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Surfactants
cell membranes, drug delivery

Liquid crystals        
displays, viruses, cartilage

Polymers  
plastics, DNA, drag reduction

Foams, emulsions   
fire-fighting, foods

Colloids                  
clays, inks, blood

1)  Rheology of complex fluids: overview

self-assembled 
micelles/membranes

rodlike molecules

chainlike molecules

cellular bubble packing

fractal aggregates

Unifying feature: mesoscopic internal substructures – rods, chains, etc. – nm to µm
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easily deformed
polymer chains

Mesostructures confer unique material properties

soft matter

a) Softness under shear



compare hard matter

easily deformed
polymer chains

Mesostructures confer unique material properties

soft matter

a) Softness under shear

b) Viscoelasticity

c) Easily driven into nonlinear flow states

d) Show non-zero ‘normal stress differences’

e) Display flow-induced transitions
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b)  Viscoelasticity

Stress relaxation after small step shear strain



relaxation 
time t

simple fluids elastic solidCOMPLEX  FLUIDS

tiny huge10-3 to 103 s
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b)  Viscoelasticity

Stress relaxation after small step shear strain
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c)  Easily driven into nonlinear flow regimes

Stress response to steady applied shear flow



d)  Non-zero normal stress differences

x: flow direction

y: flow gradient direction

z: vorticity direction

shear stress

first normal stress difference

second normal stress difference

x

y

z



shear

e)  Display non-equilibrium, flow-induced transitions and instabilities 

isotropic nematic

Example:  liquid crystalline phase behaviour



Liquid crystal

Viscoelastic turbulence

e)  Display non-equilibrium, flow-induced transitions and instabilities 

Surfactant onion phase

Shear banding

Cross slot instability

Edge fracture
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Macroscopic properties depend on dynamics at coarse-grained level of chains, rods

( ) 4.3lengthchain µ linear polymers

( )lengthchain expµ star polymers

a polymer molecule is a piece of stringCHEMICAL DETAIL
NOT IMPORTANT

So, concerned with (non-equilibrium) dynamics of chains, rods in flow

Modelling complex fluids – the basic philosophy 

e.g. viscosity universally



2
tD pr h= Ñ -Ñv v

inertial viscous

Navier Stokes (+ incompressibility)

pressure

viscosity h; density r

Modelling flow properties 



2
tD pr s h=Ñ× + Ñ -Ñv v

Viscoelastic stress        due to internal mesoscopic substructures s

inertial solvent pressure

Modelling flow properties of complex fluids 

Extended Navier Stokes (+ incompressibility)



pressure

Generalised mesostructural variable(s), W

e.g. molecular strain orientation tensor micellar length

solvent

Viscoelastic stress ( )s s= W

Modelling flow properties of complex fluids 

2
tD pr s h=Ñ× + Ñ -Ñv v

inertial

Extended Navier Stokes (+ incompressibility)



pressure

Equation of motion for mesostructure

solvent

( ),tD = ÑW N v W Often: nonlinear PDE of
reaction-diffusion type

Viscoelastic stress ( )s s= W

Modelling flow properties of complex fluids 

2
tD pr s h=Ñ× + Ñ -Ñv v

inertial

Extended Navier Stokes (+ incompressibility)



pressure

Equation of motion for mesostructure

solvent

( ),tD = ÑW N v W Often: nonlinear PDE of
reaction-diffusion type

Viscoelastic stress ( )s s= W

Modelling flow properties of complex fluids 

20 ps h=Ñ× + Ñ -Ñv

inertia
free !

Extended Stokes (+ incompressibility)



An example: wormlike micellar surfactant 

Amphiphilic molecule       polar head likes water; non-polar tail hates water

aqueous

solution



Amphiphilic molecule       polar head likes water; non-polar tail hates water

aqueous

solution

each worm constrained by
entanglements with others

An example: wormlike micellar surfactant 
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An example: wormlike micellar surfactant 



Amphiphilic molecule       polar head likes water; non-polar tail hates water

aqueous

solution

“tube” of entanglements
constrains lateral motion

[Doi + Edwards 1986]

focus on single worm

An example: wormlike micellar surfactant 



Amphiphilic molecule       polar head likes water; non-polar tail hates water

aqueous

solution

“tube” of entanglements
constrains lateral motion

[Doi + Edwards 1986]

focus on single worm escape by “reptation”

An example: wormlike micellar surfactant 



Amphiphilic molecule       polar head likes water; non-polar tail hates water

aqueous

solution

“tube” of entanglements
constrains lateral motion

focus on single worm and by “reaction”

An example: wormlike micellar surfactant 

[Cates 1987, 1990]



pressure

Reptation-reaction model for micellar deformation tensor

solvent

DtW =∇v.W+W.∇v - 2
3
∇v :W( )W −

W
τ
+
δ
3τ

Viscoelastic stress ( )1
3Gs = -W δ

Modelling flow properties of wormlike micelles 

Extended Stokes balance (+ incompressibility)

20 ps h=Ñ× + Ñ -Ñv

P
=W uu

[Cates 1987, 1990]
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Predictions of the reptation - reaction model: 0D linear viscoelasticity 
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[Cates 1987, 1990]

( )d bexp - /t t t

Recall: stress relaxation after small step strain

Model predicts: mono-exponential stress relaxation
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Recall: stress response to steady applied shear flow

Predictions of the reptation - reaction model: 0D linear viscoelasticity 

Model predicts: flow curve as follows

shear rate γ
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Recall: stress response to steady applied shear flow

Predictions of the reptation - reaction model: 0D linear viscoelasticity 

Model predicts: flow curve as follows

?!
shear rate γ
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[Spenley et al. PRL 93]

Recall: reptation-reaction model predicts non-monotonic flow curve

shear rate γ
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And so instability and transition to `shear bands’ (seen experimentally)

γhigh
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γ low

Predictions of reptation-reaction model: shear banding



Tutorial: linear stability analysis for the onset of shear banding

Recall basic structure of equations :
"

Q = 17=0+71721 - Dp ① Stokes +
"

I = (Y ) ② viscoelastic stress

Dtw = N=( The ,W= ) ③ mesostructure

Often combine ② and ③ to write simply :

viscoelastic

DTE = NINI
,
E) constitutive emotion



Tutorial: linear stability analysis for the onset of shear banding

For the essentially ID problem of shear banding :

TJ¥ - =É →

we specialise to consider - -
-

-

flow only is x

I = rly ,
f) I

radials
" " ]

DI = Jyvcy ,t)yñ I Ñcy,t)yñ

and
,
for simplicity , only ay component of stress . . .

r

0
, ly ,t) = olyit) ignore normal stresses

,
a. etc



Tutorial: linear stability analysis for the onset of shear banding

So the Stokes + eqtn ,

which in general componentwise would be :

A. = ¥, + boxy + y +B) use -*

i
-

i

± 9=1*+3%+7
B)* Jyp i

÷

Now
,
for this simple - IN geometry ,

becomes :

0 = Jyot y Tyr [ Recall : 7

0 = dyot y by
8 r=4

j=VIntegrate w.it . y :

Lo =

oxy ]
{G) = only ,t) + y ily,t)



Tutorial: linear stability analysis for the onset of shear banding

So we now
have the governing qua )ions :

as just discussed
•
Stokes +

,

Elt) = only ,t) +
y icy ,t)

total shear viscoelastic Newtonian

stress
, uniform solvent

• Assume simplified scalar viscoelastic constitutive question :

do
-

= f- ( o ,
8)

dt



Tutorial: linear stability analysis for the onset of shear banding

Aim : nsethissimr.li/-iedmode#howthat

A) when slope of Eci) is negative . . .

¥
'

< ◦

B) . . . initially homogeneous shear is unstable to bonding :

unstable

-

time t _
time to time t- s



Tutorial: linear stability analysis for the onset of shear banding

A) Slope of constitutive curve : [ $ ,
t ]

Differentiate Stokes + :

E = 0+18 →
DE =

do + y
di

n

Differentiate constitutive equation

0 = flo , 8) →
0 = fodotfi D8

Combine these :

DE slope of
Ig

=
- fi +

yFo constitutive curve
.



Tutorial: linear stability analysis for the onset of shear banding

B) Instability to shear bending :

Recall governing evictions :

Elt) = only ,t) try Fly ,t)

'¥ = flat)

Assume solution =

initial state , +
small perturbations ,

bonding precursors
uniform shear

( uniform ?)
Elt) = { t 0

oly.tl =
0 + So

,eikyewtjcy.tl
= J + Sir

,
eikseiwt

If w > 0 perturbations grow ,
bands form



Tutorial: linear stability analysis for the onset of shear banding

Substitute assumed solution into governing equations

Expand to 1° in side of small perturbations :

C) = Son + y
SJK

d-son = fosoktfr.SK,
dt

Combine these :

) foie =
w foie

d- Sri. = (to - ¥It

=



Tutorial: linear stability analysis for the onset of shear banding

A) Slope of constitutive curve :

DE

IF
= -1¥ +

y

B) Eigenvalue for growth for decay) of perturbations :

w = to - ¥
Now combine these :

(f. < 0)

a- ¥ :& - /¥<◦""_



Tutorial: linear stability analysis for the onset of shear banding

± :

gthissimr"tieᵈⁿᵈegwe[¥
"

A) when slope of Eci) is negative . . .

¥ ,

B) homogeneous shear is unstable to bonding :

unstable _

-

time t

time to time t- s



γ ≡ ∂yv

Liquid crystals

nematic
isotropic

Wormlike surfactants

nematic
isotropic

highg!

lowg!

Onion surfactants

ordered
disordered

Indeed, assumption of homogeneous flow  is incorrect in many complex fluids 

linear entangled polymers; star polymers; clays; colloids; etc; etc….



A)  Rheology of complex fluids

Reminder of yesterday’s lecture

1) overview

2) continuum models

3) 0D rheology – linear viscoelasticity and flow curves 

1D rheology – shear banding

2D rheology – instability of interface between bands

unstable

unstable



[Spenley et al. PRL 93]

Recall: reptation-reaction model predicts non-monotonic flow curve

shear rate γ

sh
ea

r s
tre

ss

And so instability and transition to `shear bands’ (seen experimentally)
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γ low

Predictions of reptation-reaction model: shear banding
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[Lerouge et al. PRL 06; PRL 09; Soft Matter 08] 

2D experiments, curved Couette, Lerouge

Snapshots over time in startup

z

r



( )R100t O t=

L

( )O Ll =

What quantitative information should we seek to capture?

gradient, r

vorticity 
z

Timescale for onset

Wavelength

[Lerouge et al. PRL 06; PRL 09; Soft Matter 08] 



1D state unstable with respect to growth of undulations along interface

y
x

Linear instability of the interface

interface width l

( ) ( )exp xv y iq x td w+ +!( ), ,v x y t = ( )0v y

( ) ( )exp xy iq x td w+ +W!( ), ,x y t =W ( )0 yW

Substitute into governing equations (JS not RR) and retain only terms O(d)

for wavevectors both in flow direction x and in vorticity direction z.



Positive growth rate à linearly unstable ( )1
R100Ow t- =

Linear instability of interface

( )O Ll =Wavelength



Greyscale of xxW Velocity rolls

z

y

z
( )O Ll =

Nonlinear steady state
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B)  Hydrodynamics of active fluids

And now… 

1) overview

2) continuum models

3) 0D rheology – flow curves 

1D rheology – shear banding

2D rheology – spatio-temporally complicated states

unstable

unstable



Recall complex fluid: internal mesoscopic substructures  

Active matter as a complex fluid 

isotropic state   

shear

nematic state   

Substructures relax slowly à easily driven out of equilibrium 



Active complex fluid: self propelled substructures  

Active matter as a complex fluid 

out of equilibrium    
“from within”

slow relaxation
processes     



Active complex fluid: self propelled substructures  

Active matter as a complex fluid 

slow relaxation
processes     

non-eqbm ordering transitions

swarming

spontaneous flows / “turbulence”

activity-induced phase separation



Experimental phenomenology

“Bacterial turbulence”

in B subtilis suspensions

[L. Cisneros et al., Exp. Fluids, 07]

active extensileactive contractile

Spontaneously rotating vortices 

in microtubules/motors

[F. Nedelec et al., Nature, 97]
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pressure

Equation of motion for mesostructure

solvent

( ),tD = ÑW N v W Often: nonlinear PDE of
reaction-diffusion type

Viscoelastic stress ( )s s= W

Modelling flow properties of complex fluids 

Navier Stokes (+ incompressibility)

2
tD pr s h=Ñ× + Ñ -Ñv v

inertial

Recall: 



pressure

Equation of motion for mesostructure

solvent

( ),tD = ÑW N v W Often: nonlinear PDE of
reaction-diffusion type

Viscoelastic stress ( )s s= W

Modelling flow properties of active fluids 

2
tD pr s h=Ñ× + Ñ -Ñv v

inertial

Now: 

Navier Stokes (+ incompressibility)



Navier Stokes

active terms

[Hatwalne et al. PRL 04; Liverpool et al. EPL 05; Kruse et al. PRL 04; Voituirez et al., EPL 05] 

Continuum description: nematics hydrodynamics + activity

Stress tensor

Order parameter relaxation

Molecular field



Isotropic – nematic transition 

Nematic (N) 
for f > 3

Isotropic (I) 
for f < 3

rheology of active suspension in vicinity of this I-N transition

Here study:



Contractile versus extensile

passive active contractile z < 0 active extensile z > 0

n

bacterial suspensionsmicrotubules/motors

Activity induces dipolar flow
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0D active rheology:  homogeneous shear flow

active contractile

γ

S

conventional yield stress

3.0f ³



0D active rheology:  homogeneous shear flow

active contractile active extensile

γ γ

S S

conventional yield stress

3.0f ³

negative yield stress?!
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1D active rheology, extensile systems for

Negative yield stress in 0D      à coexisting shear bands in 1D

Bands of equal, opposite shear rates
even in globally unsheared system!

γ
+

γ
−

3.0f ³

γ
+

γ
−

y



Negative yield stress in 0D      à coexisting shear bands in 1D

a b c d e

γ
+

γ
−

a

b

d

e

c

γ
−

γ
+

1D active rheology, extensile systems for 3.0f ³



Effect of spatial gradients 2 2 2
y yK l¶ ® ¶Q Q

Fixed activity, z

No spontaneous flow for large l

1/2

No flow

Spontaneous flow
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2D systems: “phase diagram” for extensile at zero global shear

Still no flow

even in 2D

1D bands destabilise to

2D flow patterns
K =

A B C FD E



2D spontaneous flow patterns

A

B

C

D

E

F
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z

[SMF et al. PRE 2011, Hemingway et al. PRL 2015]

[Also: Hernandez-Ortiz et al. PRL 05; Ishikawa et al. JFM 08; Saintillan + Shelley PRL 08; 
Giomi + Marchetti Soft Matter 12]



2D spontaneous flow patterns: scaling of correlation lengths

[Hemingway et al., Soft Matter 2016]
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Fig. 2 Results from Model II for the nematic correlation length `q (empty symbols) and defect spacing `d (filled symbols) as functions of the

dimensionless activity |a|/GQ for an extensile nematic (a < 0). (a) Lengthscales vs |a| for various values of the microscopic correlation length:

(`Q/L)2 = 2⇥10�6 (red circles), 5⇥10�6 (green squares), and 1⇥10�5 (blue triangles). The remaining parameter values are given in Table 2. At small

activity we see saturation due to finite size effects. (b) The curves collapse when `q and `d are rescaled by `Q. In both frames the black dashed lines

show (|a|/GQ)�1/2. In Fig. 2a we also mark the power law (|a|/GQ)�1/4 obtained by Thampi et al. as a purple dot-dashed line. (c,d) Representative

snapshots of (nxny)2 for (c) |a|/GQ = 0.1 and (d) |a|/GQ = 6.4. We set (`Q/L)2 = 1⇥10�5 in both snapshots. Defects of topological charge ±1/2 are

identified by green dots (+) and red squares (-). For videos see supplementary material.

4 Results

We now present the results of our simulations. We focus on the
regime of fully developed turbulence, corresponding to activity
large enough to avoid finite system-size effects (`a < L) and yet
small enough to avoid saturation of the defect spacing at the mi-
croscopic length (`d > `Q). We systematically explore the func-
tional dependence of the emergent correlation lengths defined in
Section 3.2 on the model parameters. Specifically in Model I we
vary the activity, a/GQ, and viscosity ratio, g/h , keeping all other
parameters fixed to the values in Table 2. In Model II we vary
the activity a/GQ and the nematic persistence length `Q/L, with
all other parameters fixed to the values in Table 2. We will show
that in the region of fully developed active turbulence all of the
emergent length scales defined above scale with the active length
`a ⇠ |a|�1/2, in both models. We will additionally demonstrate
that a weaker exponent might be obtained in the regime of less
well developed turbulence, where the typical size of the emergent
structures is an appreciable fraction of the box size.

4.1 Correlation lengths

In this section, we present our results for the correlation lengths
defined in Sec. 3.2. Our main focus will be on an extensile ne-
matic, corresponding to a < 0. We shall briefly discuss the con-
tractile case at the end of this section.

4.1.1 Extensile active matter

Orientational correlations. We begin by considering correlations
in the nematic order parameter Q. Figs. 2a and 3a shows the di-

rector correlation length `q and the defect spacing `d as obtained
from Model II and Model I, respectively. For sufficiently large ac-
tivity a, we find that in both models both lengths obey a clear
scaling law `d ,`q ⇠

�
a/GQ

��1/2 (black dashed lines). Note that
the defect spacing correlation length `d is consistently larger than
`q by a factor ⇠ 2� 3. This is to be expected as correlations at
the halfway point between two defects (`d/2) should be similar
to those at `q .

At smaller activities (i.e., for |a|/GQ . 1) the data obtained
with Model II show a saturation in the power law (leftmost data
points in Fig. 2a). This can be attributed to that fact that the
length scale of nematic structure now spans an appreciable frac-
tion of the system size, as seen in the snapshots of Fig. 2c. It is
possible that fitting a power law in this saturation regime could
result in a less negative exponent than the �1/2 found in the
regime of fully developed turbulence. Indeed we find that the
scaling |a|�1/4 suggested by Thampi et al. (purple dashed dotted
line in Fig. 2a) matches our data reasonably well in this regime.

The data in Fig. 2a also suggests that both `d and `q scale lin-
early with `Q. We verify this scaling explicitly in Fig. 2b by plot-
ting `d/`Q and `q/`Q against activity. The data for various values
of `Q collapse neatly onto a single curve, demonstrating a clear
linear relation between both correlation lengths and `Q.

The data obtained with Model I shown in Fig. 3a focus on large
activities and verify that in this regime the scaling of both `d and
`q with

�
|a|/GQ

��1/2 holds regardless of the model used. (They
do not probe the saturation with system size seen at lower activi-
ties in Model II.) Data obtained for different values of the viscosity
ratio g/h can be collapsed when plotted as shown in Fig. 3b, sug-
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4 Results

We now present the results of our simulations. We focus on the
regime of fully developed turbulence, corresponding to activity
large enough to avoid finite system-size effects (`a < L) and yet
small enough to avoid saturation of the defect spacing at the mi-
croscopic length (`d > `Q). We systematically explore the func-
tional dependence of the emergent correlation lengths defined in
Section 3.2 on the model parameters. Specifically in Model I we
vary the activity, a/GQ, and viscosity ratio, g/h , keeping all other
parameters fixed to the values in Table 2. In Model II we vary
the activity a/GQ and the nematic persistence length `Q/L, with
all other parameters fixed to the values in Table 2. We will show
that in the region of fully developed active turbulence all of the
emergent length scales defined above scale with the active length
`a ⇠ |a|�1/2, in both models. We will additionally demonstrate
that a weaker exponent might be obtained in the regime of less
well developed turbulence, where the typical size of the emergent
structures is an appreciable fraction of the box size.

4.1 Correlation lengths

In this section, we present our results for the correlation lengths
defined in Sec. 3.2. Our main focus will be on an extensile ne-
matic, corresponding to a < 0. We shall briefly discuss the con-
tractile case at the end of this section.

4.1.1 Extensile active matter

Orientational correlations. We begin by considering correlations
in the nematic order parameter Q. Figs. 2a and 3a shows the di-

rector correlation length `q and the defect spacing `d as obtained
from Model II and Model I, respectively. For sufficiently large ac-
tivity a, we find that in both models both lengths obey a clear
scaling law `d ,`q ⇠

�
a/GQ

��1/2 (black dashed lines). Note that
the defect spacing correlation length `d is consistently larger than
`q by a factor ⇠ 2� 3. This is to be expected as correlations at
the halfway point between two defects (`d/2) should be similar
to those at `q .

At smaller activities (i.e., for |a|/GQ . 1) the data obtained
with Model II show a saturation in the power law (leftmost data
points in Fig. 2a). This can be attributed to that fact that the
length scale of nematic structure now spans an appreciable frac-
tion of the system size, as seen in the snapshots of Fig. 2c. It is
possible that fitting a power law in this saturation regime could
result in a less negative exponent than the �1/2 found in the
regime of fully developed turbulence. Indeed we find that the
scaling |a|�1/4 suggested by Thampi et al. (purple dashed dotted
line in Fig. 2a) matches our data reasonably well in this regime.

The data in Fig. 2a also suggests that both `d and `q scale lin-
early with `Q. We verify this scaling explicitly in Fig. 2b by plot-
ting `d/`Q and `q/`Q against activity. The data for various values
of `Q collapse neatly onto a single curve, demonstrating a clear
linear relation between both correlation lengths and `Q.

The data obtained with Model I shown in Fig. 3a focus on large
activities and verify that in this regime the scaling of both `d and
`q with
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|a|/GQ

��1/2 holds regardless of the model used. (They
do not probe the saturation with system size seen at lower activi-
ties in Model II.) Data obtained for different values of the viscosity
ratio g/h can be collapsed when plotted as shown in Fig. 3b, sug-
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Now include a polymeric background fluid

[Hemingway et al., Phys. Rev. Lett. 2015, Phys. Rev. E 2016]

3

forms for nematics [14] and dumb-bell polymers [32] re-
spectively. Accordingly we have

fQ = GQ

[

(1− γ/3)

2
TrQ2 −

γ

3
TrQ3 +

γ

4
(TrQ2)2

]

+
K

2
(∇iQjk)

2 , (1)

in which GQ sets the scale of the bulk free energy den-
sity, K is the nematic elastic constant, and γ is a control
parameter for the isotropic-nematic transition. Likewise

fC =
GC

2
(TrC− ln detC) , (2)

where GC is the polymer elastic modulus.
The lowest order passive coupling between Q and C is

fQC = κTr[C− I]Tr[Q2] + 2χTr[CQ], (3)

where both terms vanish for undeformed polymers (C =
I). Here κ controls how the polymer pressure shifts the
isotropic-nematic transition and for simplicity we set κ =
0 throughout. The second term makes it energetically
preferable for Q and C to align with major axes parallel
for χ < 0, and perpendicular for χ > 0.
From the volume-integrated free energy F =

∫

fdV ,
the nematic molecular field H ≡ −[δF/δQ]ST follows as

H = −GQ

[(

1−
γ

3

)

Q− γQ2 + γQ3
]

−GQγ
I

3
Tr[Q2]

+K∇2Q− 2κTr[C− I]Q− 2χCT. (4)

The corresponding molecular field B ≡ −[δF/δC]S for
the polymer obeys

B = −GC(I−C−1)/2− κITr[Q2]− 2χQ. (5)

Using these molecular fields we follow Ref. [20] in devel-
oping minimally coupled equations of motion for Q and
C that respectively reduce to the Beris-Edwards liquid
crystal theory and the Johnson-Segalman (JS) polymer
model in appropriate limits [14]. We then allow for con-
formational diffusion in the polymer sector [33], which
adds a gradient term in C of kinetic origin [20]. (Alter-
natively one can incorporate a non-local term in the poly-
mer free energy, though this then produces a more com-
plex form for the polymer stress [34].) To this is added a
minimal set of active terms [12], supposing for simplicity
that the polymers are not themselves active, but that the
origin of the activity resides entirely in Q. This is enough
to capture, for example, the effect of adding polymer to
a cell extract, or the collective dynamics of bacterial sus-
pensions in mucus. (A contrasting approach is to build
a system of polymers directly from active elements [35]).
There remain two active terms linear in Q. One of these
can be absorbed into fQ, and the other is the familiar
active deviatoric stress ΣA = −ζQ [12].

The resulting equations of motion for Q and C are:

(∂t + v.∇)Q = QΩ−ΩQ+
2ξ

3
D+ 2ξ[QD]ST

− 2ξQTr[QD] + τ−1
Q H/GQ, (6)

(∂t + v.∇)C = CΩ−ΩC+ 2a[CD]S

+ τ−1
C (2[BC]S/GC + )2C∇

2C). (7)

Here ξ is the flow-alignment parameter of the nematic
[36] and a is the slip parameter of the JS model. Setting
a = 1 recovers the Oldroyd B model [37]. Each controls
the relative tendency of molecules to align with stream-
lines versus rotating with the local vorticity. Parameters
τQ, τC are intrinsic local relaxation times for nematic and
polymer, while )C governs conformational diffusion in the
JS sector [33].
The velocity field v obeys the Navier Stokes equation

for an incompressible fluid

ρ (∂t + vβ∂β) vα = ∂βΣαβ , (8)

∂αvα = 0. (9)

Here the total stress Σ = −P I+ 2ηD+ΣA +ΣQ +ΣC

combines an isotropic pressure P , a contribution from a
Newtonian solvent of viscosity η, two reactive stresses

ΣQ = −K(∇Q) : (∇Q) + 2[QH]A

−
2ξ

3
H− 2ξ[QH]ST + 2ξQTr[QH], (10)

ΣC = −2a[CB]S + 2[CB]A, (11)

and the active stressΣA = −ζQ. The colon in Eq. 10 de-
notes contraction over the second and third Cartesian in-
dices. In what follows we shall assume inertialess (creep-
ing) flow, and set ρ = 0 in Eq. 8.
Having set out this model in which the dynamics of the

polymer and liquid crystal are fully coupled, we now con-
sider certain limits in which the coupling between them
is diminished. Clearly, setting the constants χ and κ to
zero in Eqn. 3 eliminates any thermodynamic coupling
between Q and C. It is important to understand, how-
ever, that even in this case of zero thermodynamic cou-
pling, Q and C remain non-trivially coupled in a purely
kinematic way: any changes in C or Q perturb the stress
Σ, which in turn perturbs the flow field v, which in turn
drives both Q and C. Accordingly, even without any
thermodynamic coupling we shall find in what follows a
rich array of regimes in which the dynamics of Q and C
show strong coupling. We therefore defer the case of true
thermodynamic coupling to Sec. VIC.
As already noted, in the limit in which we simply re-

move the polymeric and active components (GC = κ =
χ = ζ = 0), the model reduces to the Beris-Edwards
theory of liquid crystals. Removing instead the liquid
crystalline component (GQ = K = κ = χ = 0) recovers
the Johnson-Segalman model of polymeric fluids. These
separate models have been studied comprehensively in
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move the polymeric and active components (GC = κ =
χ = ζ = 0), the model reduces to the Beris-Edwards
theory of liquid crystals. Removing instead the liquid
crystalline component (GQ = K = κ = χ = 0) recovers
the Johnson-Segalman model of polymeric fluids. These
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momentum balance  - as before

Stress tensor  - as before plus a new polymeric stress term

Polymeric stress obeys Johnson-Segalman constitutive dynamics

This combines rheology of passive complex fluids (section A)

With the dynamics of active nematic                  (section B)

Active Q sector obeys dynamics as before



Elastomeric limit of polymeric dynamics, 

[Hemingway et al., Phys. Rev. Lett. 2015, Phys. Rev. E 2016]

Slow coarsening of active domains, with associated strain field
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FIG. 14. Representative state that continuously oscillates be-
tween bend and splay quasi-1D shear banded states via an
intermediate roll state. Plotted are (a) the power spectrum
P (kx) for the first 20 Fourier modes kx = 1 (red) → kx =
20 (blue) and (b) spatially averaged Tr[C − I] against time.
The transitions between states are 2D in nature, as shown
by the periodic spikes in P (kx). Bottom: Snapshots for the
times marked in (a/b) show (nxny)

2 (colourmap), director n̂
(red lines), and defects (symbols). Parameters: ζ = 1.24,
∆ = 1.6 × 10−4, τC = 1000, ηC = 1.

might then describe an actomyosin cell extract in a back-
ground of lightly cross-linked polymer gel. To implement
this limit in our simulations we simply remove the local
relaxation term prefactored by 1/τC in the polymer equa-
tion of motion. As mentioned already for the 1D case in
Sec. VB, we do however retain finite stress diffusivity,
∆C = "2C/τC , meaning that "C → ∞ as the elastomeric
limit is taken. We discuss this choice further at the end
of this subsection.

The predictions of our linear instability analysis in
this limit were shown in Fig. 7. We now explore the
instability more fully by performing nonlinear 2D sim-
ulations, at infinite τC , for a range of polymer moduli
GC = 10−8 → 10−1. We choose values of the activity
(ζ = 3.2) and diffusivity (∆ = 8 × 10−5) for which the
initially homogeneous state is predicted to be unstable.
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FIG. 15. Results from 2D runs with τC → ∞. We vary GC

from 10−8 (blue lines) → 10−1 (red lines) with logarithmic
spacing. Snapshots for GC = 10−2 given in Fig. 16. (a)
Areal defect density n against time. Steps arise because n is
discrete. (b) Scalar measure of polymer stress GC〈Tr[C− I]〉
(inset shows the same data but not scaled by GC , i.e., we plot
〈Tr[C− I]〉). Parameters: ζ = 3.2, ∆ = 8× 10−5, τC → ∞.

FIG. 16. Snapshots for the points marked by triangles in
Fig. 15a at times t = 20, 100, 700. Images show (nxny)

2

(colourmap) and defects (symbols). Parameters: ζ = 3.2,
∆ = 8× 10−5, τC → ∞, GC = 10−2.

In each run, we find that the initial homogeneous state
indeed destabilises to form a heterogeneous, complex liq-
uid crystalline texture with a high density n of defects in
the director field; see Fig. 15a and Fig. 16 (top). Associ-
ated with this buildup of defects is a complex ‘elastically
turbulent’ deformation field with regions of (transient)
extensional flow, which result in exponential stretching
of the polymer; see Fig. 15b. Because in these runs the
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Stokes force balance

incompressibility

Recall the equations to be solved:

a)  force balance and incompressibility (`Stokes sector’):

b)  viscoelastic constitutive equation

At any timestep in code, have two substeps:

First, solve Stokes sector at fixed       to calculate       (and        )

Second, update constitutive equation at fixed       to calculate    

Will describe methods for periodic domain, give refs later for channels, etc

Numerical methods 



Stokes force balance
Incompressibility

First substep: solve the Stokes sector

These are linear and non-local, so best handled in Fourier space (FFTW) 

Stokes force balance
Incompressibility

Substituting this back into force balance equation gives



Second substep: updating dynamical equations (at fixed v) 

Recall the equation to be solved:

So we have three ‘types’ of term (written now for our generalised variable c):

Spatially local, non-linear terms

Spatially non-local, linear diffusive terms

Spatially non-local, quasi-linear advective terms

Split the operator and solve these successively in turn

The essence of this is captured in:

I will illustrate in one spatial dimension, but easily generalises…



Spatially local, non-linear term 

Recall the general form of the equation:

Spatially local, non-linear term f(c) time-stepped in real space, eg via:

More sophisticated methods e.g. Runge Kutta  - can use larger Dt 



Spatially non-local, linear diffusion term 

Spatially non-local, linear diffusion term is time-stepped in Fourier space:

Form in real space

After taking Fourier transform

Use semi-implicit time-stepping algorithm:

Other time-stepping algorithms are possible, e.g., implicit Euler

Recall the general form of the equation:



Spatially non-local, quasi-linear advection term 

Recall the general form of the equation:

Spatially non-local, quasi-linear advection term:

Handle in real space using `third order upwinding’, and Euler time-stepping



Summary of numerical methods 

Time-stepping algorithm

Spatially local, non-linear terms handled in real space

Spatially non-local diffusive terms terms handled in Fourier space

Stokes sector handled using Oseen tensor (for biperiodic flow)

For methods in channel, and details of algorithms used, see:

C. Canuto et al. Spectral Methods in Fluid Dynamics, 1988.

C. Canuto et al. Spectral Methods: Evolution to Complex Geometries and 
Applications to Fluid Dynamics., 2007.

R. Peyret. Spectral Methods for Incompressible Viscous Flow, 2002.

C. Pozrikidis, Introduction to Theoretical and Computational Fluid Dynamics, 2011.

Advective term handled in real space using third order upwinding
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Surface instabilities: three major challenges in experimental rheometry

Extension: Shear: Shear:

“necking” “edge fracture” 

of fluid-air interfaceof filament 

“wall slip” 

of fluid w.r.t.   
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Extension: Shear: Shear:

“necking” “edge fracture” 

of fluid-air interfaceof filament 

“wall slip” 

of fluid w.r.t.   

derive fluid-universal criterion for the onset of instability 

plates  

understand the physical mechanism of instability

suggest practical strategies to mitigate instability

Theoretical goals:

The three major challenges in experimental rheometry…?



Experimental  practice:

“necking” of filament 

Necking in extensional filament stretching rheometry

Experimental aim:

achieve homogeneous 

filament stretching. 

Measure extensional e.g. 

constitutive curve: 

hampers measurement. 

ε

ε

σ E
σ E

σ E (   )

ε

σ E

ε = Hencky strain rate 

= tensile stress (force/area) 
(Partially controlled by 

e.g. Hoyle et al. JoR 2013.)  

feedback strategies

[ Review: McKinley + Sridhar,  Ann. Rev. Fluid Mech. 2002 ] 



Extension:

“necking” 

of filament 

Necking in extensional filament stretching 

Introduction: experimental observations

Pre-existing criterion in an elastic solid: Considère criterion

Here: criterion for necking in viscoelastic fluids

Calculation 0):  “back of a postage stamp”

Calculation 1):  constant imposed tensile stress

Calculation 2):  constant imposed Hencky strain rate

Necking - conclusions



Introduction to necking: widely seen in complex fluids

[Tripathi et al. Macromol. 2006] 
Associative polymers

Step strain, entangled melts 
[Wang et al. PRL 2007] 

Wormlike micelles
[Bhardwaj et al. J. Rheol. 2007] 

Doi Edwards + chain stretch 
[Lyhne et al PRL 2009] 

Bubble raft Dense colloids 
[Kuo + Dennin JoR 2012] [Smith et al Nat. Comm. 2010] 



Pre-existing criterion: necking in a nonlinear elastic solid

F

ε
εlow εhighεlowεhigh

Necking arises if tensile force is non-monotonic in extensional strain 

Considère criterion:

[Considère Ann. Ponts Chausees 1885] 



Criterion for onset of necking instability in complex fluids?

Considère criterion widely discussed...  

… but has obvious shortcomings: 

• Takes force = force (strain) only. For fluids, strain rate is important too 

• Static criterion: can’t predict dynamical rate of necking onset



Criterion for onset of necking instability in complex fluid

Hencky strain rate

Initially uniform cylinder

cross sectional area

tensile force

tensile stress

εε

ε t( )
A t( )

F t( )
σ E t( )

σ E σ E

= A t( )σ E t( )

z

[ Ide + White JNNFM 1977; Olagunju JNNFM 1999 & Int J. Nonlin Mech. 2011 ] 



How/why does it just start to neck

εε
σ E σ E

Hencky strain rate

cross sectional area

tensile force

tensile stress

ε ,t( )
A ,t( )

F t( )
σ E ,t( )

z

z

z

z

Consider small perturbations, i.e., 

perform linear stability analysis.

use slender filament approach.

Consider long wavelengths, i.e., 

Neglect surface tension, i.e.,

study highly viscoelastic filaments.

[ Ide + White JNNFM 1977; Olagunju JNNFM 1999 & Int J. Nonlin Mech. 2011 ] 

Criterion for onset of necking instability in complex fluid



How/why does it just start to neck Extensional constitutive curve

εε
σ E σ E

state stress vs. strain rate in 

in uniformly thinning filament

If attainable, defines steady

ε

σ E

Criterion for onset of necking instability in complex fluid



How/why does it just start to neck Extensional constitutive curve

εε
σ E σ E

ε

σ E

Calculation 0)

Initially uniform thinning cylinder

with steady state      and σ E
ε( )ε

on constitutive curve. 

(Idealised. Unrealistic…?) 

state stress vs. strain rate in 

in uniformly thinning filament

If attainable, defines steady

Criterion for onset of necking instability in complex fluid



How/why does it just start to neck Extensional constitutive curve

εε
σ E σ E

ε

σ E

Calculation 1)

Initially unloaded cylinder

then subject to switch on  

σ Eof a constant stress  

?

Criterion for onset of necking instability in complex fluid



How/why does it just start to neck Extensional constitutive curve

εε
σ E σ E

ε

σ E

Calculation 2)

Initially undeformed cylinder

then subject to switch on  

εof a constant strain rate  

?

Criterion for onset of necking instability in complex fluid



Calculation 0) initial uniform cylinder that already attained constitutive curve

ε

σ E
Back of postage stamp calculation

A= − εA

F = Aσ E
ε( )

plus spatially varying perturbations of small amplitude 

Initially perfectly uniform cylinder with thinning area 

δ ε z,t( ),δa z,t( )

A= A0 exp − εt( )

mass conservation 

uniform force 

εε

εε



Calculation 0) initial uniform cylinder that already attained constitutive curve

ε

σ E

A= − εA

F = Aσ E
ε( )

plus spatially varying perturbations of small amplitude 

Initially perfectly uniform cylinder with thinning area 

δ ε z,t( ),δa z,t( )
A= A0 exp − εt( )

mass conservation 

uniform force 

δ a = −δ ε

δF = 0 =σ Eδa+ dσ E d ε( )δ ε
where strains more, thins faster 

where thins, must strain faster

Back of postage stamp calculation

Ø Simple mechanistic understanding of the physics of necking instability 



Calculation 0) initial uniform cylinder that already attained constitutive curve

ε

σ E

A= − εA

F = Aσ E
ε( )

mass conservation 

uniform force 

δ a = σ E

σ E '
δa Any constitutive curve with positive slope  σ E ' > 0

gives instability to necking  

[prime denotes derivative w.r.t. strain rate      ]   ε

plus spatially varying perturbations of small amplitude 

Initially perfectly uniform cylinder with thinning area 

δ ε z,t( ),δa z,t( )
A= A0 exp − εt( )

Back of postage stamp calculation



Calculation 1) Necking following imposition of a step stress

ε

σ E ?A= − εA

F = Aσ E

mass conservation 

uniform force 

σ E =GW +3η ε viscoelastic + solvent 

viscoelastic constitutive eqn. 

Impose stress        in initially undeformed, unloaded sample σ E

W =…



Calculation 1) Necking following imposition of a step stress

ε

σ E ?A= − εA

F = Aσ E

mass conservation 

uniform force 

σ E =GW +3η ε viscoelastic + solvent 

W =… viscoelastic constitutive eqn. 

Impose stress        in initially undeformed, unloaded sample 

Strain rate quickly attains constitutive curve 

No significant necking during that fast evolution to constitutive curve 

σ E



Calculation 1)  Necking following imposition of a step stress

ε

σ E
A= − εA

F = Aσ E

mass conservation 

uniform force 

σ E =GW +3η ε viscoelastic + solvent 

viscoelastic constitutive eqn. 

Impose stress        in initially undeformed, unloaded sample 

Strain rate quickly attains constitutive curve 

Once attains constitutive curve, necks as per calculation 0) 

σ E

δ a = σ E

σ E '
δa

W =…

No significant necking during that fast evolution to constitutive curve 



Calculation 1) Necking following imposition of a step stress


ω =ω ε=σ E

εσ E '

Colourscale: normalised necking rate 

for (curves clockwise) 

Flatter constitutive slope à more spectacular necking

• Oldroyd B 

• Giesekus , fene P (indistinguishable) 

• Rolie-poly + chain stretch 

• Rolie-poly + finite chain stretch 

• Rolie-poly without  chain stretch 

σ E

ε



Calculation 1) Necking following imposition of a step stress


ω =ω ε=σ E

εσ E '

Colourscale: normalised necking rate 

For Rolie-poly + finite chain stretch 

ε

I: Unstable even in slow flow limit 

Four regimes:

II: saturated orientation à highly unstable

III: strongly stabilised by increasing chain  stretch 

IV: saturated chain stretch à highly unstable

I

II

III

IV

σ E

ε

[ Likhtman and Graham JNNFM 2003 ] 



Calculation 1) Necking following imposition of a step stress

inverted constitutive  

attains constitutive curve

contours of constant δa

ε σ E( )curve 
ε

I
II

III IV

ε

σ E



εε

In any filament stretching experiment:

At what time (or strain) does necking start?

Does this correspond to experimentally identifiable rheological signature…

Calculation 2) Necking in filament stretching at constant Hencky strain rate

… such as an overshoot in the force as a function of strain dF/de < 0 ?

ε

σ E

?

…or some characteristic feature in the time evolving stress signal            ?σ E t( )

[note we can equivalently report evolution with time     or strain              ]   ε = εtt



A= − εA

F = Aσ E

mass conservation 

uniform force 

σ E =GW +3η ε viscoelastic + solvent 

viscoelastic constitutive eqn. W =…

Calculation 2) Necking in filament stretching at constant Hencky strain rate

ε

σ E

?

Initial uniform cylinder (“base state”) has time-evolving area and stress 

A= A0 exp − εt( ) and σ E =σ E t( )

Small amplitude spatially varying fluctuations to onset of necking 

δ ε z,t( ),δW z,t( ),δa z,t( )

εε

εε



Onset of necking and its rheological signature

constitutive curve



Onset of necking and its rheological signature

constitutive curve



Onset of necking and its rheological signature

constitutive curve stress transient force evolution

time, ttime, t



Onset of necking and its rheological signature

constitutive curve stress transient force evolution

Recall: the Considere criterion predicts necking when  F ' < 0

F

[prime now denotes derivative w.r.t. strain and so equivalently w.r.t. time]  

time, t time, t



Onset of necking and its rheological signature

constitutive curve force evolution

We find:           stress curvature          

time, t

ω = −O ε( )σ E '' σ E '

stress transient

time, t



Onset of necking and its rheological signature

constitutive curve force evolution

We find:           stress curvature         and          modified Considere

F

ω = −O ε( )σ E '' σ E ' and ω = −O 1
η( ) F 'elastic

time, t

stress transient

time, t



Onset of necking and its rheological signature

constitutive curve stress transient force evolution

We find:           stress curvature         and          modified Considere

F

and

NOT

time, t time, t

ω = −O ε( )σ E '' σ E ' ω = −O 1
η( ) F 'elastic



Numerical results: Rolie-poly model with finite chain stretch

contours of constant

stress curvature criterion

Considere criterion

δa

σ E '' = 0

F ' = 0
describes necking onset well

force overshoot exists but describes

necking onset much less well

modified Considere mode 

only unstable without chain stretch 

F 'elastic = 0

constitutive curve 

I II

III

IV

I: slow flow regime 
II: saturated orientation 

III: increasing chain  stretch 

IV: saturated chain stretch 

σ E

(so not here!)



Rolie-poly model with finite chain stretch: compare with experiment

Strain at failure vs strain rate

[Zhu and Wang 2013]

[Malkin + Petrie 1997]ε



Necking of a filament in extensional stretching: conclusions

• Predicted necking will inevitably arise in (most) complex fluids

• Moved beyond Considère criterion of elastic solids

• Constant stress: necking rate goes as inverse slope of constitutive curve

• Constant strain rate: identified curvature criterion                            ….

…. and modified-Considere criterion, carefully interpreted for liquids !

• Criteria hold in six popular constitutive models… 

• …and capture four different regimes seen experimentally in entangled polymers

dF / dε < 0

d 2σ E / dε
2 < 0

S. M. Fielding,                             Phys. Rev. Lett. 107 (2011) 258301

D. M. Hoyle and S. M. Fielding,     Phys. Rev. Lett. 114 (2015) 158301

D. M. Hoyle and S. M. Fielding,     J. Rheol. 60 (2016) 1347(a), 1377 (b)  

D. M. Hoyle and S. M. Fielding,     J. Nonnewton. Fluid Mech. 247 (2017) 32  



Extension: Shear: Shear:

“necking” “edge fracture” 

of fluid-air interfaceof filament 
“wall slip” 

of fluid w.r.t. plate 

Three key challenges in experimental rheometry



Outline: edge fracture in sheared complex fluids

Shear:

“edge fracture” 

of fluid-air interface

Introduction to edge fracture: experimental observations

Early scaling criterion for the onset of edge fracture

Here: new criterion

Nonlinear simulation study of edge fracture

Linear stability analysis for onset of edge fracture

Mechanism and possible mitigation of edge fracture

Edge fracture - conclusions



Experimental practice:Experimental aim:

“edge fracture” of fluid-air 

Edge fracture in shear rheometry

interface hampers rheometry.

s (g)
measure shear e.g. 

flow curve 

= shear stress 

= shear rate

s
g

g, s.

.

.

x
y

x = flow, y = flow-gradient, z = vorticity

Mitigation strategies:
guard rings; cone-partitioned plates

[ Mall-Gleissle et al. Rheol. Acta 2002; Schweizer JoR 2003; Costanzo Rheol. Acta 2018 ]  

z
y

x



Keentok & Xue, Rheol. Acta (1999)

Experimental observations of edge fracture

Entangled polybutadiene solution:      Li et al. J. Rheol.  2013

Entangled polybutadiene solution:   
Inn, Wissbrun + Denn Macromol 2005.

Shell Barbatia
grease

“Edge fracture is the limiting factor
in rotational rheometry” 

Jensen & Christiansen, JNNFM (2008)  



[ Tanner and Keentok, J. Rheol (1983); Lee, Tripp, Magda, Rheol. Acta (1992) ] 

Early scaling criterion for edge fracture

Assume initial semi-circular `crack’ of radius a

Viscoelastic constitutive equation: second order fluid

Second normal stress N2 destabilising,  surface tension G stabilising 

Expect fracture for 

Assume flow field has form as for Newtonian fluid

Assume flow only in main flow (theta) direction



Simulation study of edge fracture 

Cone and plate cartoon Curved Couette cartoon

Our simulation: plane of flow gradient y, vorticity z

V = γLy



0 =η∇2v +∇.Σ−φ∇µ −∇p

0 =∇.v

DtΣ =…

Dtφ =M∇2µ

viscoelastic constitutive model

phase field = 1 inside fluid and = -1 in air

Chemical potential µ à diffuse interface (width l) à contact line motion 

Sketched structure of equations   ( with no slip/permeation at walls )

V = γLy

incompressible

generalised Stokes balance

Interfacial surface tension G.     Boundary condition à contact angle

η

Simulation study of edge fracture 



0 =η∇2v +∇.Σ−φ∇µ −∇p

0 =∇.v

DtΣ =…

Dtφ =M∇2µ

Johnson Segalman or Giesekus model

phase field = 1 inside fluid and = -1 in air

Chemical potential µ à diffuse interface (width l) à contact line motion 

Sketched structure of equations   ( with no slip/permeation at walls )

V = γLy

incompressible

generalised Stokes balance

Interfacial surface tension G.     Boundary condition à contact angle

η

Simulation study of edge fracture 



V = γLy

Key parameters

3

parameter description value

explored parameters

�/GL surface tension 10�3 � 0.5

�̇⇥ shear-rate 0 � 10

⇤e equilibrium contact angle ⇤e = 30 � 150⇥

a JS slip parameter a = 0 � 0.6

⌅ Giesekus anisotropy parameter ⌅ = 0.1, 0.4

fixed parameters

Lz/Ly aspect ratio fix Lz/Ly = 12

⇧µ/Ly air-polymer interface width ⇧µ/Ly = 0.01

⇧C/Ly polymer-polymer interface width ⇧C/Ly = 0.01

(Lz ⇥ ⌅)/Ly air gap (Lz ⇥ ⌅)/Ly = 3

⌃/GC⇥C ratio of solvent and polymer viscosi-
ties

controls banding in JS (0.05
banding, 0.15 non-banding),
in Giesekus fixed 0.01

⌃air/GC⇥C air viscosity fixed small 0.01
�µ
�C

= ⇧2/MGµ⇥C ratio of interfacial and polymer re-
laxation times

fixed small < 0.1

TABLE II: Summary of the dimensionless parameters and their values in both models.

parameter description value

explored parameters

�/GL surface tension 10�3 � 0.5

�̇⇥ shear-rate 0 � 10

⇤e equilibrium contact angle ⇤e = 30 � 150⇥

a JS slip parameter a = 0 � 0.6

⌅ Giesekus anisotropy parameter ⌅ = 0.1, 0.4

TABLE III: Summary of the dimensionless parameters and their values in both models.

to explore

converge to
small or large 

η

Simulation study of edge fracture 



V = γLy

Key parameters

to explore

Surface tension

Equilibrium contact angle

Imposed shear rate

Johnson Segalman slip parameter 

Γ GLy
θeq
γτ

a

η

Solvent viscosity        η Gτ

Simulation study of edge fracture 



V = γLy

Key parameters

to explore

Surface tension

Equilibrium contact angle

Imposed shear rate

Giesekus anisotropy parameter 

Γ GLy
θeq
γτ

α

η

η GτSolvent viscosity        

Simulation study of edge fracture 



Initial condition to shear simulations 

d0 d(t)

no shear shear

Equilibrate liquid/air phase field without shear

Then slightly perturb the interface

h y( )→ h y( )+ε cos π y( )

θeq = 90º(only need to do this for contact angle                )



stationary bowed interface 

propagating fracture at wall

stable flat interface

polymerair

Simulation results   

increasing shear rate

at fixed surface tension Γ GLy

γτ

θeq = 90ºJS, a = 0.3, h=0.15,



X    stable flat interface 

propagating fracture at wall

stationary bowed interface

γτ
10

-1
10

0
10

1

γ
.
τ

10
-2

10
-1

Γ / GL

Simulation results   

θeq = 90ºJS, a = 0.3, h=0.15,



Results: robustness against choice of constitutive model   

Johnson-Segalman model Giesekus model

Broadly the same behaviour in both constitutive models 
The simulation results shown so far have all been for a

value of the equilibrium contact angle θ ¼ 90", for which the
interface is initially flat. To check for robustness with respect
to this choice of boundary condition, we now compare the
threshold for the onset of edge fracture for different values of
the equilibrium contact angle, for a channel with hard walls.
Recall that for the particular case of θ ¼ 90", we calculated
the threshold by identifying the value of surface tension
(at any fixed imposed strain rate) at which the eigenvalue of
the most dangerous mode crosses zero. A method of deter-
mining the threshold that applies more easily across values of
θ = 90" is instead to identify the value of surface tension (at
any fixed imposed shear rate) below which the degree of inter-
facial deformation, d, first exceeds 0:1. (A good agreement is
obtained between these two methods at θ ¼ 90"; the eigen-
value method is only used at θ ¼ 90".) As seen in Fig. 6, the
threshold for the onset of edge fracture is indeed robust (to
within small corrections) against variations of the equilibrium
contact angle.

Despite this robustness in the onset threshold, the spatial
mode of instability does vary with the equilibrium contact
angle, particularly for values of the surface tension deep
inside the unstable regime. This can be seen in the snapshots
of Fig. 7. For values of the contact angle θ , 90", for which
the fluid tends to wet the walls, the air first invades the fluid
at a central location across the channel width y, leading to the
formation of bubbles within the sample’s bulk. For values
θ . 90", the air instead invades along the channel walls,
often leading the fluid eventually to de-wet the walls entirely.
(The air from the left side of the cell shown in Fig. 7 finally
joins up with that from the right side, not shown.)

We note that larger angles, such as θ ¼ 120", correspond
to an experimental case where a polymer sample is squeezed
between a cone and a plate without trimming. In contrast,
θ ¼ 90" corresponds to the ideal case where the surface of
the sample is part of a sphere. Therefore, results for experi-
mental papers on melts are likely to fall in between these two
cases. Indeed, the results in Fig. 7 corroborate the experimen-
tal observations of Fig. 3 of [7], in which a higher shear
layer was seen near the walls for an initially convex sample
profile, whereas a higher shear layer was seen midgap for an
initially concave sample profile.

FIG. 5. Thresholds for the onset of the edge fracture instability for a fluid sheared between hard walls, for an equilibrium contact angle θ ¼ 90". Solid lines:
thresholds measured from the early time dynamics of the full nonlinear simulations. Dashed lines: thresholds calculated from the linear stability analysis in
Sec. V, valid for small shear rates. Left: Johnson–Segalman model, for several values of the slip parameter a. Right: Giesekus model, for several values of the
anisotropy parameter α.

FIG. 6. Threshold for the onset of edge fracture within the Giesekus model
for several different wetting conditions (for simulations performed in a
channel with hard walls) and for the two different kinds of boundary condi-
tion (hard walls versus a biperiodic flow cell). Note that the minimum possi-
ble wavenumber qmin depends on the boundary condition: qmin ¼ π=Ly for
hard walls and qmin ¼ 2π=Ly in the biperiodic geometry. Accordingly, the
ordinate in this figure is scaled by a factor f ¼ 2 in the biperiodic simula-
tions. (f ¼ 1 for the simulations between hard walls.) Anisotropy parameter
α ¼ 0:4.

FIG. 7. Effect of the equilibrium contact angle on the mode of the edge
fracture instability, within the Giesekus model. Color denotes the frame
invariant shear rate ~_γ ¼

ffiffiffiffiffiffiffiffiffiffiffi
2D:D

p
. Anisotropy parameter α ¼ 0:4. Surface

tension Γ=GLy ¼ 0:005. Imposed shear rate !_γτ ¼ 1:0. Contact angle
θ ¼ 60", 90", 120" in the top, middle, and bottom snapshots, respectively.
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Stability against edge fracture recovered for a = 1 (JS) or a = 0 (Gk) 

where each model reduces to Oldroyd B model, with no N2



Some movies (and effect of wetting angle…)

more wetting       θeq = 60º

neutrally wetting   θeq = 90º

less wetting          θeq = 120º



Essentially same phase diagram in both

Periodic BCs

Simplifications in linear analysis:

Sharp interface l = 0 
(still with surface tension) 

Air viscosity

Linear stability analysis of edge fracture

Simulations (just discussed) with walls Also simulated sheared periodic BCs 



• Initial base state with stationary flat interface

Shear stress          and second normal stress            in fluid       

• Work in limit of slow imposed shear flow,  

y

z
Linear stability analysis of edge fracture



• Add small amplitude perturbations in interfacial profile, flow fields, stresses

• Substitute base state + perturbations into governing equations

• Expand in powers of perturbation amplitude, keep only first order terms

y

z

• Work in limit of slow imposed shear flow,  

Shear stress          and second normal stress            in fluid       

Linear stability analysis of edge fracture

• Initial base state with stationary flat interface



• Add small amplitude perturbations in interfacial profile, flow fields, stresses

y

z

• Initial base state with stationary flat interface

• Work in limit of slow imposed shear flow,  

interfacial profile:

in-plane streamfunction: 

out-of-plane velocity:

Shear stress          and second normal stress            in fluid       

Linear stability analysis of edge fracture



surface tension 
(stabilising)

polymer stresses 
(destabilising)

wavevector of 
perturbation

Linear stability analysis of edge fracture 

• Resulting eigenvalue is positive (giving instability) when:  



10
-1

10
0

10
1

γ
.
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-3

10
-2

10
-1

10
0

Γ

• Predicted threshold for instability

• Longest wavelength mode, 
i.e., the one with q=2p/Ly ,
is first to go unstable

• So threshold for this mode
gives threshold for edge 
first to destabilise

unstable

stable

• Re-entrance due to saturating 

Compare linear stability prediction against simulations 
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numerics

Compare linear stability prediction against simulations 

• Predicted threshold for instability

• Longest wavelength mode, 
i.e., the one with q=2p/Ly ,
is first to go unstable

• So threshold for this mode
gives threshold for edge 
first to destabilise

unstable

stable

• Re-entrance due to saturating 



out of plane
velocity

in-plane 
streamfunction

• Eigenfunction of stability analysis (left) compared with simulation (right)

Compare linear stability prediction against simulations 

Eq. (22) is then written as n̂ ¼ ẑ" @y~hŷ. In a linearized
form, the interfacial force balance condition, Eq. (22), is then
written componentwise as

0 ¼ ~Txzjz¼0þ " Δσ @y~h, (32)

0 ¼ ~Tyzjz¼0þ " N2 @y~h, (33)

0 ¼ ~Tzzjz¼0þ þ Γ @2
y
~h: (34)

Here, we have denoted by N2 the second normal stress
difference in the base state, Σyy0 " Σzz0 and by Δσ the shear
stress in the base state, Txy0 ¼ Σxy0 þ ηs _γ0. We use the notation
Δσ rather than simply σ, because the relevant quantity is the
“jump” in the shear stress between the fluid and the outside air.
(In this linear calculation, we are, however, assuming that the
stress in the outside air to be zero, so Δσ ¼ σ. N2 is always
zero in the outside air, with no Δ notation needed in that

case.) The notation ~Tijjz¼0þ denotes the ijth-component of
the perturbation to the polymer stress immediately next to
the interface, just inside the polymer phase.

While it may seem counterintuitive to discuss a jump in
the shear stress across an interface, it is important to empha-
size that by shear stress we mean Σxy, consistent with the
main flow direction being x̂ and flow-gradient direction
being ŷ. It is this quantity that jumps across the interface,
which has its normal in the vorticity direction ẑ. Because of
the mutually different directions involved, a jump in Σxy across
a (perfectly flat) interface with normal along ẑ does not violate
the condition of force balance across the interface.

Inserting into Eq. (32) the componentwise form of the
perturbation to the total stress, ~Tij ¼ ~Σij þ 2ηs ~Dij " ~pδij, and
eliminating the perturbation to the pressure ~p via use of
the linearized bulk force balance equation, we find the final
linearized condition of force balance across the fluid-air
interface
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4. Linearized equation of interfacial motion

The linearized form of the equation of interface motion,
Eq. (22), is

@t~h ¼ "@y ~ψ jz¼0þ : (36)

D. Criterion for edge fracture

The linearized bulk equations, Eq. (29), the linearized
condition of interfacial force balance, Eq. (35), and the line-
arized equation of interfacial motion, Eq. (36), can now
together be solved to determine whether, for any given inter-
facial tension Γ and imposed flow rate _γ, the heterogeneous
perturbations grow toward an edge fractured state or decay to
leave a flat interface.

To leading order in _γ and at any wavevector q in
the y direction, the solution to the linearized bulk force
balance condition, Eq. (29), has the following normal
mode form:

~ψ(y, z, t) ¼ Ae"qz þ Be"kz! "
eiqyeωt,

~vx(y, z, t) ¼ Ce"qzeiqyeωt:
(37)

In these equations, k ¼ q=
ffiffiffiffiffiffiffiffiffiffiffi
1þ β

p
, with β¼G2τ4(1þα"a)

(a"α) _γ2=(Gτþηs)
2. The constants A, B, and C can be

determined by imposing the three boundary conditions of
componentwise force balance across the fluid-air interface,
Eq. (35), although we do not write out the expressions for
A, B, C here.

A colormap of this analytical solution for the eigenfunc-
tion ~ψ(y, z) and ~vx(y, z) at a fixed time t is shown in the
left two panels of Fig. 8. Excellent agreement is obtained
with the form extracted from the early time regime of our full
nonlinear simulation, as shown in the right two panels. As
can be seen, the perturbation due to any interfacial

FIG. 8. Top: colormaps of the eigenfunction for the in-plane streamfunc-
tion, ~ψ(y, z), with corresponding in-plane velocity vectors shown as red
arrows. Bottom: colormaps of the out-of-plane velocity component, ~vx(y; z).
For each quantity, the analytical solution of Eq. (37) is shown (left column)
alongside the corresponding quantity extracted from the early time regime of
our full nonlinear simulations (right column). In each colormap, the y coordi-
nate is vertical, and the z coordinate is horizontal, with the (unperturbed)
interface at z ¼ 0. The region occupied by air in the simulation is shown
translucent; no air is considered in the analytical calculation. Overall ampli-
tude of colorscale is arbitrary. Results are for the Johnson–Segalman model
in a biperiodic flow geometry. Slip parameter a ¼ 0:3, surface tension
Γ=GLy ¼ 0, imposed shear rate !_γτ ¼ 0:125.
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Comparison with Tanner’s original prediction 

• Tanner’s scaling predicted  • Our linear analysis gives 

• Our calculation:   identifies role of shear stresses as well as N2

[ Tanner and Keentok, J. Rheol (1983),   Keentok and Xue, Rheol. Acta (1999) ]

• In strong shear, the two criteria depart markedly from each other   

considers all wavelengths, without pre-assuming a crack size

identifies differential nature of criterion

reveals mechanism of instability and possible mitigation



cf. Hinch, Harris, Rallison, JNNFM (1992) ,  Wilson & Rallison, JNNFM (1997)

Mechanism of the edge fracture instability (zero surface tension here) 
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Inserting into Eq. (32) the componentwise form of the
perturbation to the total stress, ~Tij ¼ ~Σij þ 2ηs ~Dij " ~pδij, and
eliminating the perturbation to the pressure ~p via use of
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written componentwise as

0 ¼ ~Txzjz¼0þ " Δσ @y~h, (32)

0 ¼ ~Tyzjz¼0þ " N2 @y~h, (33)

0 ¼ ~Tzzjz¼0þ þ Γ @2
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Here, we have denoted by N2 the second normal stress
difference in the base state, Σyy0 " Σzz0 and by Δσ the shear
stress in the base state, Txy0 ¼ Σxy0 þ ηs _γ0. We use the notation
Δσ rather than simply σ, because the relevant quantity is the
“jump” in the shear stress between the fluid and the outside air.
(In this linear calculation, we are, however, assuming that the
stress in the outside air to be zero, so Δσ ¼ σ. N2 is always
zero in the outside air, with no Δ notation needed in that

case.) The notation ~Tijjz¼0þ denotes the ijth-component of
the perturbation to the polymer stress immediately next to
the interface, just inside the polymer phase.

While it may seem counterintuitive to discuss a jump in
the shear stress across an interface, it is important to empha-
size that by shear stress we mean Σxy, consistent with the
main flow direction being x̂ and flow-gradient direction
being ŷ. It is this quantity that jumps across the interface,
which has its normal in the vorticity direction ẑ. Because of
the mutually different directions involved, a jump in Σxy across
a (perfectly flat) interface with normal along ẑ does not violate
the condition of force balance across the interface.

Inserting into Eq. (32) the componentwise form of the
perturbation to the total stress, ~Tij ¼ ~Σij þ 2ηs ~Dij " ~pδij, and
eliminating the perturbation to the pressure ~p via use of
the linearized bulk force balance equation, we find the final
linearized condition of force balance across the fluid-air
interface
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The linearized form of the equation of interface motion,
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D. Criterion for edge fracture

The linearized bulk equations, Eq. (29), the linearized
condition of interfacial force balance, Eq. (35), and the line-
arized equation of interfacial motion, Eq. (36), can now
together be solved to determine whether, for any given inter-
facial tension Γ and imposed flow rate _γ, the heterogeneous
perturbations grow toward an edge fractured state or decay to
leave a flat interface.

To leading order in _γ and at any wavevector q in
the y direction, the solution to the linearized bulk force
balance condition, Eq. (29), has the following normal
mode form:

~ψ(y, z, t) ¼ Ae"qz þ Be"kz! "
eiqyeωt,

~vx(y, z, t) ¼ Ce"qzeiqyeωt:
(37)

In these equations, k ¼ q=
ffiffiffiffiffiffiffiffiffiffiffi
1þ β
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, with β¼G2τ4(1þα"a)

(a"α) _γ2=(Gτþηs)
2. The constants A, B, and C can be

determined by imposing the three boundary conditions of
componentwise force balance across the fluid-air interface,
Eq. (35), although we do not write out the expressions for
A, B, C here.

A colormap of this analytical solution for the eigenfunc-
tion ~ψ(y, z) and ~vx(y, z) at a fixed time t is shown in the
left two panels of Fig. 8. Excellent agreement is obtained
with the form extracted from the early time regime of our full
nonlinear simulation, as shown in the right two panels. As
can be seen, the perturbation due to any interfacial

FIG. 8. Top: colormaps of the eigenfunction for the in-plane streamfunc-
tion, ~ψ(y, z), with corresponding in-plane velocity vectors shown as red
arrows. Bottom: colormaps of the out-of-plane velocity component, ~vx(y; z).
For each quantity, the analytical solution of Eq. (37) is shown (left column)
alongside the corresponding quantity extracted from the early time regime of
our full nonlinear simulations (right column). In each colormap, the y coordi-
nate is vertical, and the z coordinate is horizontal, with the (unperturbed)
interface at z ¼ 0. The region occupied by air in the simulation is shown
translucent; no air is considered in the analytical calculation. Overall ampli-
tude of colorscale is arbitrary. Results are for the Johnson–Segalman model
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How might we seek to mitigate edge fracture ?

• Now re-do linear analysis with non-negligible viscosity for outside “air”  

• i.e., in experimental practice, bathe flow cell in an immiscible Newtonian fluid 

• Destabilising jump Ds in shear stress between fluid & ”air” reduced

“air”  (i.e., bathing fluid)

viscosity increases

in curves downwards  



Edge fracture: conclusions, outlook….

New criterion for, mechanism and possible mitigation of edge fracture

Edge fracture near ubiquitous and limits rheological measurements

Linear stability analysis and nonlinear simulations of edge fracture

E. J. Hemingway, H. Kusumaatmaja + S. M. F.      Phys. Rev. Lett., 119, 029006 (2017)

E. J. Hemingway and S. M. Fielding,                      J. Rheol, 63, 138002 (2019)

Modest precursors of edge fracture can cause (apparent) bulk shear banding

Bulk shear banding can cause edge fracture

E. J. Hemingway and S. M. Fielding,                      Phys. Rev. Lett., 120, 138002 (2018)

E. J. Hemingway and S. M. Fielding,                     J. Rheol., 64, 1147 (2020)

S. Skorski and P. D. Olmsted,                                J. Rheol., 55, 1219 (2011)

There is a complicated interplay between shear banding and edge fracture



Extension: Shear: Shear:

“necking” “edge fracture” 

of fluid-air interfaceof filament 
“wall slip” 

of fluid w.r.t. plates  

Three key challenges in experimental rheometry



Introduction to wall slip in soft jammed suspensions

Experimental observations

Immersed boundary simulation method

Results

Slip - conclusions

Wall slip in shear rheometry

Shear:

“wall slip” 
of fluid w.r.t. plates  



Experimental practice:Experimental aim:

“wall-slip” where fluid meets

Wall slip in shear rheometry

plate(s) hampers rheometry.s (g)
measure shear e.g. 

flow curve 

= shear stress 

= shear rate

s
g

g, s.

.

. Common mitigation strategies:
chemically coat or

Vs

g
.

physically roughen wall
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FIG. 4. Steady state velocity profiles. Left): at several shear stresses for smooth walls, � = 0.0. Inset: zoom near wall.
Right): several wall roughnesses at shear stress � = 0.15.
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FIG. 5. Left) Apparent flow curves with shear rates calculated from relative wall speeds, including wall slip, for di↵erent wall
roughnesses �. Solid line connects data points for smooth wall case. Right) Corresponding bulk flow curves using shear rate
obtained from internal velocity profile, with slip removed. Filled symbols: steady state (errors bars too small to be seen at
high stresses). Unfilled symbols: do not attain steady state, with dashed error bars showing drift during the time t > 2000 over
which data is taken. Solid line: fit to � = �y + k�̇

n
bulk with �y = 0.055± 0.004 and n = 0.57± 0.03.

thin solvent layer within about �y = 0.0025 of the wall
(inset), and another over about �y = 0.1, corresponding
to an increase in fluidity over the first few particle layers
near the wall? ? ? . Importantly, we find the first contri-
bution to dominate the total slip at stresses below yield,

whereas above yield both are important. We report the
total slip, because it is more likely to be the one seen
in experimental velocimetry of realistic pixel resolution.
We note that v̄(ylower) = Vlower (as seen in the inset) and
v̄(yupper) = Vupper, consistent with hydrodynamic no-slip
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shear rate within fluid bulk, removing slip

shear rate from plate velocities, including slip

Introduction to wall slip: key measurements

y = 0

y = Ly=1
Vs

Vs = Vs (s) slip velocity, often as function of shear stress, s

velocity profile across gap coordinate,  y
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bution to dominate the total slip at stresses below yield,

whereas above yield both are important. We report the
total slip, because it is more likely to be the one seen
in experimental velocimetry of realistic pixel resolution.
We note that v̄(ylower) = Vlower (as seen in the inset) and
v̄(yupper) = Vupper, consistent with hydrodynamic no-slip

v = v (y)

s = s (g) flow curve, using either…
.

Vw

= Vw/Ly



Slip in jammed suspensions of soft particles (emulsions, microgels…)

flow curve, including slip velocity profiles across gap

minimize evaporation. A preshear stress, resulting in
high shear rates (!1000 s"1 for the microgel pastes and
!100 s"1 for the emulsions), is applied to the sample for
60 s prior to each measurement. The stress is then
quenched to lower ! value and the steady-state apparent
shear rate _""app measured. Simultaneously, we have mea-
sured the flow profiles using video microscopy for typical
microgel pastes. The pastes, which are translucent, are
seeded at very low concentrations (#5$ 10"4 g=g) with
glass spheres (diameter !10 #m) that reflect light when
illuminated. They are observed from the side using a
CCD camera equipped with a high magnification zoom
lens. Local velocities are obtained by measuring the
displacement of the tracers during time. By placing a
transparent film at the sample periphery, we are able to
focus the observation plane up to 6 mm into the bulk. All
the measurements reported in the following are made at
the fixed radial position r % &0:79' 0:02(rmax, rmax being
the cone and plate radius. We have checked carefully that
the measurements are not influenced by edge effects.

Figure 1 shows the flow curves of a microgel paste and
an emulsion measured with rough and smooth geome-
tries. When sheared using rough surfaces, both systems
display the nonlinear rheology of a yield stress fluid, well
described by the Herschel-Bulkley equation [1]: ! %
!y ) a _""n. The yield stress !y is proportional to the
elastic shear modulus G0: !y % G0"y with the yield
strain "y % 0:06. The flow curves of the microgel paste
and the emulsion are nearly superimposed, reflecting the
same macroscopic bulk flow properties. This flow behav-
ior is dramatically changed when the surfaces are smooth.
The measured shear rate no longer vanishes at the yield

stress !y and apparent flow is detected for stresses well
below !y. At very low stresses the flow curves exhibit an
apparent yield stress !0

y. The flow curves measured for the
microgel paste and the emulsion are very similar in
shape, and simply map onto each other by rescaling the
shear rate. Some of the features depicted in Fig. 1 have
already been observed [4,7–9]. The interesting result here
is that different yield stress materials exhibit a generic
behavior, suggesting some underlying universality.

Figure 2 shows the velocity profiles for microgel pastes.
When sheared with rough surfaces, the pastes flow ho-
mogeneously in the whole range of stresses and shear
rates accessible by our experimental setup (2$ 10"3 *
_"" * 3 s"1) [Fig. 2(a)]. There is no evidence of shear

banding, fracture, or wall slip. When the shearing sur-
faces are smooth, the velocity profiles still vary linearly
[Figs. 2(b)–2(d)] but, at low stresses, they extrapolate to
the cone and plate velocities not at the surfaces but far
beyond [Figs. 2(c) and 2(d)]. This is the signature of wall
slip. The slip layer is not resolvable in our setup, indicat-
ing that its thickness is smaller than 50 #m.

We identify three regimes of slip. Regime I is observed
at high stresses (e.g., !=!y + 1:5 for the microgel
paste), where slip is negligible compared to the bulk
flow [Fig. 2(b)]. The macroscopic rheology does not de-
pend on the wall roughness. Regime II is observed just
above the yield stress (1< !=!y < 1:5), where wall slip
becomes significant and the total deformation results
from a combination of bulk flow and slip [Fig. 2(c)].
Now, there is a clear influence of slip on the rheology.
Regime III is observed at and below the yield stress
(!=!y * 1). The motion is due entirely to the slipping
of the paste [Fig. 2(d)]. The rheological measurements

FIG. 1. Generic slip flow curves (smooth surfaces) for a
microgel paste (,) (C % 0:02 g=g, Nx % 140) and an emulsion
(4) ($ # 0:77), with the same bulk rheology (rough surfaces;
!, "). The solid line is the Herschel-Bulkley fit to the microgel
data (!y % 24' 2 Pa, n % 0:48, a % 6:7). Regimes I–III refer
to microgel slip behavior. The inset shows flow curves with (,)
and without (solid line) slip for various microgel pastes (from
bottom to top: G0 % 29, 128, 1200, and 2900 Pa).

FIG. 2. Microgel paste flow profiles (C % 0:02 g=g, Nx %
140). Rough surfaces: !=!y % 1:05' 0:1 (a). Smooth surfaces:
!=!y % 1:7' 0:1 (b), 1:3' 0:1 (c), and 0:9' 0:1 (d).
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emulsion
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rough walls

smooth walls

shear rate _!!x" according to

"!x" # !

2#hr2 and _!!x" # $r @
@x

v!x"
r
; (1)

where r # R1 % x. The resulting "!x" vs _!!x" data are
plotted in Fig. 5 and compared to the " vs _! data measured
by the rheometer (hereafter referred to as ‘‘engineering’’
data). For both emulsions the local flow curve deviates

strongly from the engineering flow curve which shows no
sign of a yield stress, at least in the investigated range of
shear rates. This is clearly due to wall slip, since the
engineering shear rate is estimated from v0 and may differ
from the actual shear rate in the bulk by orders of magni-
tude. When the local shear rate is considered, yielding is
easily evidenced.

However, the local flow curves for the two emulsions
have very different characteristics. In the case of the non-
adhesive emulsion, the "!x" vs _!!x" data can be accurately
fitted by the Herschel-Bulkley (HB) model [23]

"!x" # "0 % A _!!x"n; (2)

with a yield stress "0 # 58:0 Pa and a shear-thinning
exponent n # 0:45 very close to previous measurements
[15,21]. The very same parameters can further be used to
nicely predict the velocity profiles for all the investigated
shear rates above the yield stress. The solid lines in
Figs. 3(c) and 3(d) were obtained by combining Eqs. (1)
and (2) to get the following integral expression for the
velocity profile:

v!x"
R1 % x

# v2

R2
%
Z R2

R1%x

dr
r

!
!=!2#hr2" $ "0

A

"
1=n
; (3)

where v2 is the slip velocity at the outer cylinder of radius
R2 # R1 % e. The self-consistency of our data allows us to
conclude that the yielding transition in the nonadhesive
emulsion is continuous and follows the HB model.

The picture that can be drawn for the adhesive emulsion
is rather different. First, the existence of inhomogeneous
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FIG. 4. Velocity profiles in the adhesive emulsion for
(a) v0 # 0:49, (b) v0 # 0:98 (&), 1.17 (!), (c) v0 # 1:47
(&), 1.96 (!), and (d) v0 # 4:78 (&), 9.78 (!), and
19:5 mm s$1 ("). Arrows indicate the wall velocity v0. The
solid lines correspond to solid body rotation in (a) and to the
Herschel-Bulkley model with "0 # 88:9 Pa, A # 11:0, and n #
0:41 in (d) [see Eq. (3)].
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FIG. 5. Local flow curve "!x" vs _!!x" (!) compared to the
engineering flow curve ("). (a) Nonadhesive emulsion. The
solid line is the best fit by the Herschel-Bulkley model with
"0 # 58:0 Pa, A # 11:4, and n # 0:45. (b) Adhesive emulsion.
The shaded area indicates the range of stresses where inhomoge-
neous flows are observed. The solid lines are the Herschel-
Bulkley model with "0 # 88:9 Pa, A # 11:0, and n # 0:41
(lower curve) and with "0 # 115 Pa, A # 5:8, and n # 0:41
(top curve).
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FIG. 3. Velocity profiles in the nonadhesive emulsion for
(a) v0 # 0:98, (b) v0 # 1:47, (c) v0 # 1:96, and (d) v0 # 2:94
(&), 4.90 (!), and 9:79 mm s$1 ("). Arrows indicate the wall
velocity v0. The solid lines correspond to solid body rotation in
(a) and (b) and to the Herschel-Bulkley model with "0 #
58:0 Pa, A # 11:4, and n # 0:45 in (c) and (d) [see Eq. (3)].

PRL 96, 138302 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
7 APRIL 2006

138302-3

shear rate _!!x" according to

"!x" # !

2#hr2 and _!!x" # $r @
@x

v!x"
r
; (1)

where r # R1 % x. The resulting "!x" vs _!!x" data are
plotted in Fig. 5 and compared to the " vs _! data measured
by the rheometer (hereafter referred to as ‘‘engineering’’
data). For both emulsions the local flow curve deviates

strongly from the engineering flow curve which shows no
sign of a yield stress, at least in the investigated range of
shear rates. This is clearly due to wall slip, since the
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have very different characteristics. In the case of the non-
adhesive emulsion, the "!x" vs _!!x" data can be accurately
fitted by the Herschel-Bulkley (HB) model [23]
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exponent n # 0:45 very close to previous measurements
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R2 # R1 % e. The self-consistency of our data allows us to
conclude that the yielding transition in the nonadhesive
emulsion is continuous and follows the HB model.

The picture that can be drawn for the adhesive emulsion
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58:0 Pa, A # 11:4, and n # 0:45 in (c) and (d) [see Eq. (3)].
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[Zhang et al. PRL 2017; Review: Cloitre, Bonnecaze, Rheol. Acta 2017 + refs therein]

Slip velocity versus stress: usually fit to  

but exponent controversial (p = 1 à 2) , and different above/below yield  

[Cloitre et al. PRL 2004] [Becu et al. PRL 2006]

Vs ~ s p



Simulate densely packed soft particles sheared between hard bumpy walls

elastic soft particle perimeters

hard walls with hard bumps Stokes fluid inside particles         

Stokes fluid between particles  

[ See also: Pelusi et al. Europhys. Lett. 2019 ]



elastic soft particle perimeters

hard walls with hard bumps Stokes fluid inside particles         

Stokes fluid between particles  

(Lagrangian `immersed boundary’     )  

(Lagrangian `immersed boundary’       )  

(solve Stokes eqn on Eulerian grid  +  )         

(solve Stokes eqn on Eulerian grid  +  )         

Peskin delta functions

Simulate densely packed soft particles sheared between hard bumpy walls

[Review of immersed boundary methods: Peskin Acta Numerica 2002 ]



Typical resolution of Stokes flow between particles
5

FIG. 1. Simulation snapshot showing the full resolution
of the hydrodynamic velocity field. Snapshot taken at time
t = 254.0, imposed stress � = 0.3. Soft particles (blue), inter-
particle fluid (white). Black arrows show non-a�ne velocity
field vna, as defined in Eqn. 29.

Here we use a smoothed discretized delta function
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(16)

A snapshot of the soft particles and the velocity field
on the Eulerian mesh is shown in Fig. 1. As can be seen,
the method is able to fully resolve the hydrodynamic ve-
locity field in the channels, including no slip boundary
conditions and long-range hydrodynamic interactions.

3. Lagrangian dynamics of the particle boundary nodes

Given the Lagrangian velocities of the particle bound-
ary nodes as just calculated, their positions can in princi-
ple be updated from timestep n ! n+1 simply by using
an explicit Euler algorithm:

Xn+1
s

= Xn

s
+ �tVs. (17)

For clarity, we omit here any particle number label p from
Xs, and include only node label s.

With such an update, the area of each particle should
in principle remain constant due to the incompressibility

of Stokes flow. In practice, however, using the raw Vs in
Eqn. 17 gives a small error in particle area conservation
due to fluid leakage across the particle boundary. Over
an entire simulation this was about 1% in the worst case.
To correct for this, we used the following method? .

Strict particle area conservation requires that over the
area ⌦ and boundary @⌦ of each particle:

Z

⌦
r · v dA =

Z

@⌦
v · n dS = 0, (18)

where we have used the divergence theorem in writing
the first equality. In discretized form this reads:

0 =
Ns�1X

s=0

Vs · n̂s �Ss, (19)

with n̂s = ns/|ns|, ns = (Ys�1�Ys+1, Xs+1�Xs�1, 0)T ,
and �Ss = |ns|/2.0. To enforce this constraint we define

M =
Ns�1X

s=0

Vs · n̂s�Ss/

Ns�1X

s=0

�Ss, (20)

and subtract this mean value from the normal velocity of
any particle boundary node:

Vs ! Vs � M n̂s. (21)

We use this corrected velocity in the explicit Euler up-
date. With this, the worst case variation in any particle
area over a full simulation is smaller than 0.1%.

Given the updated Xs round the boundary of each
particle, the elastic boundary forces F elastic

s
are then re-

calculated using Eqn. 5. (In this, recall that the value
of the equilibrium internode length �s is a constant and
equal to its value as at the start of the shearing simula-
tion.)

The nodes of di↵erent particles also interact via a weak,
truncated LJ force F LJ

s
of the same general form as in

Eqn. 2. This force indroduces a new length scale, �,
which corresponds, for example, to the physics of a van
der Waals interaction. It also ensures that the parti-
cles never get so close that the finite dicretistaion of the
Lagrangian nodes becomes a limitation in the hydrody-
namic solver. Particle nodes also interact with the wall
nodes in the same way. The potential used is now of
slightly softer form, however, with

E
LJ({Xi}) = 4KLJ

X

s,s0<s
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(22)

The total force on any particle boundary node is then
Fs = F elastic

s
+ F LJ

s
.

4. Lagrangian dynamics of the wall nodes

A schematic of the wall is shown in Fig. 2. The wall
itself is modelled as sti↵, with the relative distance be-
tween wall nodes kept constant using a similar approach

Capture fluid mechanics in 
particle-particle and
particle-wall gaps

Capture solid mechanics
of particle shape changes

(rather than assuming 
simple relative drag)

(rather than assuming 
simple spherical potential)

à capture dynamics at wall



Units and key parameters

s

b B

Key parameters:

particle area fraction   f

wall roughness b = b / R

imposed stress s 

particle surface elastic constant

Units:

viscosity of Stokes fluids

average particle radius, R

fix B/b = 5.0
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Steady state flow curve (removing slip)
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FIG. 4. Steady state velocity profiles. Left): at several shear stresses for smooth walls, � = 0.0. Inset: zoom near wall.
Right): several wall roughnesses at shear stress � = 0.15.
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FIG. 5. Left) Apparent flow curves with shear rates calculated from relative wall speeds, including wall slip, for di↵erent wall
roughnesses �. Solid line connects data points for smooth wall case. Right) Corresponding bulk flow curves using shear rate
obtained from internal velocity profile, with slip removed. Filled symbols: steady state (errors bars too small to be seen at
high stresses). Unfilled symbols: do not attain steady state, with dashed error bars showing drift during the time t > 2000 over
which data is taken. Solid line: fit to � = �y + k�̇

n
bulk with �y = 0.055± 0.004 and n = 0.57± 0.03.

thin solvent layer within about �y = 0.0025 of the wall
(inset), and another over about �y = 0.1, corresponding
to an increase in fluidity over the first few particle layers
near the wall? ? ? . Importantly, we find the first contri-
bution to dominate the total slip at stresses below yield,

whereas above yield both are important. We report the
total slip, because it is more likely to be the one seen
in experimental velocimetry of realistic pixel resolution.
We note that v̄(ylower) = Vlower (as seen in the inset) and
v̄(yupper) = Vupper, consistent with hydrodynamic no-slip
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v̄(yupper) = Vupper, consistent with hydrodynamic no-slip

8

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

v
n
o
rm

ynorm

0.00
0.25
0.50

0.00 0.01 0.02

0 0.2 0.4 0.6 0.8 1
ynorm

� = 0.01
� = 0.05
� = 0.10
� = 0.15
� = 0.30

� = 0.0
� = 0.117
� = 0.235
� = 0.295
� = 0.370
� = 0.590

FIG. 4. Steady state velocity profiles. Left): at several shear stresses for smooth walls, � = 0.0. Inset: zoom near wall.
Right): several wall roughnesses at shear stress � = 0.15.

0.01

0.1

0.5

10�6 10�4 10�2

�

�̇wall
10�6 10�4 10�2

�̇bulk

� = 0.0
� = 0.117

� = 0.235
� = 0.295

� = 0.37
� = 0.59

FIG. 5. Left) Apparent flow curves with shear rates calculated from relative wall speeds, including wall slip, for di↵erent wall
roughnesses �. Solid line connects data points for smooth wall case. Right) Corresponding bulk flow curves using shear rate
obtained from internal velocity profile, with slip removed. Filled symbols: steady state (errors bars too small to be seen at
high stresses). Unfilled symbols: do not attain steady state, with dashed error bars showing drift during the time t > 2000 over
which data is taken. Solid line: fit to � = �y + k�̇

n
bulk with �y = 0.055± 0.004 and n = 0.57± 0.03.

thin solvent layer within about �y = 0.0025 of the wall
(inset), and another over about �y = 0.1, corresponding
to an increase in fluidity over the first few particle layers
near the wall? ? ? . Importantly, we find the first contri-
bution to dominate the total slip at stresses below yield,

whereas above yield both are important. We report the
total slip, because it is more likely to be the one seen
in experimental velocimetry of realistic pixel resolution.
We note that v̄(ylower) = Vlower (as seen in the inset) and
v̄(yupper) = Vupper, consistent with hydrodynamic no-slip

8

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

v
n
o
rm

ynorm

0.00
0.25
0.50

0.00 0.01 0.02

0 0.2 0.4 0.6 0.8 1
ynorm

� = 0.01
� = 0.05
� = 0.10
� = 0.15
� = 0.30

� = 0.0
� = 0.117
� = 0.235
� = 0.295
� = 0.370
� = 0.590

FIG. 4. Steady state velocity profiles. Left): at several shear stresses for smooth walls, � = 0.0. Inset: zoom near wall.
Right): several wall roughnesses at shear stress � = 0.15.

0.01

0.1

0.5

10�6 10�4 10�2

�

�̇wall
10�6 10�4 10�2

�̇bulk

� = 0.0
� = 0.117

� = 0.235
� = 0.295

� = 0.37
� = 0.59

FIG. 5. Left) Apparent flow curves with shear rates calculated from relative wall speeds, including wall slip, for di↵erent wall
roughnesses �. Solid line connects data points for smooth wall case. Right) Corresponding bulk flow curves using shear rate
obtained from internal velocity profile, with slip removed. Filled symbols: steady state (errors bars too small to be seen at
high stresses). Unfilled symbols: do not attain steady state, with dashed error bars showing drift during the time t > 2000 over
which data is taken. Solid line: fit to � = �y + k�̇

n
bulk with �y = 0.055± 0.004 and n = 0.57± 0.03.

thin solvent layer within about �y = 0.0025 of the wall
(inset), and another over about �y = 0.1, corresponding
to an increase in fluidity over the first few particle layers
near the wall? ? ? . Importantly, we find the first contri-
bution to dominate the total slip at stresses below yield,

whereas above yield both are important. We report the
total slip, because it is more likely to be the one seen
in experimental velocimetry of realistic pixel resolution.
We note that v̄(ylower) = Vlower (as seen in the inset) and
v̄(yupper) = Vupper, consistent with hydrodynamic no-slip

8

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

v
n
o
rm

ynorm

0.00
0.25
0.50

0.00 0.01 0.02

0 0.2 0.4 0.6 0.8 1
ynorm

� = 0.01
� = 0.05
� = 0.10
� = 0.15
� = 0.30

� = 0.0
� = 0.117
� = 0.235
� = 0.295
� = 0.370
� = 0.590

FIG. 4. Steady state velocity profiles. Left): at several shear stresses for smooth walls, � = 0.0. Inset: zoom near wall.
Right): several wall roughnesses at shear stress � = 0.15.

0.01

0.1

0.5

10�6 10�4 10�2

�

�̇wall
10�6 10�4 10�2

�̇bulk

� = 0.0
� = 0.117

� = 0.235
� = 0.295

� = 0.37
� = 0.59

FIG. 5. Left) Apparent flow curves with shear rates calculated from relative wall speeds, including wall slip, for di↵erent wall
roughnesses �. Solid line connects data points for smooth wall case. Right) Corresponding bulk flow curves using shear rate
obtained from internal velocity profile, with slip removed. Filled symbols: steady state (errors bars too small to be seen at
high stresses). Unfilled symbols: do not attain steady state, with dashed error bars showing drift during the time t > 2000 over
which data is taken. Solid line: fit to � = �y + k�̇

n
bulk with �y = 0.055± 0.004 and n = 0.57± 0.03.

thin solvent layer within about �y = 0.0025 of the wall
(inset), and another over about �y = 0.1, corresponding
to an increase in fluidity over the first few particle layers
near the wall? ? ? . Importantly, we find the first contri-
bution to dominate the total slip at stresses below yield,

whereas above yield both are important. We report the
total slip, because it is more likely to be the one seen
in experimental velocimetry of realistic pixel resolution.
We note that v̄(ylower) = Vlower (as seen in the inset) and
v̄(yupper) = Vupper, consistent with hydrodynamic no-slip

8

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

v
n
o
rm

ynorm

0.00
0.25
0.50

0.00 0.01 0.02

0 0.2 0.4 0.6 0.8 1
ynorm

� = 0.01
� = 0.05
� = 0.10
� = 0.15
� = 0.30

� = 0.0
� = 0.117
� = 0.235
� = 0.295
� = 0.370
� = 0.590

FIG. 4. Steady state velocity profiles. Left): at several shear stresses for smooth walls, � = 0.0. Inset: zoom near wall.
Right): several wall roughnesses at shear stress � = 0.15.

0.01

0.1

0.5

10�6 10�4 10�2

�

�̇wall
10�6 10�4 10�2

�̇bulk

� = 0.0
� = 0.117

� = 0.235
� = 0.295

� = 0.37
� = 0.59

FIG. 5. Left) Apparent flow curves with shear rates calculated from relative wall speeds, including wall slip, for di↵erent wall
roughnesses �. Solid line connects data points for smooth wall case. Right) Corresponding bulk flow curves using shear rate
obtained from internal velocity profile, with slip removed. Filled symbols: steady state (errors bars too small to be seen at
high stresses). Unfilled symbols: do not attain steady state, with dashed error bars showing drift during the time t > 2000 over
which data is taken. Solid line: fit to � = �y + k�̇

n
bulk with �y = 0.055± 0.004 and n = 0.57± 0.03.

thin solvent layer within about �y = 0.0025 of the wall
(inset), and another over about �y = 0.1, corresponding
to an increase in fluidity over the first few particle layers
near the wall? ? ? . Importantly, we find the first contri-
bution to dominate the total slip at stresses below yield,

whereas above yield both are important. We report the
total slip, because it is more likely to be the one seen
in experimental velocimetry of realistic pixel resolution.
We note that v̄(ylower) = Vlower (as seen in the inset) and
v̄(yupper) = Vupper, consistent with hydrodynamic no-slip

8

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

v
n
o
rm

ynorm

0.00
0.25
0.50

0.00 0.01 0.02

0 0.2 0.4 0.6 0.8 1
ynorm

� = 0.01
� = 0.05
� = 0.10
� = 0.15
� = 0.30

� = 0.0
� = 0.117
� = 0.235
� = 0.295
� = 0.370
� = 0.590

FIG. 4. Steady state velocity profiles. Left): at several shear stresses for smooth walls, � = 0.0. Inset: zoom near wall.
Right): several wall roughnesses at shear stress � = 0.15.

0.01

0.1

0.5

10�6 10�4 10�2

�

�̇wall
10�6 10�4 10�2

�̇bulk

� = 0.0
� = 0.117

� = 0.235
� = 0.295

� = 0.37
� = 0.59

FIG. 5. Left) Apparent flow curves with shear rates calculated from relative wall speeds, including wall slip, for di↵erent wall
roughnesses �. Solid line connects data points for smooth wall case. Right) Corresponding bulk flow curves using shear rate
obtained from internal velocity profile, with slip removed. Filled symbols: steady state (errors bars too small to be seen at
high stresses). Unfilled symbols: do not attain steady state, with dashed error bars showing drift during the time t > 2000 over
which data is taken. Solid line: fit to � = �y + k�̇

n
bulk with �y = 0.055± 0.004 and n = 0.57± 0.03.

thin solvent layer within about �y = 0.0025 of the wall
(inset), and another over about �y = 0.1, corresponding
to an increase in fluidity over the first few particle layers
near the wall? ? ? . Importantly, we find the first contri-
bution to dominate the total slip at stresses below yield,

whereas above yield both are important. We report the
total slip, because it is more likely to be the one seen
in experimental velocimetry of realistic pixel resolution.
We note that v̄(ylower) = Vlower (as seen in the inset) and
v̄(yupper) = Vupper, consistent with hydrodynamic no-slip

s < sy

s > sy

Ø Indefinitely slowing creep below yield stress, with no steady state

Ø Steady shear above yield stress, with Herschel-Bulkley fit
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(inset), and another over about �y = 0.1, corresponding
to an increase in fluidity over the first few particle layers
near the wall? ? ? . Importantly, we find the first contri-
bution to dominate the total slip at stresses below yield,
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total slip, because it is more likely to be the one seen
in experimental velocimetry of realistic pixel resolution.
We note that v̄(ylower) = Vlower (as seen in the inset) and
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(inset), and another over about �y = 0.1, corresponding
to an increase in fluidity over the first few particle layers
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in experimental velocimetry of realistic pixel resolution.
We note that v̄(ylower) = Vlower (as seen in the inset) and
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(inset), and another over about �y = 0.1, corresponding
to an increase in fluidity over the first few particle layers
near the wall? ? ? . Importantly, we find the first contri-
bution to dominate the total slip at stresses below yield,

whereas above yield both are important. We report the
total slip, because it is more likely to be the one seen
in experimental velocimetry of realistic pixel resolution.
We note that v̄(ylower) = Vlower (as seen in the inset) and
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s < sy

s > sy

Ø Steady shear above yield stress, with Herschel-Bulkley fit

Ø Apparent steady shear below yield stress, for smooth walls, due to slip
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(inset), and another over about �y = 0.1, corresponding
to an increase in fluidity over the first few particle layers
near the wall? ? ? . Importantly, we find the first contri-
bution to dominate the total slip at stresses below yield,

whereas above yield both are important. We report the
total slip, because it is more likely to be the one seen
in experimental velocimetry of realistic pixel resolution.
We note that v̄(ylower) = Vlower (as seen in the inset) and
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Steady state flow curve (including slip)
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to an increase in fluidity over the first few particle layers
near the wall? ? ? . Importantly, we find the first contri-
bution to dominate the total slip at stresses below yield,

whereas above yield both are important. We report the
total slip, because it is more likely to be the one seen
in experimental velocimetry of realistic pixel resolution.
We note that v̄(ylower) = Vlower (as seen in the inset) and
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s < sy

s > sy

Ø Steady shear above yield stress, with Herschel-Bulkley fit

Ø Apparent steady shear below yield stress, for smooth walls, due to slip
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total slip, because it is more likely to be the one seen
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thin solvent layer within about �y = 0.0025 of the wall
(inset), and another over about �y = 0.1, corresponding
to an increase in fluidity over the first few particle layers
near the wall? ? ? . Importantly, we find the first contri-
bution to dominate the total slip at stresses below yield,

whereas above yield both are important. We report the
total slip, because it is more likely to be the one seen
in experimental velocimetry of realistic pixel resolution.
We note that v̄(ylower) = Vlower (as seen in the inset) and
v̄(yupper) = Vupper, consistent with hydrodynamic no-slip
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high stresses). Unfilled symbols: do not attain steady state, with dashed error bars showing drift during the time t > 2000 over
which data is taken. Solid line: fit to � = �y + k�̇

n
bulk with �y = 0.055± 0.004 and n = 0.57± 0.03.

thin solvent layer within about �y = 0.0025 of the wall
(inset), and another over about �y = 0.1, corresponding
to an increase in fluidity over the first few particle layers
near the wall? ? ? . Importantly, we find the first contri-
bution to dominate the total slip at stresses below yield,

whereas above yield both are important. We report the
total slip, because it is more likely to be the one seen
in experimental velocimetry of realistic pixel resolution.
We note that v̄(ylower) = Vlower (as seen in the inset) and
v̄(yupper) = Vupper, consistent with hydrodynamic no-slip

s < sy

s > sy

Ø Almost total slip below yield stress.   Partial slip above yield stress.
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thin solvent layer within about �y = 0.0025 of the wall
(inset), and another over about �y = 0.1, corresponding
to an increase in fluidity over the first few particle layers
near the wall? ? ? . Importantly, we find the first contri-
bution to dominate the total slip at stresses below yield,

whereas above yield both are important. We report the
total slip, because it is more likely to be the one seen
in experimental velocimetry of realistic pixel resolution.
We note that v̄(ylower) = Vlower (as seen in the inset) and
v̄(yupper) = Vupper, consistent with hydrodynamic no-slip

Ø There are two separate contributions to the slip, with different physics

1. Thin Newtonian solvent layer,
depleted of particles,
immediately adjacent to wall  
(above and below yield stress)

2. Enhanced fluidisation 
of first few particles layers
into the bulk
(only above yield stress)

(Only one involves depletion of final layer of particles away from wall.)

Normalized profiles of velocity across gap with smooth walls
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(inset), and another over about �y = 0.1, corresponding
to an increase in fluidity over the first few particle layers
near the wall? ? ? . Importantly, we find the first contri-
bution to dominate the total slip at stresses below yield,

whereas above yield both are important. We report the
total slip, because it is more likely to be the one seen
in experimental velocimetry of realistic pixel resolution.
We note that v̄(ylower) = Vlower (as seen in the inset) and
v̄(yupper) = Vupper, consistent with hydrodynamic no-slip
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thin solvent layer within about �y = 0.0025 of the wall
(inset), and another over about �y = 0.1, corresponding
to an increase in fluidity over the first few particle layers
near the wall? ? ? . Importantly, we find the first contri-
bution to dominate the total slip at stresses below yield,

whereas above yield both are important. We report the
total slip, because it is more likely to be the one seen
in experimental velocimetry of realistic pixel resolution.
We note that v̄(ylower) = Vlower (as seen in the inset) and
v̄(yupper) = Vupper, consistent with hydrodynamic no-slip

1. Thin Newtonian solvent layer

2. Enhanced fluidisation 
of first few particles layers
into the bulk
(only above yield stress)

Ø There are two separate contributions to the slip, with different physics

(Only one involves depletion of final layer of particles away from wall.)
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thin solvent layer within about �y = 0.0025 of the wall
(inset), and another over about �y = 0.1, corresponding
to an increase in fluidity over the first few particle layers
near the wall? ? ? . Importantly, we find the first contri-
bution to dominate the total slip at stresses below yield,

whereas above yield both are important. We report the
total slip, because it is more likely to be the one seen
in experimental velocimetry of realistic pixel resolution.
We note that v̄(ylower) = Vlower (as seen in the inset) and
v̄(yupper) = Vupper, consistent with hydrodynamic no-slip
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near the wall? ? ? . Importantly, we find the first contri-
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whereas above yield both are important. We report the
total slip, because it is more likely to be the one seen
in experimental velocimetry of realistic pixel resolution.
We note that v̄(ylower) = Vlower (as seen in the inset) and
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Ø Almost total slip below yield stress.   Partial slip above yield stress.



Slip velocity vs. shear stress for smooth walls

Fit to two separate linear scalings:
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FIG. 7. Steady-state slip length ls for di↵erent external
stresses � (a) and wall roughness � (b). The Newtonian slip
length l

newton
s describes the thickness of the thin Newtonian

layer at the wall and the total slip length l
tot
s describes the dis-

tance of the wall to an extrapolated point in space for which
the tangential velocity component vanishes.

via the relative wall speeds, and so including the e↵ects
of slip) as a function of time t for a rough wall (a) and
smooth wall (b). In each case, data are shown for five
imposed stress values in separate curve bundles. The
highest three stress values are all above the yield stress,
� > �y = 0.055. Here, the apparent shear rate �̇wall

initially decreases as function of time, before attaining
a minimum. The sample then yields and the shear rate
increases to attain a steady flowing state. For the two
lowest stress values, for which � < �y, the apparent

shear rate attains a steady state only for smooth walls.
This is due to the confounding e↵ects of slip: with rough
walls, where slip is suppressed and �̇wall coincides with
the true bulk shear rate �̇bulk, the shear rate never attains
a steady state but continues to slowly decrease.

For the same five values of stress, the true bulk shear
rate is shown as a function of time in Fig. 8c). The curve
bundle for each stress value now shows results for the
six values of wall roughness explored in the flow curves
of Fig. 5. Now that the e↵ects of wall slip have been
removed by plotting �̇bulk(t), the data for all wall rough-
nesses essentially coincide. In this way, we find the yield-
ing dynamics in the fluid bulk to be largely independent
of wall roughness. We extract by eye the time at the min-
imum in �̇bulk and define this to be the time ⌧y at which
yielding occurs. This shows a good fit to ⌧ ⇠ (���y)�1.3

(Fig. 8d). Similarly, we determine the time ⌧s at which
slip first arises at the wall (defined as the time at which
Vs(t) attains half its steady state value). We plot this
as a function of � � �y in Fig. 8e) for the four lowest
values of wall roughness explored in the flow curves of
Fig. 5. (For the two roughest walls in Fig. 5, no ap-
preciable slip arises.) This slip timescale increases with
increasing wall roughness. For the largest two roughness
values at which slip occurs, ⌧s further appears to depend
on stress in the same way as the timescale for bulk yield-
ing, with ⌧s ⇠ (���y)�1.3. Whether slip pre-empts bulk
yielding (or vice versa), as determined by the prefactor,
however depends on the roughness.
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tance of the wall to an extrapolated point in space for which
the tangential velocity component vanishes.

via the relative wall speeds, and so including the e↵ects
of slip) as a function of time t for a rough wall (a) and
smooth wall (b). In each case, data are shown for five
imposed stress values in separate curve bundles. The
highest three stress values are all above the yield stress,
� > �y = 0.055. Here, the apparent shear rate �̇wall

initially decreases as function of time, before attaining
a minimum. The sample then yields and the shear rate
increases to attain a steady flowing state. For the two
lowest stress values, for which � < �y, the apparent

shear rate attains a steady state only for smooth walls.
This is due to the confounding e↵ects of slip: with rough
walls, where slip is suppressed and �̇wall coincides with
the true bulk shear rate �̇bulk, the shear rate never attains
a steady state but continues to slowly decrease.

For the same five values of stress, the true bulk shear
rate is shown as a function of time in Fig. 8c). The curve
bundle for each stress value now shows results for the
six values of wall roughness explored in the flow curves
of Fig. 5. Now that the e↵ects of wall slip have been
removed by plotting �̇bulk(t), the data for all wall rough-
nesses essentially coincide. In this way, we find the yield-
ing dynamics in the fluid bulk to be largely independent
of wall roughness. We extract by eye the time at the min-
imum in �̇bulk and define this to be the time ⌧y at which
yielding occurs. This shows a good fit to ⌧ ⇠ (���y)�1.3

(Fig. 8d). Similarly, we determine the time ⌧s at which
slip first arises at the wall (defined as the time at which
Vs(t) attains half its steady state value). We plot this
as a function of � � �y in Fig. 8e) for the four lowest
values of wall roughness explored in the flow curves of
Fig. 5. (For the two roughest walls in Fig. 5, no ap-
preciable slip arises.) This slip timescale increases with
increasing wall roughness. For the largest two roughness
values at which slip occurs, ⌧s further appears to depend
on stress in the same way as the timescale for bulk yield-
ing, with ⌧s ⇠ (���y)�1.3. Whether slip pre-empts bulk
yielding (or vice versa), as determined by the prefactor,
however depends on the roughness.
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the true bulk shear rate �̇bulk, the shear rate never attains
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six values of wall roughness explored in the flow curves
of Fig. 5. Now that the e↵ects of wall slip have been
removed by plotting �̇bulk(t), the data for all wall rough-
nesses essentially coincide. In this way, we find the yield-
ing dynamics in the fluid bulk to be largely independent
of wall roughness. We extract by eye the time at the min-
imum in �̇bulk and define this to be the time ⌧y at which
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(Fig. 8d). Similarly, we determine the time ⌧s at which
slip first arises at the wall (defined as the time at which
Vs(t) attains half its steady state value). We plot this
as a function of � � �y in Fig. 8e) for the four lowest
values of wall roughness explored in the flow curves of
Fig. 5. (For the two roughest walls in Fig. 5, no ap-
preciable slip arises.) This slip timescale increases with
increasing wall roughness. For the largest two roughness
values at which slip occurs, ⌧s further appears to depend
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initially decreases as function of time, before attaining
a minimum. The sample then yields and the shear rate
increases to attain a steady flowing state. For the two
lowest stress values, for which � < �y, the apparent

shear rate attains a steady state only for smooth walls.
This is due to the confounding e↵ects of slip: with rough
walls, where slip is suppressed and �̇wall coincides with
the true bulk shear rate �̇bulk, the shear rate never attains
a steady state but continues to slowly decrease.

For the same five values of stress, the true bulk shear
rate is shown as a function of time in Fig. 8c). The curve
bundle for each stress value now shows results for the
six values of wall roughness explored in the flow curves
of Fig. 5. Now that the e↵ects of wall slip have been
removed by plotting �̇bulk(t), the data for all wall rough-
nesses essentially coincide. In this way, we find the yield-
ing dynamics in the fluid bulk to be largely independent
of wall roughness. We extract by eye the time at the min-
imum in �̇bulk and define this to be the time ⌧y at which
yielding occurs. This shows a good fit to ⌧ ⇠ (���y)�1.3

(Fig. 8d). Similarly, we determine the time ⌧s at which
slip first arises at the wall (defined as the time at which
Vs(t) attains half its steady state value). We plot this
as a function of � � �y in Fig. 8e) for the four lowest
values of wall roughness explored in the flow curves of
Fig. 5. (For the two roughest walls in Fig. 5, no ap-
preciable slip arises.) This slip timescale increases with
increasing wall roughness. For the largest two roughness
values at which slip occurs, ⌧s further appears to depend
on stress in the same way as the timescale for bulk yield-
ing, with ⌧s ⇠ (���y)�1.3. Whether slip pre-empts bulk
yielding (or vice versa), as determined by the prefactor,
however depends on the roughness.

Ø For walls rough enough compared with particle radius, slip is suppressed

roughness

increases

of wall, b,

n (b )

Slip velocity vs. shear stress for increasing wall roughness



Ø For walls rough enough compared with particle radius, slip is suppressed

Slope of slip velocity with shear stress vs. wall roughness, b

10

0
0.2
0.4
0.6
0.8

1
1.2

0 0.1 0.2 0.3 0.4 0.5
10

3
V

s
�

a)

0

1

2

3

0 0.05 0.1 0.15 0.2

10
4
V

s

�

b)

0.0

1.0

2.0

0 0.25 0.5

10
3
⌫

�

c)

10�1

100

0.01 0.1 0.5

�
h
et

�

d)

FIG. 6. a) Symbols: steady state slip velocity vs. imposed stress for di↵erent wall roughnesses, with roughness symbol legend
as in Fig. 5. Lines: least-square fits to Vs(� > �y) = ⌫(�)(� � �y) and Vs(� < �y) = ⌫N(�)�. b): Zoom of � = 0.0 data for
� < 0.2. c): Prefactor ⌫ vs. wall roughness �. d): Steady state degree of heterogeneity in the bulk flow field vs. imposed
stress for di↵erent surface roughnesses. Solid line: �het / �

�0.8 as a guide to the eye.

10�4

10�3

10�2

10�1

100

0 0.1 0.2 0.3 0.4 0.5

a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6

b)

l s

�

� = 0.0, lnewton
s

� = 0.0, ltots
� = 0.235, lnewton

s
� = 0.235, ltots

lt
o
t

s

�

FIG. 7. Steady-state slip length ls for di↵erent external
stresses � (a) and wall roughness � (b). The Newtonian slip
length l

newton
s describes the thickness of the thin Newtonian

layer at the wall and the total slip length l
tot
s describes the dis-

tance of the wall to an extrapolated point in space for which
the tangential velocity component vanishes.

via the relative wall speeds, and so including the e↵ects
of slip) as a function of time t for a rough wall (a) and
smooth wall (b). In each case, data are shown for five
imposed stress values in separate curve bundles. The
highest three stress values are all above the yield stress,
� > �y = 0.055. Here, the apparent shear rate �̇wall

initially decreases as function of time, before attaining
a minimum. The sample then yields and the shear rate
increases to attain a steady flowing state. For the two
lowest stress values, for which � < �y, the apparent
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This is due to the confounding e↵ects of slip: with rough
walls, where slip is suppressed and �̇wall coincides with
the true bulk shear rate �̇bulk, the shear rate never attains
a steady state but continues to slowly decrease.

For the same five values of stress, the true bulk shear
rate is shown as a function of time in Fig. 8c). The curve
bundle for each stress value now shows results for the
six values of wall roughness explored in the flow curves
of Fig. 5. Now that the e↵ects of wall slip have been
removed by plotting �̇bulk(t), the data for all wall rough-
nesses essentially coincide. In this way, we find the yield-
ing dynamics in the fluid bulk to be largely independent
of wall roughness. We extract by eye the time at the min-
imum in �̇bulk and define this to be the time ⌧y at which
yielding occurs. This shows a good fit to ⌧ ⇠ (���y)�1.3

(Fig. 8d). Similarly, we determine the time ⌧s at which
slip first arises at the wall (defined as the time at which
Vs(t) attains half its steady state value). We plot this
as a function of � � �y in Fig. 8e) for the four lowest
values of wall roughness explored in the flow curves of
Fig. 5. (For the two roughest walls in Fig. 5, no ap-
preciable slip arises.) This slip timescale increases with
increasing wall roughness. For the largest two roughness
values at which slip occurs, ⌧s further appears to depend
on stress in the same way as the timescale for bulk yield-
ing, with ⌧s ⇠ (���y)�1.3. Whether slip pre-empts bulk
yielding (or vice versa), as determined by the prefactor,
however depends on the roughness.



Wall slip occurs widely in sheared complex fluids

In jammed soft particle suspensions, it dominates flow curve at low shear

Immersed boundary simulation method capable of properly capturing slip

Find flow curve indeed strongly modified at low shear 

Wall slip: conclusions, outlook…

Two contributions to slip: Newtonian layer at wall; fluidised particle layers

Separate linear scalings of slip velocity with stress above and below yield

Strong suppression of slip above a critical wall roughness

[ G. Jung and S. M. Fielding, submitted for publication ] 
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