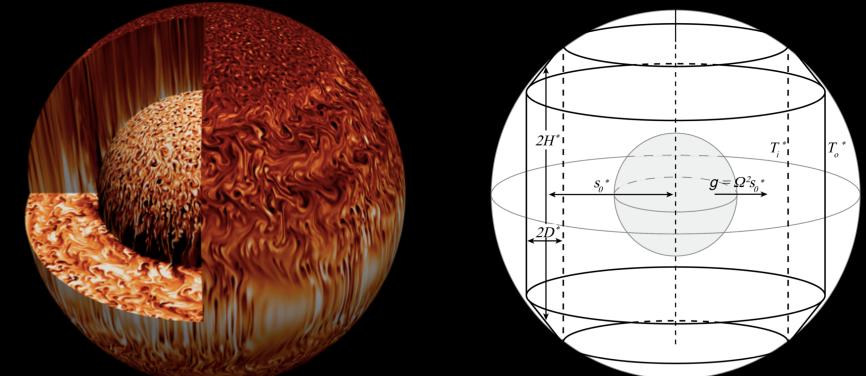
QL vs GQL for a model of Jupiter: "The Busse Annulus"



Busse (1976)

$$E\left(\frac{\partial u}{\partial t} + u \cdot \nabla u\right) + 2e_z \times u = -\nabla P - Ra'Te_y + E\nabla^2 u,$$
$$\frac{\partial T}{\partial t} + u \cdot \nabla T = \frac{1}{Pr}\nabla^2 T,$$
$$\nabla \cdot u = 0.$$
$$Ra' = \frac{\alpha g \Delta Td}{2}, \quad E = \frac{\nu}{2}, \quad Pr = \frac{\nu}{2}.$$

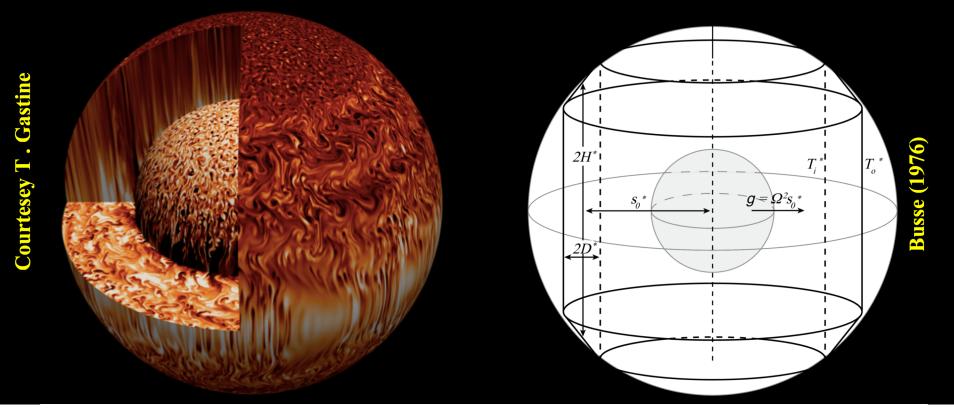
 $\nu \Omega$

Pr

κ

 $\Omega d^{\overline{2}}$

Deep Flows: 2D occurs due to strong rotation



$$\mathbf{u} = -\boldsymbol{\nabla} \times (\psi(x, y)\mathbf{e}_z) + \mathbf{u}'(\mathbf{r}) \ \hat{T} = \hat{T}(x, y), |\mathbf{u}'| \ll |\boldsymbol{\nabla} \times (\psi(x, y)\mathbf{e}_z)|$$

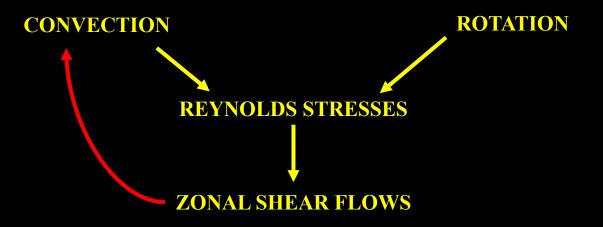
 $\theta_B)\frac{d}{EL_z}$

d

1/2

$$\frac{\partial \zeta}{\partial t} + J(\psi, \zeta) - \beta \frac{\partial \psi}{\partial x} = -\frac{Ra}{Pr} \frac{\partial \hat{T}}{\partial x} - C|\beta|^{1/2} \zeta + \nabla^2 \zeta \qquad \qquad \beta = 2(\theta_T - \theta_B) \frac{\partial F}{\partial x}$$
$$\frac{\partial \hat{T}}{\partial t} + J(\psi, \hat{T}) = -\frac{\partial \psi}{\partial x} + \frac{1}{Pr} \nabla^2 \hat{T} \quad J(A, B) = \frac{\partial A}{\partial x} \frac{\partial B}{\partial y} - \frac{\partial B}{\partial x} \frac{\partial A}{\partial y} \qquad \qquad C = \left(\frac{1}{|\theta_T - \theta_B|} \frac{d}{L_z}\right)$$

Deep Models: jet formation. 2d-Dynamics



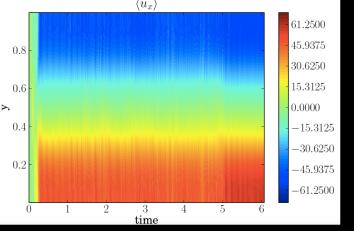
- As convective driving is increased, convection sets in for $Ra > Ra_c$
- Convective cells interact with rotation via beta-effect to drive zonal (shear) flows.
 - Thermally driven Rossby waves
 - Turbulent eddies with correlations \rightarrow Reynolds stress
- Shear flow acts back to suppress the convection and lead to saturation
 - Shear inhibits convection
- Depending on parameters one can get a wide variety of behaviour.

Brummell & Hart, Rotvig & Jones (2006), Tobias, Oishi & Marston (2017)

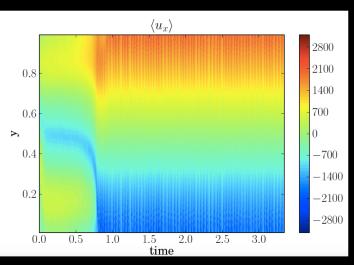
Deep Models: jet formation. 2d-Dynamics Three types of behaviour

$\langle u_x \rangle$ 61.2500 45.9375 0.830.6250 15.3125 0.60.0000 5 0.4-15.3125-30.6250

Quasi-steady large-scale jets



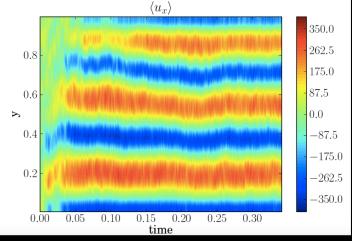
Brummell & Hart, Rotvig & Jones (2006), Tobias, Oishi & Marston (2017)



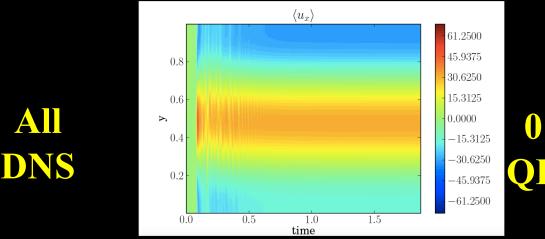
Bursting jets Predator-Prey Dynamics between zonal flows and convection

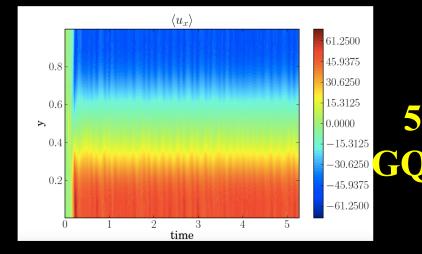
Reminiscent of zonal flow/turbulence interaction in pipe flow (Shih et al 2016)

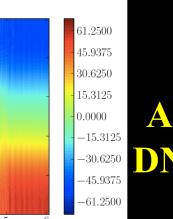
Quasi-steady multiple jets

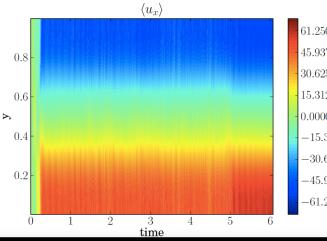


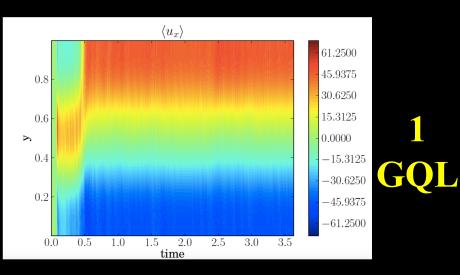
GQL vs QL?



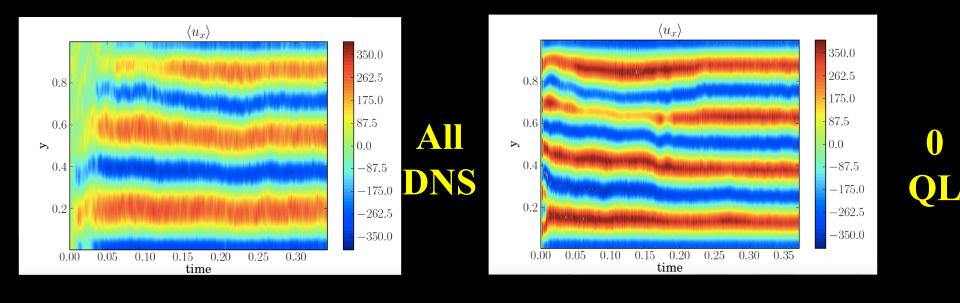


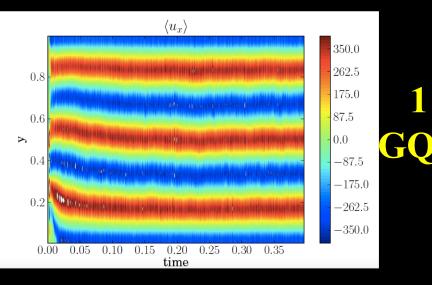


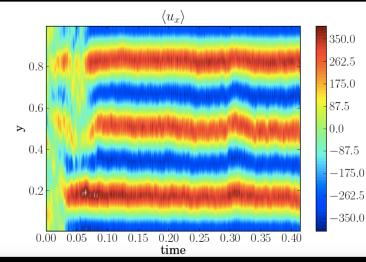




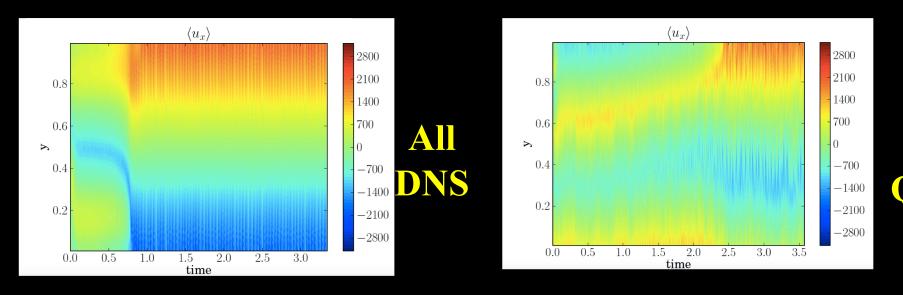
GQL vs QL?

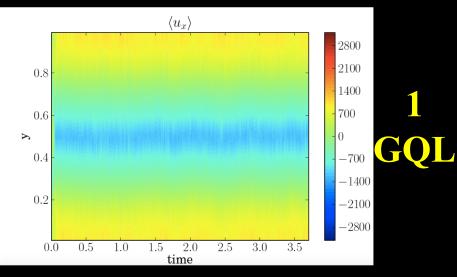


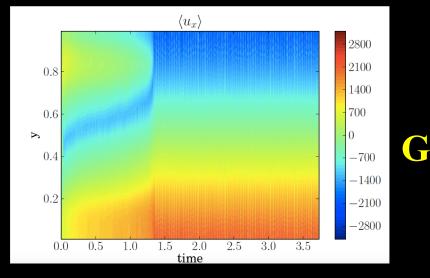




GQL vs QL?

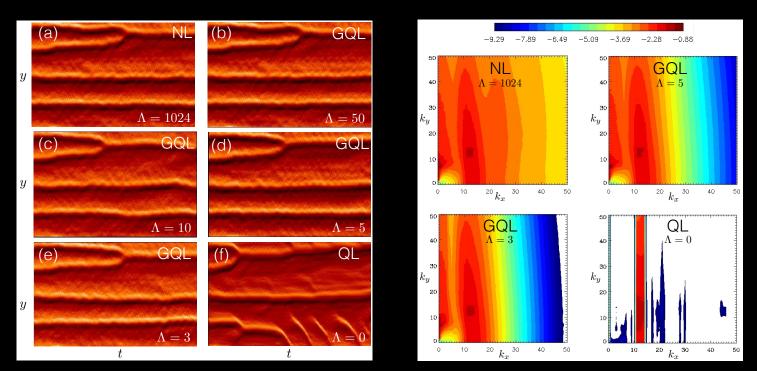






5

Barotropic Jet. QL vs GQL (Beta-plane)



- On a beta-plane even QL with a small cut-off $\Lambda=3$ can reproduce merging of jets.
- QL struggles to get number of jets correct.
- Formal derivation of GQL can be achieved via asymptotic expansion
 - Small parameter is related to degree of lack of statistical equilibrium
 - In this case, the small parameter can be related to ratio of dissipation to forcing.

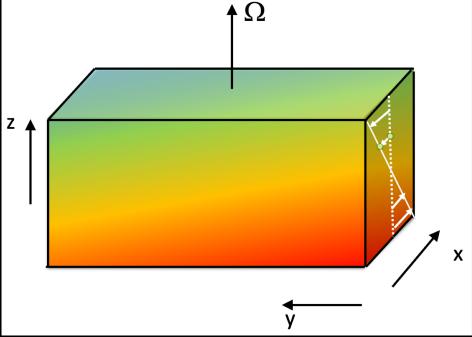
Low modes

$$\partial_T \bar{\zeta} + J(\bar{\psi}, \bar{\zeta}) + \bar{\beta} \partial_X \bar{\psi} = -\partial_y (\overline{\zeta' \partial_\chi \psi'}) - \bar{\kappa} \, \bar{\zeta} + \bar{\mathcal{D}},$$

 $\partial_{\nu}^2 \bar{\psi} = \bar{\zeta},$

High modes

$$egin{aligned} \partial_{ au}\zeta' &- \partial_{y}ar{\psi}\partial_{\chi}\zeta' + \partial_{\chi}\psi'\partial_{y}ar{\zeta} + ar{eta}\partial_{\chi}\psi' &= \eta'(au), \ (\partial_{ au}^{2} + \partial_{y}^{2})\psi' &= \zeta', \end{aligned}$$



$$T_0 = T_c + T_y y - z,$$

$$U_0 = -\frac{T_y Ra}{Ta^{1/2} \sin \phi} \left(z - \frac{1}{2}\right)$$

- Another simple model of the interaction of convection with shear (relevant to stars/planets)
- Hathaway et al 1980
- Currie 2014
- Currie & Tobias 2019
- \$\overline is latitude (box as shown is at the pole)
- T_y negative temperature increases southwards

$$Ta = 4\Omega^2 d^4 / v^2$$

$$Ra = \alpha g d^4 \partial T / \partial z / \kappa v$$

$$Pr = v/\kappa$$

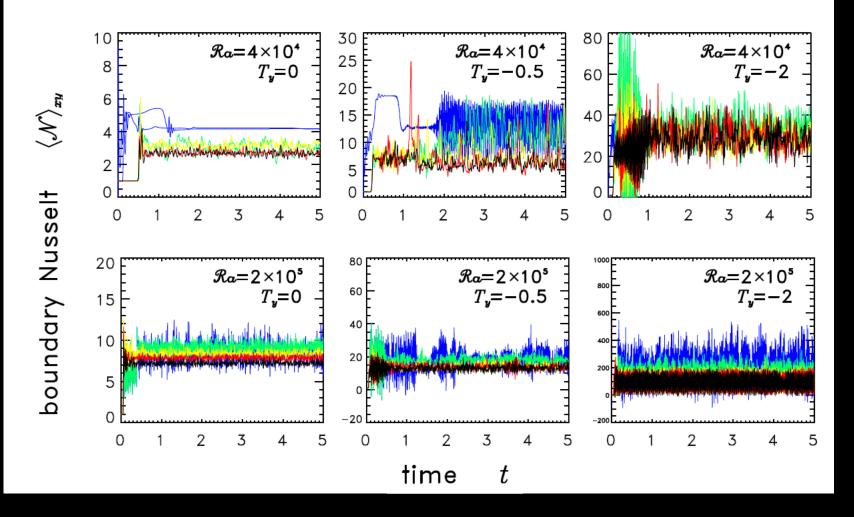
• Saxton et al (2021)

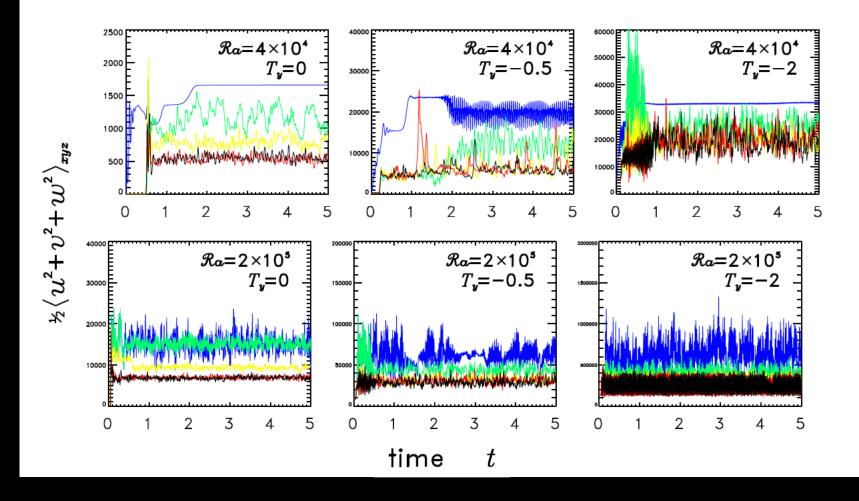
 $\nabla \cdot \boldsymbol{u} = 0,$

 $\frac{\partial u}{\partial t} + U_0 \frac{\partial u}{\partial x} + w \frac{\mathrm{d} U_0}{\mathrm{d} z} - Pr \nabla^2 u + Ta^{1/2} Pr \mathbf{\Omega} \times u + Pr \nabla p - Ra Pr \theta \hat{\mathbf{e}}_z$ $= -(\mathbf{u} \cdot \nabla) u,$

$$\frac{\partial\theta}{\partial t} + U_0 \frac{\partial\theta}{\partial x} - \nabla^2 \theta - w + T_y v = -(\boldsymbol{u} \cdot \boldsymbol{\nabla})\theta,$$

- Turbulence can extract energy from both the temperature gradient directly or from the shear (if T_v non-zero)
- How well do QL/GQL do as T_y changes and shear increases





Transfer Functions

