Introduction to Cavity QED: fundamental tests and application to quantum information

Serge Haroche
July 2004

A very active research field: Code information in simple systems (atoms, photons..) and use state superpositions and entanglement to manipulate information more efficiently than by classical means…

…but one must understand well decoherence and know how to fight it: the fundamental issue of classical-quantum boundary

A model system: atoms and photons in high Q cavities: (Cavity QED)
Course outline

1.
A reminder about concepts and an overview of experiments: how to entangle atoms and photons and realise quantum gates

2.
Exploration of the classical-quantum boundary with field coherent states: Schrödinger cats and decoherence studies
First lecture

1.1 A reminder about entanglement, complementarity and decoherence

1.2 A brief survey of quantum information

1.3 A testing ground: microwave cavity QED

1.4 Entanglement and gate experiments in CQED

1.5 An introduction to cat state studies in CQED
Entanglement: non-separability of quantum physics

\[|\Psi_{AB}\rangle \neq |\Psi_A\rangle \otimes |\Psi_B\rangle \]

\[\rho_A = \text{Tr}_B(|\Psi_{AB}\rangle\langle\Psi_{AB}|) \]

« Entanglement is the essence of the quantum »
(Schrödinger, 1935)
Entanglement survives to spatial separation of system’s parts
(Einstein, Podolsky and Rosen–1935: EPR paradox)

The non locality of quantum physics cannot be understood in classical terms (Bell’s inequalities). The experimental violation of these inequalities vindicates quantum mechanics.

Results of subsystem measurements are random, but perfectly correlated (if 1 is in , 2 is in) whatever the distance between the atoms.
Entanglement is «strange» because never observed in macro-world ...

Schrödinger Cat paradox (1935)

The atom evolves in a state superposition... What is then the state of the cat before the box is opened? Is it entangled with the atom?

\[a_{\text{live}} \left| \right. \left. \bigcirc \right. \bigcirc \bigcirc + a_{\text{dead}} \left| \right. \bigcirc \]

A cat coherently suspended between life and death?

Problems linked to measurement theory (entanglement between micro-system and apparatus)
What happens to Schrödinger Cat? It gets entangled to its environment! (Decoherence)

The cat’s « wave function » has no meaning (replaced by density operator!)

Situation linked to complementarity: quantum interferences are destroyed if information about the system’s path leaks into environment:

Simple illustration with Young double slit
Decoherence, entanglement with environment and complementarity

In Young’s experiment, the scattered photon gets entangled with the particle’s path: its detection pins down the particle’s state and destroys all quantum interferences.

In Schrödinger’s “experiment”, the thermal bath gets entangled with the cat. Information about its fate very quickly leaks into the environment, destroying quantum coherences.

Decoherence transforms “quantum +” into “classical or”:
Environment acts as a spy lifting quantum ambiguity. “Bad entanglement” with environment kills “good entanglement” with single atom. Decoherence occurs faster and faster as size of system increases (Zurek, Physics Today, Oct 91)
First lecture

1.1 A reminder about entanglement, complementarity and decoherence

1.2 A brief survey of quantum information

1.3 A testing ground: microwave cavity QED

1.4 Entanglement and gate experiments in CQED

1.5 An introduction to cat state studies in CQED
What can entanglement do for us? (provided environment is kept in check)

Information can be coded in two state particles (quantum bits or qubits)

Atom’s electronic state

Photon’s polarization

and « entangled information » can be...

...shared securely between two parties (quantum cryptography)...

...used to « teleport » the unknown quantum state of a particle...

...manipulated by quantum logic gates in order to explore the possibilities of quantum computing...
A quantum gate couples two qubits through a conditional unitary operation (if A is true, then do B..).

Here the CNOT gate:
if the control bit is 1, flip the target bit (performs addition modulo 2 of the two qubits in the target output and leaves control unchanged)

Universal gate

A quantum gate can generate entanglement (if control in state superposition):

\[
(|0> + |1>) |0> \rightarrow |0> |0> + |1> |1>
\]

Combining gates opens in principle fantastic perspectives for computation (massive parallelism and interference of outputs..)…but beware of decoherence (this is a very large Schrödinger cat!)

*The dreams: factorizing large numbers (Shor), sorting data in a large basis (Grover)….***
Requirements for implementing quantum logic

Efficient manipulation and read out of individual two state particles

Strong coupling between particles (fast gate operation)

Weak coupling to environment (slow decoherence)

Scalability: possibility of juggling with many particles

Many qubit candidates….but no ideal one so far

- Nuclear spins in molecules
- Ions in traps
- Photon pairs and beam splitters
- Atoms in cavities
- Superconducting circuits
- Quantum dots…
First lecture

1.1 A reminder about entanglement, complementarity and decoherence

1.2 A brief survey of quantum information

1.3 A testing ground: microwave cavity QED

1.4 Entanglement and gate experiments in CQED

1.5 An introduction to cat state studies in CQED
The Qubit candidates:

4. Atoms and photons in cavities

Rydberg atoms cross one at a time
a cavity storing 0,1,2,3...photons

Qubit realized either by atom (in e or g state) or by photon field (0 or 1 photon in cavity)
A simple system to learn how to manipulate quantum information
Increasing complexity one atom or one photon at a time: from microscopic to mesoscopic world

For a review of ENS work, see Raimond, Brune and Haroche, RMP, July 2001
Two essential ingredients

Circular Rydberg atoms

Large circular orbit
Strong coupling to microwaves
Long radiative lifetimes (30ms)
Level tunability by Stark effect
Easy state selective detection
Quasi two-level systems

Superconducting mirror cavity

Gaussian field mode with 6mm waist
Large field per photon
Long photon life time improved by ring around mirrors (1ms)
Easy tunability
Possibility to prepare Fock or coherent states with controlled mean photon number
General scheme of the experiments
An essential tool: the Quantum Rabi oscillation

Realizes controlled atom-field entanglement which survives after atom leaves cavity (EPR situation)

\[|e, 0\rangle \leftrightarrow |g, 1\rangle \]

Reversible photon emission and absorption

\[|\psi(t)\rangle = \cos(\Omega t/2) |e, 0\rangle - i \sin(\Omega t/2) |g, 1\rangle \]

Couplage fort:

\[\Omega >> \frac{1}{T_{\text{cav}}}, \frac{1}{T_{\text{at}}} \]

\[3.10^5 \text{ s}^{-1} >> 10^3 \text{ s}^{-1}, 30 \text{ s}^{-1} \]

Electric field \(F(t) \) used to tune atoms in resonance with \(C \) for a determined time, realizing proper Rabi pulse conditions...
First lecture

1.1 A reminder about entanglement, complementarity and decoherence

1.2 A brief survey of quantum information

1.3 A testing ground: microwave cavity QED

1.4 Entanglement and gate experiments in CQED

1.5 An introduction to cat state studies in CQED
Entangled atom-atom pair mediated by real photon exchange

\[V(t) \]

\[e_1, 0 >, g_2 > \]

\[\frac{1}{\sqrt{2}} \{ e_1, 0 > - g_1, 1 > \}. g_2 > \]

Atom #1 - Photon entanglement

Electric field \(F(t) \) used to tune atoms #1 and #2 in resonance with \(C \) for a determined time \(t \) realizing \(\pi/2 \) or \(\pi \) Rabi pulse conditions

\[H_{\text{agley et al, P.R.L. 79,1 (1997)}} \]

Atom #2: \(\Omega t = \pi \)

Atom - Atom entanglement (a massive E.P.R.pair)

\[\frac{1}{\sqrt{2}} \{ e_1, g_2 > - g_1, e_2 > \}. 0 > \]

Atoms entangled in deterministic way without directly interacting

Cavity acts as a catalyst for entanglement
Field generated in a transient stage

Is it possible to entangle directly two atoms, without creating a transient photon?
Direct entanglement of two atoms via virtual photon exchange: a cavity-assisted controlled collision (after S.B. Zeng and G.C. Guo, PRL 85, 2392 (2000)).

\[\vert e, g ; 0 \rangle \rightarrow \vert g, g ; 1 \rangle \rightarrow \vert g, e ; 0 \rangle \]

Virtual photon exchange process

\[\vert \Psi \rangle = \cos \theta \vert e, g \rangle + \sin \theta \vert g, e \rangle \]

\[\theta = (\Omega^2 / \delta) T \]

Collision angle adjusted by tuning \(\delta \)

huge impact parameter (typically millimeters)

realizes a quantum gate

Maximum entanglement

A special situation:

A 2π Rabi pulse induced by one photon in one arm of interferometer flips by π the phase of fringes: QND detection of single light quantum

The microwave pulses "split" the atomic states (R_1) and recombine them (R_2) at two separate times: The atom follows two "paths" and the probability to detect it in D_e or D_g exhibits fringes when the phase difference ϕ between the two paths is tuned (e.g. by sweeping the frequency ν of R_1 and R_2):

$$P(g) = \frac{A}{2} (1 + \cos(\phi))$$
Quantum Non Demolition measurement of a photon

Single photon in C dephases fringes

0 photon

1 photon

Phases adjusted so that atom exits in one state if there is 0 photon in C, in the other if there is 1 photon (2π Rabi pulse in a one photon field)

Energy is exchanged with Ramsey classical fields, not with quantum field: QND method with atom acting as a meter measuring the field...Also a quantum gate

If initial field is in a superposition of 0 and 1 photon states, the process generates entanglement
An experiment with two or three atoms: generation and non-destructive measurement of a single photon

First atom (« source ») emits with 50% a photon in C. Subsequent atomic detection projects field in 0 or 1.

Atome #1 (Source)
\[\frac{1}{\sqrt{2}} \{ |e_1,0\rangle - |g_1,1\rangle \]

Atome #2 (QND mètre)

Pulse de Rabi \[\pi/2\] sur atome 1

Pulse de Rabi \[2\pi\] sur atome 2

Second atom (meter) « reads » photon number by Ramsey interferometry

Photon is read without being erased (a third atom still « sees » it as shown below)
Combining Rabi pulses to «knit» multiparticle entanglement

First atom prepares a photon with 50% probability (\(\pi/2\) pulse) and second atom reads it by QND method (\(2\pi\) pulse)

A third absorbing atom (\(\pi\) pulse) also reads the photon, resulting in three atom correlations
First lecture

1.1 A reminder about entanglement, complementarity and decoherence

1.2 A brief survey of quantum information

1.3 A testing ground: microwave cavity QED

1.4 Entanglement and gate experiments in CQED

1.5 An introduction to cat state studies in CQED
Dispersion entanglement in non-resonant Cavity QED

Atom and cavity off-resonant by amount δ

No photon absorption or emission....but atomic transition and cavity mode exhibit frequency shifts (single atom index effect)

Sign of effect ($+\Delta\omega$ or $-\Delta\omega$) depends upon energy state (e or g)

When atom is sent in state superposition, is the shift $+\Delta\omega$ or $-\Delta\omega$?

Ambiguous quantum answer leads to dispersive atom-field entanglement.
Entanglement involving mesoscopic field states with different phases

(Brune et al, P.R.L. 77, 4887, 1996; S. Haroche, Physics Today, July 1997)

By increasing the field’s amplitude in C, we can explore the quantum classical boundary.

1. S feeds field in C with defined amplitude and phase

2. Non-resonant Atom prepared in state superposition dephases field, giving it two different phases at once

Two field states with different phases entangled to two atomic states: now, the field is a QND meter which points to the atom's energy! Schrödinger cat situation!

Increasing average photon number

Vacuum Kitten Mesoscopic cat

15 to 40 photons

Δφ ≈ 1/δ

Heisenberg amplitude and phase uncertainties

field phase-space representation

Microwave source

field amplitude

time
The Cavity QED group at ENS and Collège de France

PhD students:
- Alexia Auffeves
- Patrice Bertet
- Philippe Hyafil
- Romain Long* (Paris - Munich)
- Paolo Maioli
- Tristan Meunier
- John Mozley
- Stefano Osnaghi
- Arno Rauschenbeutel (à Bonn depuis 2001)
- Sébastien Steiner*

Postdoc:
- Perola Milman

Visiteurs:
- Luiz Davidovich
- Nicim Zagury
 (Rio de Janeiro)

Serge Haroche
Michel Brune
Jean Hare*
Valérie Lefèvre*
Gilles Nogues
Jean-Michel Raimond

CNRS, CE et JST (Japon)