Lecture 2

- Review yesterday
- Folds bending localization in 1D
- Wrinkles in 2D geometries

Folding in 1D

Huang thesis 2010

Folding in 1D

Pocivavsek Science 2008

Plastic sheet (left) Gold nanoparticles, lung surfactant

Folding in 1D

Fig. 2. (**A**) The figure defines A_0 and A_1 and the geometrical parameters describing a confined sheet. The deformation can be described by using a two-dimensional coordinate system. Here *t* and *n* are the tangent and normal to the surface, respectively. ϕ gives the position of the tangent with respect to the horizontal direction. (**B**) Experimental results for polyester on water for A_0 (squares) and A_1 (circles). Experimental data were taken for several membrane sizes, including when N = 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, and 8.0. Dark solid lines show numerical results for a sheet with $L = 3.5\lambda$. Both the physical polyester and numerical data are made dimensionless. A_1 , A_0 , and Δ are scaled to λ . (Inset) A_1 versus horizontal displacement for several numerical systems of different sizes (solid blue lines). The dashed line is the theoretical curve $A = [(\sqrt{2})/\pi]\lambda \sqrt{(d/3.5)}$ (20) that follows the numerical for d < 0.3 and then collapse onto more compact (perfectly so in numerical case) curves past this point. This behavior is indicative of the size-dependent behavior in the wrinkling (d < 0.3) regime and size-independent behavior in the folding (d > 0.3) regime.

Pocivavsek 2008

• Transition to fold at around A=0.3 λ

Exact solution

Diamant and Witten 2012

The symmetric (left) and antisymmetric (right) solutions are degenerate

Both cost less than the wrinkle solution at all Δ

After self-contact, get penetration and nonphysical solutions

NMenonBoulder2015

Large folds

FIG. 2. (Color online) Fold energy as a function of the imposed displacement for the symmetric (squares) and antisymmetric (circle) folds. The solid blue line is the exact solution, Eq. (3), valid before self-contact. Symmetric (top) and antisymmetric (bottom) configurations are shown before self-contact (left, exact solutions from Diamant and Witten [22] are shown as thick dashed lines) and after self-contact (right). After self-contact, the size of the fold $\Delta/2$ absorbs the excess length, while bending is localized in highly curved zones of length l'.

Demery et al 2014 Goes beyond self-contact

Symm and antisymm degenerate till self-contact, but anti-symmetric wins for larger folds

2D wrinkles

Thin sheet of plastic (PS) floating on water with a drop of water in the middle

Huang et al. Science 2007

2D wrinkles

Measure: Wavenumber, N Length, L Dependence on • elasticity of sheet thickness, t, Young's Modulus, E loading radius of drop, a surface tension, γ

2D wrinkling – wrinkle number

Standard (post-buckling) analysis captures dependence on drop size, film thickness

Length of wrinkles

Scaling L ~ a (post-buckling) found in Cerda 2005

L increases with *a*, but thickness dependence, too

2D wrinkling - length

Other variables available to fix dimensions: E, γ

Only possible combination: $L = C a_{\text{NMenonBoulder2015}} t^{1/2} (E/\gamma)^{-1/2}$

Other axisymmetric geometries

 Poking – negative Gaussian curvature

Vella, Huang, etc 2015

Lamé problem

Air Air Liquid Camera mounted on an optical microscope Compression Thin PS film Trough Barrier

Light

KB Toga thesis

Davidovitch, et al PNAS 2011

Lamé solution

Davidovitch, et al PNAS 2011

• Azimuthal stress turns negative for confinement $\tau = T_i/T_o > 2$

Lecture 2 references:

1D folds

Pocivavsek, L., Dellsy, R., Kern, A., Johnson, S., Lin, B., Lee, K. Y. C., & Cerda, E. (2008). Stress and fold localization in thin elastic membranes. *Science*, *320*(5878), 912-916.

Diamant, H., & Witten, T. A. (2011). Compression induced folding of a sheet: An integrable system. *Physical review letters*, *107*(16), 164302.

Démery, V., Davidovitch, B., & Santangelo, C. D. (2014). Mechanics of large folds in thin interfacial films. *Physical Review E*, *90*(4), 042401.

2D wrinkling

Huang, J., Juszkiewicz, M., De Jeu, W. H., Cerda, E., Emrick, T., Menon, N., & Russell, T. P. (2007). Capillary wrinkling of floating thin polymer films. *Science*, *317*(5838), 650-653. Davidovitch, B., Schroll, R. D., Vella, D., Adda-Bedia, M., & Cerda, E. A. (2011). Prototypical model for tensional wrinkling in thin sheets. *Proceedings of the National Academy of Sciences*, *108*(45), 18227-18232.

King, H., Schroll, R. D., Davidovitch, B., & Menon, N. (2012). Elastic sheet on a liquid drop reveals wrinkling and crumpling as distinct symmetry-breaking instabilities. *Proceedings of the National Academy of Sciences*, *109*(25), 9716-9720.

The last two papers --particularly the supplementary info of the 2012 PNAS -- are good resources to follow up my blackboard notes