(\hat{\mathbf{n}} \cdot \operatorname{div} \hat{\mathbf{n}}+\hat{\mathbf{n}} \times \operatorname{curl} \hat{\mathbf{n}})=\frac{2 K_{24}}{R_{1} R_{2}}$
Int. J. Mod. Phys 92389 (1995)

Free Energy of a Nematic in an External Field

Dielectric case (no ions, no flexoelectric/surface polarization)
Energy density should depend on two vectors, the field and the director

$$
\mathbf{E} \quad \hat{\mathbf{n}}=-\hat{\mathbf{n}}
$$

$$
\overline{\bar{\varepsilon}}=\left(\begin{array}{ccc}
\varepsilon_{\perp} & 0 & 0 \\
0 & \varepsilon_{\perp} & 0 \\
0 & 0 & \varepsilon_{\|}
\end{array}\right)
$$

Electric displacement: $D_{i}=\varepsilon_{0} \varepsilon_{i j} E_{j}$

Energy density (x 2): $\mathbf{E} \cdot \mathbf{D}=\varepsilon_{0} \varepsilon_{\perp} E^{2}+\varepsilon_{0} \varepsilon_{a}(\mathbf{n} \cdot \mathbf{E})^{2} \quad \varepsilon_{a}=\varepsilon_{\|}-\varepsilon_{\perp}$

$$
\longmapsto f=f_{F O}-\frac{1}{2} \varepsilon_{0} \varepsilon_{a}(\hat{\mathbf{n}} \cdot \mathbf{E})^{2} .
$$

Free Energy of a Nematic in an External Field

Dielectric case (no ions, no flexoelectric/surface polarization)

U=const

\square
$F_{\mathrm{FO}}=\int f_{\mathrm{FO}} d V \quad F_{E}=\int f_{E} d V=\frac{1}{2} \int \mathbf{E} \cdot \mathbf{D} d V$
The energy of the electric field and its change:

$$
\delta F_{E}=\frac{1}{2} \int \mathbf{E} \cdot \delta \mathbf{D} d V
$$

Which leads to a change in the surface charge density by $\left(-\delta D_{z}\right)$

When n reorients, surface charge density changes; to keep the voltage constant at the electrodes, one needs to supply energy from the electric source:

$$
\begin{gathered}
\delta F_{G}=\iint_{A} \psi \underset{\mathbf{Z}}{ } \delta D_{z} d A=\int \operatorname{div}(\psi \delta \mathbf{D}) d V \\
\quad \operatorname{div}(\psi \delta \mathbf{D})=\psi \operatorname{div} \delta \mathbf{D}+\delta \mathbf{D} \cdot \nabla \psi \\
\mathbf{E}=-\nabla \psi \\
\delta F_{G}=-\int \mathbf{E} \cdot \delta \mathbf{D} d V=-2 \delta F_{E}
\end{gathered}
$$

The minimum of the total bulk free energy is achieved when $\delta F_{\mathrm{FO}}+\delta F_{E}+\delta F_{G}=\delta\left(F_{\mathrm{FO}}-F_{E}\right)=0$

$$
\begin{aligned}
& \mathbf{D}=\varepsilon_{0} \varepsilon_{\perp} \mathbf{E}_{\perp}+\varepsilon_{0} \varepsilon_{| |} \mathbf{E}_{| |}=\varepsilon_{0} \varepsilon_{\perp} \mathbf{E}+\varepsilon_{0} \varepsilon_{a}(\mathbf{E} \cdot \mathbf{n}) \mathbf{n} \quad \mathbf{E} \cdot \mathbf{D}=\varepsilon_{0} \varepsilon_{\perp} E^{2}+\varepsilon_{0} \varepsilon_{a}(\mathbf{n} \cdot \mathbf{E})^{2} \\
& f=f_{F O}-\frac{1}{2} \varepsilon_{0} \varepsilon_{a}(\hat{\mathbf{n}} \cdot \mathbf{E})^{2} \\
& f=f_{F O}-\frac{1}{2} \mu_{0}^{-1} \chi_{a}(\hat{\mathbf{n}} \cdot \mathbf{B})^{2} \\
& \mu_{0}=4 \pi \times 10^{-7} \text { Henry } / \mathrm{m}
\end{aligned}
$$

Splay Frederiks Transitions

$$
\begin{aligned}
& f=\frac{1}{2} K_{1}(\operatorname{div} \hat{\mathbf{n}})^{2}-\frac{1}{2} \mu_{0}^{-1} \chi_{a}(\mathbf{B} \cdot \hat{\mathbf{n}})^{2} \\
& <\theta \\
& \left.f n_{x}, n_{y}, n_{z}\right\}=\{\cos \theta(z), 0, \sin \theta(z)\} \\
& f=\frac{1}{2} K_{1} \cos ^{2} \theta\left(\frac{d \theta}{d z}\right)^{2}-\frac{1}{2} \mu_{0}^{-1} \chi_{a} B^{2} \sin ^{2} \theta
\end{aligned}
$$

$$
\text { Assuming deviations are small: } \quad f=\frac{1}{2} K_{1}\left(\frac{d \theta}{d z}\right)^{2}-\frac{1}{2} \mu_{0}^{-1} \chi_{a} B^{2} \theta^{2}
$$

E-L equation: $\quad \xi^{2} \frac{d^{2} \theta}{d z^{2}}+\theta=0 \quad \xi=\frac{1}{B} \sqrt{\frac{K_{1}}{\mu_{0}^{-1} \chi_{a}}}$
General solution: $\quad \theta=a_{1} \cos \frac{z}{\xi}+a_{2} \sin \frac{z}{\xi}$
Boundary conditions yield $a_{1}=0$ and $d / \xi=n \pi$

Non-trivial solution at $B>B_{c}=\frac{\pi}{d} \sqrt{\frac{K_{1}}{\mu_{0}^{-1} \chi_{a}}}, \quad$ the critical field for the Frederiks tra nsition

Three basic geometries of Frederiks effect

$$
B_{c}=\frac{\pi}{d} \sqrt{\frac{K_{1}}{\mu_{0}^{-1} x_{a}}} \quad \text { Splay deformation }
$$

$$
B_{c}=\frac{\pi}{d} \sqrt{\frac{K_{2}}{\mu_{0}^{-1} \chi_{a}}} \quad \text { Twist deformation }
$$

$$
B_{c}=\frac{\pi}{d} \sqrt{\frac{K_{3}}{\mu_{0}^{-1} \chi_{a}}} \quad \text { Bend deformation }
$$

Electric field case can be treated similarly

Heliconical director in electric field

Volume 12, Number 9 APPLIED PHYSICS LETTERS 1 May 1968
EFFECTS OF ELECTRIC AND MAGNETIC FIELDS ON THE STRUCTURE OF CHOLESTERIC LIQUID CRYSTALS*

Robert B. Meyer

A cholesteric with a small bend-twist ratio $K_{3} / K_{2}=\kappa \ll 1$ and $\Delta \varepsilon>0$ adopts an oblique helicoidal shape in an electric field with the field-dependent pitch:

Bimesogens: Ideal for electrically induced twist bend, since the bend constant is very small

Color tuning: Vertical field

J. Xiang et al, Advanced Materials, 3014 (2015)

Liquid Crystals. Lecture 1.2 Optics

Oleg D. Lavrentovich

Support: NSF

Boulder School for Condensed Matter and Materials Physics, Soft Matter In and Out of Equilibrium, 6-31 July, 2015

LCs: Birefringent materials

Birefringence: Double refraction of light in an ordered material, manifested through dependence of refractive indices on polarization of light

Birefringence revealed through pair of polarizers: textures and LCDs

LCs: Ordinary and Extraordinary waves

$$
\begin{aligned}
& \text { El. field } \\
& \nabla \times \mathbf{E}=-\partial \mathbf{B} / \partial t \\
& \overline{\bar{\varepsilon}}=\left(\begin{array}{ccc}
\varepsilon_{\perp} & 0 & 0 \\
0 & \varepsilon_{\perp} & 0 \\
0 & 0 & \varepsilon_{\|}
\end{array}\right)
\end{aligned}
$$

Mag.field strength
$\nabla \times \mathbf{H}=\partial \mathbf{D} / \partial t$
$D_{i}=\varepsilon_{0} \varepsilon_{i j} E_{j}$

Mag. field induction El. displacement

$$
\nabla \cdot \mathbf{B}=0 \quad \nabla \cdot \mathbf{D}=0
$$

$$
B_{i}=\mu_{0}\left(\delta_{i j}+\chi_{i j}\right) H_{j}
$$

Light propagation in a homogeneous medium

Consider a plane monochromatic wave: $\mathbf{E}(\mathbf{r}, t)=\mathbf{E}_{0} \exp (i \mathbf{k} \cdot \mathbf{r}-i \omega t), \mathbf{H}(\mathbf{r}, t)=\ldots$ $\mathbf{k} \times \mathbf{E}=\omega \mathbf{B} \quad-\mathbf{k} \times \mathbf{H}=\omega \mathbf{D} \quad \mathbf{k} \cdot \mathbf{D}=0 \quad \mathbf{k} \cdot \mathbf{H}=0$
Eliminating mag. field $\mathbf{H}: \omega^{2} \mu_{0} \mathbf{D}=k^{2} \mathbf{E}-\mathbf{k}(\mathbf{E k})$ and using constitutive eq. for \mathbf{D} :

$$
\begin{aligned}
& \omega^{2} \mu_{0} \varepsilon_{0} \varepsilon_{i j} E_{j}=k^{2} E_{i}-k_{i}\left(E_{j} k_{j}\right) \\
& \left(N^{2} \delta_{i j}-N_{i} N_{j}-\varepsilon_{i j}\right) E_{j}=0 \quad \text { Refractive index "vector" } \mathbf{N}=\mathbf{k} \frac{1}{\omega \sqrt{\varepsilon_{0} \mu_{0}}} \propto \frac{c}{v}
\end{aligned}
$$

Fresnel equation; Propagation of Light in LC

$\left(N^{2} \delta_{i j}-N_{i} N_{j}-\varepsilon_{i j}\right) E_{j}=0$
The three homogeneous equations have a nontrivial solution only if the determinant of coefficients vanishes (Fresnel equation):
$\operatorname{Det}(\mathbf{k}, \omega)=\left(N^{2}-\varepsilon_{\perp}\right)\left[\varepsilon_{\|} N_{z}^{2}+\varepsilon_{\perp}\left(N_{x}^{2}+N_{y}^{2}\right)-\varepsilon_{\|} \varepsilon_{\perp}\right]=0$
Two waves: ordinary, with $N=n_{o}=\sqrt{\varepsilon_{\perp}}$ and extraordinary, with refractive index that depends on the angle between the wave-vector and the optic axis:

$$
N=n_{e, e f f}=\frac{n_{o} n_{e}}{\sqrt{n_{e}^{2} \cos ^{2} \theta+n_{o}^{2} \sin ^{2} \theta}}
$$

optic axis

Polarizing microscopy: Principle

Polarizing microscopy: Principle

$$
\left\{\begin{array}{l}
A_{1}=A \sin \beta \cos \beta \cos \left(\omega t-\frac{2 \pi}{\lambda_{0}} n_{o} d\right) \\
A_{2}=A \sin \beta \cos \beta \cos \left(\omega t-\frac{2 \pi}{\lambda_{0}} n_{e} d\right)
\end{array}\right.
$$

Resulting vibration: $\quad \bar{A} \cos (\omega t+\bar{\varphi})$ with amplitude

$$
\begin{array}{r}
\bar{A}^{2}=A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \Delta \phi \\
I=I_{0} \sin ^{2} 2 \beta \sin ^{2}\left[\frac{\pi d}{\lambda_{0}}\left(n_{e}-n_{o}\right)\right]
\end{array}
$$

Polarizing microscopy: Principle

Dark Brushes: $\beta=0 ; \pm \pi / 2 ; \pm \pi \ldots$ regions where n is $\|$ or \perp to polarizers

$$
I=I_{0} \sin ^{2} 2 \beta \sin ^{2}\left[\frac{\pi d}{\lambda_{0}}\left(n_{e}-n_{o}\right)\right]
$$

Polarizing microscopy:
Degeneracy of two director fields

Polarizing microscopy: Degeneracy of two director fields: Radial or Circular?

PM problem: Two orthogonal n fields

Solution: optical compensator (quartz wedge, Red plate, etc.)

Ultimate Compensator: LC PolScope

R. Oldenburg, G. Mei, US Patent 5,521,705

LC PolScope image of chromonic: shows both the in-plane director and retardance

(a) $\mathrm{T}=32.9^{\circ} \mathrm{C}$

(b) $\mathrm{T}=30.7^{\circ} \mathrm{C}$

(c) $\mathrm{T}=30.6{ }^{\circ} \mathrm{C}, \mathrm{t}=\mathbf{0} \mathrm{s}$

(d) $\mathrm{T}=30.6{ }^{\circ} \mathrm{C}, \mathrm{t}=156 \mathrm{~s}$

Retardance:
$\Gamma=d \Delta n\left(\right.$ planar $\left.; \Delta n=n_{e}-n_{o}\right)$
$\Gamma=d \Delta n_{\text {eff }}($ titled director $)$
PolScope creates a map of the orientation of the optic axis in the sample and of the local value of the optical phase retardation; Limitations: Retardation should be in the range 0-272 nm; chiral structures (twisted) are not properly characterized.

YK Kim et al, J Phys Cond Phys 25, 404202 (2013)

Polarizing microscopy

Interference colors: $I=I\left[\lambda_{0}\right]$
Visible when $d\left(n_{e}-n_{o}\right) \sim(1-3) \lambda_{0}$

$$
I=I_{0} \sin ^{2} 2 \beta \sin ^{2}\left[\frac{\pi d}{\lambda_{0}}\left(n_{e}-n_{o}\right)\right]
$$

Limitation: 2D image

Limitation: 2D image

Derived in approximation of planar director, $\mathbf{n}=\mathbf{n}(x, y)$ and constant thickness d

Limitation: 2D image

Limitation: 2D image

When $\left\{n_{x}, n_{y}, n_{z}\right\}=\{0,0,1\}$, how does the texture look like?

This is the ground state of an LCD TV produced by Samsung

Limitation: 2D image

Confocal Microscopy: 3D image of 3D

Confocal Microscopy: Principle

(Minsky, 1957)

\longrightarrow Scanning \longrightarrow Computer \longrightarrow 3D image

Fluorescence Confocal Microscopy

1980 M. Petran and A. Boyde

Fluorescent tag increases contrast of tissues

3D image of concentration (positional distribution) of fluorescent dopant....
....but we are interested in orientations rather than in concentrations...

Fluorescence Confocal Polarizing Microscopy

Two distinctive features:

1. Anisometric fluorescent dye aligned by LC
2. Polarized light

FCPM: Fluorescent anisometric dyes

N,N'-Bis(2,5-di-tert-butylphenyl)-3,4,9,10perylenedicarboximide) BTBP

0.01 \% of BTBP in ZLI-3412

FCPM: Anisotropic Fluorescence

maximum signal

minimum signal

I $\sim \cos ^{4} \alpha$

Fluorescence signal $=f($ orientation of dye $)$
I. Smalyukh et al, Chem Phys Lett 336, 88 (2001)

FCPM: Anisotropic Fluorescence

FCPM: Frederiks Effect

I. Smalyukh et al Chem Phys Lett 336, 88 (2001)

FCPM: Planar Cholesteric

I. Smalyukh et al, Phys. Rev. Lett. 90, 085503 (2003)

Summary: What have we learned

\square Liquid crystals: Orientationally ordered media

- Thermotropic (t-driven) and lyotropic (c-driven)
- Uniaxial nematic, twist bend, cholesteric, smectic, columnar, dramatic dependence on molecular structure...
\square Orientational elasticity vs surface anchoring
- Frank elastic constants $\sim 5 \mathrm{pN}$
- Equilibrium director defined by boundary conditions (anchoring) and external field
- As the system become larger, anchoring imposes stronger restrictions on the director; at smaller scales, the director is less distorted
- Frederiks transitions: heart of modern LCDs
\square Optics
- LCs are birefringent; ordinary and extraordinary waves
- Polarizing microscope: 2D image of 3D sample
- Fluorescence confocal polarizing microscopy: 3D image of 3D orientational order

Cholesteric structure of DNA in chromosomes: Bouligand arches

Chromosoma (Berl.) 24, 251--287 (1968)
La structure fibrillaire et l'orientation des chromosomes chez les Dinoflagellés
Y. BOULIGAND, M.-O. SOYER et S. PUISEUX-DAØ

Clolesteric: 1D twist; Blue phases: 3D twist

Double twisted cylinders stabilized by a 3D network of topological defects -

Main problem for applications:
Temperature range of BPs is narrow, $\sim 1^{\circ} \mathrm{C}$
One approach: Polymerization

Polymer mesh formed in BPII Can be refilled with N for electro-optic applications J. Xiang et al, APL 103, 051112 (2013) H. Kikuchi et al, Nature Mat. 1, 64 (2002)

