AGAGTTCTGCTCG AGGGTTATGCGCG

Simple inheritance

Cystic Fibrosis Huntington's Disease Muscular Dystrophy

Hemochromatosis Neurofibromatosis Ataxia Telangiectasia Achondroplasia Fanconi Anemia Werner Syndrome

Complex inheritance

Diabetes Obesity Cancer Heart Disease Multiple Sclerosis Asthma Schizophrenia Celiac Disease Autism

Susceptibility to infectious disease

Genetic model determines search strategy

Association studies: common variants

General Population

 APOE
 2/
 3:85%

 APOE
 4:
 15%

Alzheimer's Patient

 APOE
 2/
 3:
 60%

 APOE
 4:
 40%

Total sequence variation in humans

Population size: Mutation rate: Expected "hits": 240 for each bp

6x10⁹ (diploid) $2x10^{-8}$ per bp per generation

: Every variant compatible with life exists in the population

BUT: Most are vanishingly rare

Compare 2 haploid genomes: 1 SNP per 1331 bp*

*The International SNP Map Working Group, Nature 409:928 - 933 (2001)

Total SNPs and fraction in dbSNP (theory)

minimal allele frequency	expected SNPs (millions)	expected SNP frequency (bp)	expected % in database
1%	11.0	290	11-12
5%	7.1	450	15-17
10%	5.3	600	18-20
20%	3.3	960	21-25
30%	2.0	1570	23-27
40%	0.97	3280	24-28

L. Kruglyak and D. Nickerson, Nat Genet 27:234-236 2001

Number of SNPs in dbSNP

SNP detection rates

n	1%	5%	10%	20%	30%	40%
2	.21	.30	.36	.43	.47	.49
3	.32	.46	.55	.65	.71	.74
4	.39	.56	.66	.77	.83	.86
5	.44	.62	.73	.84	.90	.93
6	.48	.68	.78	.89	.94	.96
7	.52	.72	.83	.92	.96	.98
8	.55	.75	.86	.94	.98	.99
9	.57	.78	.88	.96	.98	.99
10	.59	.80	.90	.97	.99	-
16	.69	.89	.96	.99	-	-
24	.76	.95	.99	-	-	-
48	.87	.99	-	-	-	-
96	.95	-	-	-	-	-
192	.99	_	_	-	_	_

Completeness of dbSNP

Toward comprehensive association studies

- 7 million common variants exist in genome
- Testing all for association is impractical today
- Can the list be reduced w/o loss of power?
 - Function
 - Linkage disequilibrium

Whole-genome association studies

(1) Direct: Catalog and test all functional variants for association

(2) Indirect:Use dense SNP map and test for linkage disequilibrium

Collins, Guyer, Chakravarti (1997). Science 278:1580-81

How many functional variants?

1. CODING Human genes: 30,000 cSNPs per gene*: 4 Amino acid changes*: 40% Nonconservative: 16%

50,000 nonsynonymous cSNPs

20,000

nonconservative cSNPs

prioritize based on structure, conservation

2. NONCODING/REGULATORY

*Cargill et al., Halushka et al., Nat. Genet. 1999

Linkage disequilibrium around variant

Sample size to detect indirect association scale

Under this model, useful average values of \mathbf{r}^2 ext

Kruglyak Nature Genetics (1999)

Human migration out of Africa

Recombination is not uniform on chromosome 22

From Dunham et al., Nature 402:489-495, 1999

Age of mutations and LD

Need Empirical Mesurement of LD

Across the entire genome In multiple populations

Kruglyak Proc Natl Acad Sci USA (1999)

The International HapMap Consortium

Table 1 Genotyping centres					
Centre	Chromosomes	Technology			
RIKEN	5, 11, 14, 15, 16, 17, 19	Third Wave Invader			
Wellcome Trust Sanger Institute	1, 6, 10, 13, 20	Illumina BeadArray			
McGill University and Génome Québec Innovation Centre	2, 4p	Illumina BeadArray			
Chinese HapMap Consortium*	3, 8p, 21	Sequenom MassExtend, Illumina BeadArray			
Illumina	8q, 9, 18q, 22, X	Illumina BeadArray			
Broad Institute of Harvard and MIT	4q, 7q, 18p, Y, mtDNA	Sequenom MassExtend, Illumina BeadArray			
Baylor College of Medicine with ParAllele BioScience	12	ParAllele MIP			
University of California, San Francisco, with Washington University in St Louis	7p	PerkinElmer AcycloPrime-FP			
Perlegen Sciences	5 Mb (ENCODE) on 2, 4, 7, 8, 9, 12, 18 in CEU	High-density oligonucleotide array			

* The Chinese HapMap Consortium consists of the Beijing Genomics Institute, the Chinese National Human Genome Center at Beijing, the University of Hong Kong, the Hong Kong University of Science and Technology, the Chinese University of Hong Kong, and the Chinese National Human Genome Center at Shanghai.

1 million SNPs genotyped in 90 individuals from each of 3 ethnic groups

Nature 2005

Optimal selection of SNPs for LD studies

Optimal selection of SNPs for LD studies

One SNP assays 10

Optimal selection of SNPs for LD studies

Two SNPs assay 15

Distances between HapMap SNPs

Phase I SNPs captured by proxies

Required number of proxy SNPs

Table	7	Number	of	selected	tag	SNPs	to	capture	all	observed	common
SNPs	in	the Phase	11	HapMap							

r ² threshold*	YRI	CEU	CHB + JPT	
$r^2 \ge 0.5$	324,865	178,501	159,029	
$r^2 \ge 0.8$	474,409	293,835	259,779	
$r^2 = 1.0$	604,886	447,579	434,476	

Tag SNPs were picked to capture common SNPs in HapMap release 16c1 using the software program Haploview.

* Pairwise tagging at different r² thresholds.

HapMap performance

Table 6 | Coverage of simulated Phase I and Phase II HapMap to capture all common SNPs in the ten ENCODE regions

Analysis panel	Per cent maximum $r^2 \ge 0.8$	Mean maximum r	
Phase I HapMap			
YRI	45	0.67	
CEU	74	0.85	
CHB+JPT	72	0.83	
Phase II HapMap			
YRI	81	0.90	
CEU	94	0.97	
CHB+JPT	94	0.97	
CEU CHB+JPT	94 94	0.97 0.97	

Simulated Phase I HapMaps were generated from the phased ENCODE data (release 16c1) by randomly picking SNPs that appear in dbSNP build 121 (excluding 'non-rs' SNPs in release 16a) for every 5-kb bin until a common SNP was picked (allowing up to three attempts per bin). The Phase II HapMap was simulated by picking SNPs at random to achieve an overall density of 1 SNP per 1 kb. These numbers are averages over 20 independent iterations for all ENCODE regions in all three analysis panels.

Using the HapMap

Goldstein & Cavalleri Nature 2005

Science 2005 308:385-9

Complement factor H polymorphism in age-related macular degeneration.

Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J.

Distribution of genetic effects will determine success rate

Next phase: genome resequencing

Genome sequencing in microfabricated high-density picolitre reactors. Margulies, M. et al. *Nature* 437, 376-80 (2005).

Accurate multiplex polony sequencing of an evolved bacterial genome. Shendure, J. et al. *Science* 309, 1728-32 (2005)

Goal: sequence an individual person's genome for under \$1000

Signatures of selection in human genes

What is the role of selection in human variation?

- Neutral theory (Kimura 1968; King & Jukes 1969) provides the null hypothesis
- Can we detect signatures of selection against background variability caused by genetic drift?
- How prevalent are selective events and what can they teach us about human evolution?

SeattleSNPs data

- 132 genes sequenced in 47 individuals from two populations
- 2.5 Mb of baseline reference DNA; 12,890 polymorphic sites

Tests of allele frequency distribution

Tajima's D

Disentangling selection from demographic history

- Demographic history affects all loci, while selection is locus-specific
- Use empirical distribution over all loci to infer demographic history
- Test whether evidence for selection of specific loci is robust

Models of demographic history

Simulations 300 parameter combinations; 10,000 coalescent simulations each

Model Selection For each model identify "best-fit" parameter values

ResultsAA
$$t = 50 \text{ Kyr}$$
 $t = 100 \text{ Kyr}$ M = 4 $t = 70 \text{ Kyr}$ $\alpha = 1 \times 10^{-3}/\text{gen}$ $F = 0.375$ M = 4 $t = 70 \text{ Kyr}$ EA $t = 10 \text{ Kyr}$ $t = 40 \text{ Kyr}$ M = 4 $t = 70 \text{ Kyr}$ $\alpha = 5 \times 10^{-4}/\text{gen}$ $F = 0.175$ M = 4 $t = 70 \text{ Kyr}$

Demographically robust selection genes

Gene	Chromosome	Type of Selection	Panther Process
CYP4A11	1	Positive	Lipid, fatty acid and steroid metabolism
TNFRSF1B	1	Positive	Immunity and defense
IL1A	2	Balancing	Immunity and defense
EPHB6	7	Positive	Signal transduction
KEL	7	Positive	Protein metabolism and modification
TRPV5	7	Positive	Transport
TRPV6	7	Positive	Transport
ABO	9	Balancing	Protein metabolism and modification
IL10RA	11	Positive	Immunity and defense
DCN	12	Positive	Signal transduction
IRAK4	12	Positive	Immunity and defense
VTN	17	Positive	Immunity and defense
CEBPB	20	Positive	Immunity and defense
ACE2	Х	Balancing	Protein metabolism and modification
IL24	1	Positive	Immunity and defense
IL17B	5	Positive	Immunity and defense

European-American (14/37)

African-American (2/4)

Implications: Recent human evolution

- Signatures of selection are population-specific
- Many more signatures in European-derived sample
- Examples of local adaptation?

Selective Pressures:

- Climate
- Dietary
- Pathogens
- Cultural