
Lecture 3: Boulder Summer School
Steve Tobias

(University of Leeds)



A mean field model of the Solar Dynamo



“More than any other theoretical procedure, numerical integration is also subject to 
the criticism that it yields little insight into the problem. The computed numbers are 
not only processed like data but they look like data, and a study of them may be no 
more enlightening than a study of real meteorological observations. An alternative 
procedure which does not suffer this disadvantage consists of deriving a new system 
of equations whose unknowns are the statistics themselves....

...This procedure can be very effective for problems where the original equations are 
linear, but, in the case of non-linear equations, the new system will inevitably contain 
more unknowns than equations, and can therefore not be solved, unless additional 
postulates are introduced.”

Edward Lorenz, The Nature and Theory of the General Circulation of the 
Atmosphere (1967)

“Direct Statistical Simulation” (DSS)

Dynamics vs Statistics
“The climate is what you expect; the weather is what you get.”

Attributed to Mark Twain.



Low-order statistics: smoother in space than instantaneous flow.  

Statistics evolve slowly in time, or not at all, and hence may be 
described by a fixed point, or at least a slow manifold.

Direct Statistical Simulation:
Why simulate the statistics?

Statistics are less sensitive to changes in underlying parameters than 
detailed dynamics.

In geophysics/astrophysics correlations are non-local and highly 
anisotropic and inhomogeneous. Statistical formulations must respect 

this. They should also respect conservation laws

Statistics usually describe mean/average behaviour and 
variations about that mean (e.g. 2pt correlations)

Solution of Statistical Equations is an old idea: Bousssinesq, Reynolds, Lorenz, 
Herring, Kraichnan, Frisch, Salmon, Monin & Yaglom, Majda



Direct Statistical Simulation: the options…

• For any dynamical system one could try to simulate pdfs
• Perron-Frobenius Theory (see e.g. Beck & Schloegl 1993)
• Fokker-Planck/Liouville equations (see e.g. Kadanoff 2000, Alwalla & 

Marston 2016, Cho et al 2016, Chen & Majda 2017)

• Kolmogorov/Kraichnan moment hierarchies
• Usually assume isotropy/homogeneity of statistics

• Large Deviation Theory
• Extreme/rare events or flipping (see e.g.  Bouchet & Simonet 2009, 

Laurie & Bouchet 2015)

• Use cumulants
• take into account inhomogeneity/anisotropy
• Statistical closures
• Relationship with deterministic approximations?



t=0
P(x,0)

t=t1
P(x,t1)

t=t2
P(x,t2)

t large
Pinv(x)

Fokker-Planck/Liouville Equation

See e.g. Foias, Manley & Temam 2001

Direct Statistical Simulation: Simulating pdfs



To Fix ideas: the (stochastically forced) 
Lorenz equations…

• What does pdf look like?



To Fix ideas: the (stochastically forced) 
Lorenz equations…

• Simulation of pdfs: L/FPE

noiseDeterministic flow

DNS DNS+NOISE FPE



To Fix ideas: the (stochastically forced) 
Lorenz equations…

• Use cumulant expansions

ODE 
SYSTEM

REYNOLDS
DECOMPOSITION

DEFINE
CUMULANTS



To Fix ideas: the (stochastically forced) 
Lorenz equations…

• Derive cumulant system using Hopf Functionals (or brute force)

1st Cumulant Equation

2nd Cumulant EquationLi et al (2022)



To Fix ideas: the (stochastically forced) 
Lorenz equations…

3rd Cumulant Equation



Cumulant Expansion for PDEs 

Take PDE or set of PDEs

Define Cumulants

Derive Evolution Eqns for 
Cumulants

Truncate cumulant hierarchy

e.g. Momentum, induction, energy equations

1st cumulants: means
2nd cumulants: two-point  correlation functions

cross correlations

Use Hopf functional technique (Monin & Yaglom, Frisch) or 
brute force

@tq = L[q] +N [q q] + f(t)

c1 = hq0(x)i, c2 = hq0(x1)q
0(x2)i, c3 = hq0(x1)q

0(x2)q
0(x3)i etc.

c3 = hq0(x1)q
0(x2)q

0(x3)i

Truncation at second order is a Quasilinear, 
realisable self-consistent mean-field theory (CE2)
Formally analogous to Farrell & Ioannou S3T
Truncation at third order is an anisotropic, 
inhomogeneous EDQNM (CE3)

Split into means and fluctuations
Reynolds averaging

Conservation Laws
Realizability

…



t=0
P(x,0)

t=t1
P(x,t1)

t=t2
P(x,t2)

t large
Pinv(x)

Fourier transform

Hopf Equation
See e.g. Foias, Manley & Temam 2001

Direct Statistical Simulation: Simulating pdfs





Paradigm Problem:
Barotropic turbulence. Two-dimensional hydrodynamics on a sphere

@tq = L[q] +N [q q] + f(t)

@t⇣ = �⇣ � ⌫4r4⇣ � v.r(⇣ + 2⌦ sin ✓) + ⌘(t)

⇣ = (r⇥ v) · r̂

Radial component 
of the vorticity

Other problems at CE2: 
2D turbulence on beta-plane (Farrell & Ioannou 2007, Tobias & Marston 2013, Bakas & Ioannou 2014)

Joint instabilities in the Tachocline (Plummer et al 2017)
MRI in shearing box (Squire & Bhattacherjee 2014)

Convection in a Busse Annulus
Saturation of Inertial (symmetric)  instabilities



Comparison
• Compare two techniques:
• DNS using spherical geodesic grid

• Second-order leapfrog
• Robert filter
• Multigrid algorithm

• Fully spectral Direct Statistical Simulation
• Semi-implicit Krylov method
• Approach to a simple attractor (fixed 

point, limit cycle?)



What do we expect?
• Small-scale turbulence will drive jets via PV 

homogenisation (Rhines 1975, McIntrye 2003, Dritschel & McIntyre 

2008,  Vallis & Maltrud 1993, Manfroi & Young 1998, Sukoriansky & Galperin, 2008 
)

– Correlations of nonlinear Rossby waves drives 
zonal flow via Reynolds Stresses

– Non-trivial interactions lead to generations of 
mean flows and angular momentum transport



DNS Movie of hydro jet formation

Relative Vorticity



Hydrodynamics: DNS

• Zonally averaged zonal 
radial vorticity

• Zonally averaged zonal 
azimuthal velocity



DSS Movie of hydro jet formation

Relative Vorticity



Hydrodynamic: DSS
• DSS  reproduces driving 

of jets.
• This is possible even for 

a cumulant expansion 
truncated at second 
order.

• These jets are therefore 
driven directly via 
Reynolds stresses.

• Recall: No inverse (or 
forward) cascade in this 
model. 



Hydrodynamic: DSS
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• Detailed comparison: DSS reproduces shape of jet 
very well (except at poles where mean is small)

• No eddy-eddy scattering



Covariance/2pt correlation?

DNS

CE2
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Rank Instability of CE2
Nivarti, Kerswell, Marston & Tobias 

arxiv:2202.04127



How to improve on QL/CE2/SSST?

• Generalise the quasilinear approximation

– Derive statistical theory (GCE2) corresponding to 

GQL approximation [Nivarti, Marston & Tobias in 

preparation]

• Include eddy/eddy à eddy interactions

– CE2.5/CE3 [Marston et al (2015) arXiv:1412.0381]

• Change the definition of averaging to 

ensemble averaging [Allawala et al 2020]



How to improve on QL/CE2/SSST?

• CE2.5 is the generalization of the eddy-damped quasi-normal 
Markovian approximation (EDQNM) to anisotropic & 
inhomogeneous turbulent flows.  Appears to be realizable.

• [Marston et al (2015) arXiv:1412.0381]



Improvements on CE2/ Beyond Quasilinearity

Include eddy/eddy à eddy interactions (CE2.5/CE3)

Generalise the definition of mean to large scales (low 
modes) (GCE2)

Statistical implementation
of GQL

@tq = L[q] +N [q q]
@tl = L[l] +N [l l] +N [h h]
@th = L[h] +N [l h]

@t(h, h) = L[(h, h)] + 2N [l (h], h)



Summary
NL

GQL

QL CE2

CE2.5

GCE2



Model Reduction via POD
• Can we do the calculation keeping only the 

information that is needed? i.e. reduce the basis…
c2 = hq0(x1)q

0(x2)i
c2(x1,x2) =

X
�i�i(x1)�i(x2)

⇡
NX

i=1

�i�i(x1)�i(x2)
Schmidt Decomposition

Proper Orthogonal Decomposition  Principal Component Analysis
(see e.g.  Holmes et al Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2012) 
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DSS as a subgrid model
(Kuan Li)

• Can DSS be used dynamically?
• Think of the first cumulant as the DNS solution on a coarse grid
• Second cumulant is correlation of fluctuations from all the unresolved scales, projected onto 

the coarse grid
• Very expensive??

• Just keep first PoD mode of second cumulant (how accurate?)
• Matrix-free method (Li)

Very preliminary results…

DNS on a 
very fine grid

DNS on a coarse grid + 
DSS of unresolved scales



DSS as a subgrid model
(Kuan Li)

Quasilinear terms EDQNM type terms



DNS

DSS as a subgrid model: An example
(Kuan Li)

Hasegawa-
Wakatani

(Modified)
Hasegawa-
Wakatani

M. Wakatani and A. Hasegawa, “A collisional drift wave description of plasma edge turbulence”,
Physics of Fluids, 27 (3), 1984.

A Hasegawa and M Wakatani, “Self-Organization of Electrostatic Turbulence in a Cylindrical Plasma”, 
Physical Review Letters, 59 (14), 1987.
Numata, R., Ball, R., & Dewar, R. L, “Bifurcation in electrostatic resistive drift wave turbulence”.
Physics of Plasmas, 14 (10), 102312, 2007



DNS

DSS as a subgrid model: An example
(Kuan Li)

DNS

k=1, µ=10-4, a = 1

Code verified against simulations with Gkeyll
http://ammar-hakim.org/sj/je/je17/je17-hasegawa-wakatani.html

Strong zonal flows

http://ammar-hakim.org/sj/je/je17/je17-hasegawa-wakatani.html


DSS as a subgrid model: An example
(Kuan Li)

DNS
(1202)

DSS
302

COMPARISON



Conclusions
• Methods from non-equilibrium statistical mechanics 

may be useful in determining statistics of 
geophysical/astrophysical systems that include 
interactions of mean flows and fields with turbulence. 
Direct Statistical Simulation.

• One can move beyond quasilinearity by 
– Going to higher order in cumulant expansion
– Generalising the quasilinear approximation (GQL)

• Significant speed-up can be achieved by using a reduced 
basis.

• This technique may form the basis for conservative 
statistical sub-grid models.

• For astrophysical fluids/dynamos this may offer a fast, 
efficient, conservative, self-consistent  mean-field 
theory


