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A) Rheology of complex fluids

1) overview
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3) 0D - 1D - 2D: a study in bulk flow instabilities
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C) Interlude - numerical methods

D) Surface instabilities in complex fluids

1) extensional necking
2) edge fracture

3) wall slip
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1) Rheology of complex fluids: overview

Surfactants

cell membranes, drug delivery

Hauid crystals dh Aoy
displays, viruses, cartilage OQ%%}OO%Q B@ggg%gg
Polymers

plastics, DNA, drag reduction

Foams, emulsions
fire-fighting, foods

Colloids i) 23
clays, inks, blood ﬁ’

self-assembled
micelles/membranes

rodlike molecules

chainlike molecules

cellular bubble packing

fractal aggregates

Unifying feature: mesoscopic internal substructures - rods, chains, etc. - nm to um




Mesostructures confer unique material properties

a) Softness under shear

easily deformed
! polymer chains

soft matter compare hard matter



Mesostructures confer unique material properties

a) Softness under shear

easily deformed
! polymer chains

soft matter compare hard matter

b) Viscoelasticity

c) Easily driven into nonlinear flow states

d) Show non-zero ‘normal stress differences’

e) Display flow-induced transitions



b) Viscoelasticity

Stress relaxation after small step shear strain

strain

A
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time ty

stress




b) Viscoelasticity

Stress relaxation after small step shear strain

A

' £ 0
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) w w
time ty
relaxation
I— tlny 103to 103 s huge — time 71
simple fluids COMPLEX FLUIDS elastic solid

R ST

sluggish relaxation




c) Easily driven into nonlinear flow regimes

Stress response to steady applied shear flow

shear stress

shear at constant

rate y=+10,1 "

\ﬂ'

/nonlinear

“non Newtonian”

/7 shear rate y
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d) Non-zero normal stress differences

LSS

T 7777

shear stress
first normal stress difference

second normal stress difference

X: flow direction

y: flow gradient direction

Z: vorticity direction

ey (V)
Zxx (y) _ Zyy ()’) — Nl (y)

z:yy (]/) T z:ZZ (Y) = NZ (y)



e) Display non-equilibrium, flow-induced transitions and instabilities

Example: liquid crystalline phase behaviour

0
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isotropic nematic



e) Display non-equilibrium, flow-induced transitions and instabilities
Liquid crystal Surfactant onion phase
\ ==
s — ==
Edge fracture
—>" —_— | ..
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A) Rheology of complex fluids

2) continuum models



Modelling complex fluids — the basic philosophy

Macroscopic properties depend on dynamics at coarse-grained level of chains, rods

e.g. viscosity universally o (chain length)3'4 linear polymers AW,

oc exp (chain length)  star polymers §\

. - ."..A .,. 1
i / CHEMICAL DETAIL 4 polymer molecule is a piece of string
NOT IMPORTANT

So, concerned with (non-equilibrium) dynamics of chains, rods in flow



Modelling flow properties

Navier Stokes (+ incompressibility)

Jo, DtV =17 Vzv — Vp viscosity n; density p

I I T

inertial VISCOUS  pressure



Modelling flow properties of complex fluids

Extended Navier Stokes (+ incompressibility)
pDv= V.o+nVv-Vp

inertial solvent pressure

Viscoelastic stress O due to internal mesoscopic substructures



Modelling flow properties of complex fluids

Extended Navier Stokes (+ incompressibility)
pDv= V.o+nVv-Vp

inertial solvent pressure

Viscoelastic stress O = G(W)

Generalised mesostructural variable(s), W

e.g. molecular strain orientation tensor micellar length



Modelling flow properties of complex fluids

Extended Navier Stokes (+ incompressibility)
pDv= V.o+nVv-Vp

inertial solvent pressure

Viscoelastic stress O = G(W)

Equation of motion for mesostructure

D W = N(Vv, W) Often: nonlinear PDE of

reaction-diffusion type



Modelling flow properties of complex fluids

Extended Stokes (+ incompressibility)
0=V-c+nV°’v-Vp

Inertia solvent pressure
free !

Viscoelastic stress O = G(W)

Equation of motion for mesostructure

D W = N(Vv, W) Often: nonlinear PDE of

reaction-diffusion type



An example: wormlike micellar surfactant

Amphiphilic molecule; polar head likes water; non-polar tail hates water

; agueous .f;gﬁ:ﬂ

solution i




An example: wormlike micellar surfactant

Amphiphilic molecule; polar head likes water; non-polar tail hates water

agqueous
; -
solution

each worm constrained by
entanglements with others



An example: wormlike micellar surfactant

Amphiphilic molecule; polar head likes water; non-polar tail hates water
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An example: wormlike micellar surfactant

Amphiphilic molecule; polar head likes water; non-polar tail hates water

agqueous
; -
solution

focus on single worm “tube” of entanglements
constrains lateral motion

[Doi + Edwards 1986]



An example: wormlike micellar surfactant

Amphiphilic molecule; polar head likes water; non-polar tail hates water

agqueous
; -
solution

focus on single worm “tube” of entanglements escape by “reptation”
constrains lateral motion

[Doi + Edwards 1986]



An example: wormlike micellar surfactant

Amphiphilic molecule; polar head likes water; non-polar tail hates water

agqueous
; —
solution

focus on single worm “tube” of entanglements and by “reaction”
constrains lateral motion

[Cates 1987, 1990]



Modelling flow properties of wormlike micelles

Extended Stokes balance (+ incompressibility)

0=V.-c+nV°’v-Vp
T T

solvent pressure

Viscoelasticstress o = G (W —1 5)

3

Reptation-reaction model for micellar deformation tensor W — <uu>P

DW = Vv.W+W.Vv-3(Vv:W)W

3

W O
-+
T 37

[Cates 1987, 1990]
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A) Rheology of complex fluids

3) 0D rheology — linear viscoelasticity and flow curves



Predictions of the reptation - reaction model: 0D linear viscoelasticity

Recall: stress relaxation after small step strain

Model predicts: mono-exponential stress relaxation

A

strain

»

time

exp (—t/\/a)

{

stress

[Cates 1987, 1990]



Predictions of the reptation - reaction model: 0D linear viscoelasticity

Recall: stress response to steady applied shear flow

—

—
' shear at constant
a—
! r— l Y -7 - Y
rate y =0,/ -

\ﬂ'

Model predicts: flow curve as follows

shear stress

shear rate y



Predictions of the reptation - reaction model: 0D linear viscoelasticity

Recall: stress response to steady applied shear flow

—

—
' shear at constant
a—
! r— l b -7 - Y
rate y =0,/ -

\ﬂ'

Model predicts: flow curve as follows

shear stress
I

shear rate y



Outline

A) Rheology of complex fluids

l unstable

1D rheology — shear banding



[Spenley et al. PRL 93]

Predictions of reptation-reaction model: shear banding

Recall: reptation-reaction model predicts non-monotonic flow curve

shear stress

shear rate

y

And so instability and transition to "shear bands’ (seen experimentally)

\/ i(high

*
Yiow

shear stress

ylow yhigh

T



Tutorial: linear stability analysis for the onset of shear banding

RQCQ\\ basic S"Frmcxﬁu\ve c% e Xﬁw\% .

e

~

Q — v~0~ A w\ﬂzy_ — \7() ©) S%‘o\’ues +

Qq

S (&_ﬁ)\ © \;iscc)eqsxﬁc SAWQSS

Dk\’g = \Ej (Vg\\g &) m%og\‘rucx‘u@e
O‘&'\’Gf\ Co«wLQAQ QR @ o wrik S\\mf’\n:

D

viscoe\ MSHQ

10y

- My s onsFi hke eguahon



Tutorial: linear stability analysis for the onset of shear banding
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Tutorial: linear stability analysis for the onset of shear banding
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Tutorial: linear stability analysis for the onset of shear banding
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Tutorial: linear stability analysis for the onset of shear banding
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Tutorial: linear stability analysis for the onset of shear banding
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Tutorial: linear stability analysis for the onset of shear banding
R) \hsxrq\as\\)h\,\ ‘v sheor )wmc\\[\j {

RCCO\‘\ Qo\)qmr\a el\xu%\QwS

S0 < slyD v Ty
d

c L fd)
C\\ t o U”\\ f’e A\Arw)u}\— O/ﬂ\
Lk wihd e,y ,
Assume oo luhon = w\\ﬁusm shews LQ’\C\\”j O)(QNCSNB
ot m )>
S = > ro0 “’”i
Wy W
G(\S,%\ = S v o, ﬁ\h e .
\&(3\{\: \( AN Hk €L3€

'\‘% UJ>D Ptr¥UvLu§\\°n& \S\rgwl \)Q’\CS \QOVM



Tutorial: linear stability analysis for the onset of shear banding
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Tutorial: linear stability analysis for the onset of shear banding
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Tutorial: linear stability analysis for the onset of shear banding
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Wormlike surfactants

:> :Yhigh

.
Yow

Liquid crystals

NN

Y high >~—_ nematic nematic
Y 1ow E/ isotropic 7\ / isotropic

Indeed, assumption of homogeneous flow is incorrect in many complex fluids

T 777

Onion surfactants

ordered
V@‘ ;
disordered

linear entangled polymers; star polymers; clays; colloids; etc; etc....



Reminder of yesterday’s lecture

A) Rheology of complex fluids
1) overview
2) continuum models

3) 0D rheology — linear viscoelasticity and flow curves

l unstable

1D rheology — shear banding



[Spenley et al. PRL 93]

Predictions of reptation-reaction model: shear banding

Recall: reptation-reaction model predicts non-monotonic flow curve

shear stress

shear rate

y

And so instability and transition to "shear bands’ (seen experimentally)
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Outline

A) Rheology of complex fluids

l unstable

2D rheology — instability of interface between bands



[Lerouge et al. PRL 06; PRL 09; Soft Matter 08]

2D experiments, curved Couette, Lerouge

Snapshots over time in startup

7 0 28 138 149 15| 16§ 17
z
T—» r




[Lerouge et al. PRL 06; PRL 09; Soft Matter 08]

What quantitative information should we seek to capture?

L
“—>
vorticity
V4

155s

z (cm) e=1.13 mm

22s 23.5s 29s 40s 80s
gradient, r

0.5s 1.1s

Timescale for onset f = O(IOOTR )
Wavelength A= O(L)



Linear instability of the interface

v(x,y,t)= v, (y) +6v(y)exp(ig . x+ wt)

W(x,y,t)

W, (») +5V~V(y)exp(iqxx + ot )

Substitute into governing equations (JS not RR) and retain only terms O(9)

LLLLLSL LSS LSS /L,
Yhien| —iitertace width | —> e N"
Yow | 7 o 7

T T ST

1D state unstable with respect to growth of undulations along interface

for wavevectors both in flow direction x and in vorticity direction z.



Linear instability of interface

"a) y=2.0
0.06|- il
o 0.04F il
0.02+ [=0.00125 |
0 0.5 1 1.5

q/2m

Positive growth rate = linearly unstable a)‘l — O(IOOTR)

Wavelength  A=0(L)



Nonlinear steady state

Greyscale of W

Velocity rolls
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Reminder so far...

A) Rheology of complex fluids

1) overview
2) continuum models

3) 0D rheology — flow curves

l unstable

1D rheology — shear banding

l unstable

2D rheology — instability of interface between bands



And now...

B) Hydrodynamics of active fluids

1) overview
2) continuum models

3) 0D rheology — flow curves

l unstable

1D rheology — shear banding

l unstable

2D rheology — spatio-temporally complicated states



Active matter as a complex fluid

Recall complex fluid: internal mesoscopic substructures

A
A =——
\ \/ ==

isotropic state nematic state

Substructures relax slowly - easily driven out of equilibrium



Active matter as a complex fluid

Active complex fluid: self propelled substructures

A S
\/\Q

A i
N < | T =
/\/ F

\ =

slow relaxation out of equilibrium
processes “from within”



Active matter as a complex fluid

Active complex fluid: self propelled substructures

A S
\/\Q

;&0 R=

0
NN \ NG
% N

\ =

slow relaxation non-eqbm ordering transitions

pProcesses swarming

spontaneous flows / “turbulence”

activity-induced phase separation



active extensile
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[L. Cisneros et al., Exp. Fluids, 07]

Bacterial turbulence

13

in B subtilis suspensions

Experimental phenomenology

active contractile

Spontaneously rotating vortices

in microtubules/motors

[F. Nedelec et al., Nature, 97]



Outline

B) Hydrodynamics of active fluids

2) continuum models



Recall: Modelling flow properties of complex fluids

Navier Stokes (+ incompressibility)
pDv= V.o+nVv-Vp

inertial solvent pressure

Viscoelastic stress O = G(W)

Equation of motion for mesostructure

D W = N(Vv, W) Often: nonlinear PDE of

reaction-diffusion type



Now: Modelling flow properties of active fluids

Navier Stokes (+ incompressibility)
pDv= V.o+nVv-Vp

inertial solvent pressure

Viscoelastic stress O = J( Q )

Equation of motion for mesostructure

D,Q =N(Vv,Q) Often: nonlinear PDE of

reaction-diffusion type



Continuum description: nematics hydrodynamics + activity

Navier Stokes
p(0r + uﬁ(‘?ﬁ)ua = (95(|_Iaﬁ) -+ né)ﬁ((‘)@uﬁ -+ (%ua)
Stress tensor

1 1
naﬁ — _P05a6+2§(Qaﬁ+§5aﬁ)Q'yerye—fHory(erﬁ"‘g&yﬁ)

OF
5804@71/

1
_g(Qory‘Fg&yy)nyB_aﬂQ*w +QoryH75—Ha”yQ75

Order parameter relaxation
DtQaﬁ — I_Hozﬁ

Molecular field

Hug = —(1—¢/3HNT)Qupst+0(QucQcs—005Q¢5/3)

—0Q%5Qaps + K9ZQugs

[Hatwalne et al. PRL 04; Liverpool et al. EPL 05; Kruse et al. PRL 04; Voituirez et al., EPL 05]



Isotropic — nematic transition

N\ Isotropic (I) ﬂﬂ / ematic
T) O\ fir <|>p< 3 ﬂﬂﬂ;ﬂ ) forqf >(ZI’)\I)

Here study:

rheology of active suspension in vicinity of this I-N transition



passive

00
0

Contractile versus extensile

active contractile £ < O active extensile { > 0

o\

microtubules/motors bacterial suspensions

Activity induces dipolar flow



Outline

B) Hydrodynamics of active fluids

3) 0D rheology — flow curves



0D active rheology: homogeneous shear flow ¢ > 3.0

-
-

active contractile

conventional yield stress



0D active rheology: homogeneous shear flow ¢ > 3.0

-
L

T

active contractile active extensile

conventional yield stress negative yield stress?!



Outline

B) Hydrodynamics of active fluids

l unstable

1D rheology — shear banding



1D active rheology, extensile systems for ¢ > 3.0

Negative yield stress in 0D > coexisting shear bands in 1D

0015 ——T——1 D LLLLL LSS LSS LSS
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X ? //4 : | Y
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g -_ 7T 777777
001 00 501 é T 0.52 003
V. Vs

Bands of equal, opposite shear rates
even in globally unsheared system!



1D active rheology, extensile systems for ¢ > 3.0

Negative yield stress in 0D > coexisting shear bands in 1D
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Outline

B) Hydrodynamics of active fluids

l unstable

2D rheology — spatio-temporally complicated states



2D systems: “phase diagram” for extensile at zero global shear

IIII I I lllllll I I lalllll
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e
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[SMF et al. PRE 2011, Hemingway et al. PRL 2015]

2D spontaneous flow patterns
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[Also: Hernandez-Ortiz et al. PRL 05; Ishikawa et al. JFM 08; Saintillan + Shelley PRL 08;
Giomi + Marchetti Soft Matter 12]



2D spontaneous flow patterns: scaling of correlation lengths

defect
spacing /,

nematic
correlation
length /,

107

1

10 [

" |58 (bg/L)? =5 %1076

00 (lg/L)* =2 x 1070

aa (lg/L)? =1x1075

activity, ¢

Iength ld,HN 4_]/2

[Hemingway et al., Soft Matter 2016]



Recall section A: Modelling flow properties of complex fluids

Navier Stokes (+ incompressibility)
pDv= V.o+nVv-Vp

inertial solvent pressure

Viscoelastic stress O = G(W)

Equation of motion for mesostructure

D W = N(Vv, W) Often: nonlinear PDE of

reaction-diffusion type



And section B so far: Modelling flow properties of active fluids

Navier Stokes (+ incompressibility)
pDv= V.o+nVv-Vp

inertial solvent pressure

Viscoelastic stress O = J( Q )

Equation of motion for mesostructure

| : nonl E of
Dz Q = N(VV, Q ) Often: nonlinear PDE o

reaction-diffusion type



Now include a polymeric background fluid

p (O +v308) vq = 03Xnp momentum balance - as before

Stress tensor - as before plus a new polymeric stress term

S = —PIL+2yD +{S4 + Soffr =c

Active Q sector obeys dynamics as before

Polymeric stress obeys Johnson-Segalman constitutive dynamics

This combines rheology of passive complex fluids (section A)

With the dynamics of active nematic (section B)

[Hemingway et al., Phys. Rev. Lett. 2015, Phys. Rev. E 2016]



[Hemingway et al., Phys. Rev. Lett. 2015, Phys. Rev. E 2016]

Elastomeric limit of polymeric dynamics, 7¢ — oo

Increasing
time

Slow coarsening of active domains, with associated strain field



Outline

A) Rheology of complex fluids

1) overview
2) continuum models
3) 0D -> 1D -> 2D: a study in bulk flow instabilities

B) Hydrodynamics of active fluids

1) overview
2) continuum models
3) 0D -> 1D -> 2D: a study in bulk flow instabilities

C) Interlude - numerical methods

D) Surface instabilities in complex fluids

1) extensional necking
2) edge fracture

3) wall slip



Numerical methods

Recall the equations to be solved:

a) force balance and incompressibility ("Stokes sector’):

nv2v—-vVp+VvV-X=0 Stokes force balance

V- v=0 incompressibility
b) viscoelastic constitutive equation
1
(0 +v-V)E = 2GD + (T, Vv) —;g(E) + £27%%

At any timestep in code, have two substeps:

First, solve Stokes sector at fixed ¥ to calculate v (and p )

Second, update constitutive equation at fixed v to calculate X

Will describe methods for periodic domain, give refs later for channels, etc



First substep: solve the Stokes sector

nv2v—-Vp+f=0 Stokes force balance
V-v=0 Incompressibility

These are linear and non-local, so best handled in Fourier space (FFTW)

n(ik)*vy —ikpr + fr =0 Stokes force balance
ik-v,=0 Incompressibility

Take divergence (ik -) of force balance eqgn. to find pressure

. k-fi
pk__l‘ k2

Substituting this back into force balance equation gives

.1 (6 kk) N

o

This is called the Oseen tensor (and is calculated just once, at each k)




Second substep: updating dynamical equations (at fixed v)

Recall the equation to be solved:

1
(3 +v - VI 26D + f (5, Vv) — = g(£)

The essence of this is captured in:  d,¢c + v - Vc =f(c) + VZc

So we have three ‘types’ of term (written now for our generalised variable c):

d;c = —v - Ve Spatially non-local, quasi-linear advective terms
drc = V?c Spatially non-local, linear diffusive terms
dec = f(c) Spatially local, non-linear terms

Split the operator and solve these successively in turn

I will illustrate in one spatial dimension, but easily generalises...



Spatially local, non-linear term

Recall the general form of the equation:
d.c+v-Ve="f(c)+ V?

Spatially local, non-linear term f(c) time-stepped in real space, eg via:

chtl _ .n

L= ()

This is "explicit Euler’ update and works OK for small enough At

More sophisticated methods e.g. Runge Kutta - can use larger At



Spatially non-local, linear diffusion term

Recall the general form of the equation:
d.c+v-Ve="f(c)+ V?
Spatially non-local, linear diffusion term is time-stepped in Fourier space:
d.c = V?c Form in real space
0.6, = (ik)?é,  After taking Fourier transform
Use semi-implicit time-stepping algorithm:

G (S G
= U
At 2

Other time-stepping algorithms are possible, e.qg., implicit Euler



Spatially non-local, quasi-linear advection term

Recall the general form of the equation:
d.c+v-Ve=1f(c)+ V?

Spatially non-local, quasi-linear advection term:
dsc = —v - Vc

Handle in real space using "third order upwinding’, and Euler time-stepping

el _ o
l At l + (a+C9:;i + a_C;_’i = O a+ — max(vi,O)’a— — min(vi, 0)
__ F2¢i41+ 3¢ —6Ci1 + ¢ ¢ _ “Cirz t6Ci41 — 3¢ — 2¢i44

Cxi = CAx ’ 6Ax



Summary of numerical methods

Time-stepping algorithm

Spatially local, non-linear terms handled in real space

Spatially non-local diffusive terms terms handled in Fourier space
Advective term handled in real space using third order upwinding
Stokes sector handled using Oseen tensor (for biperiodic flow)
For methods in channel, and details of algorithms used, see:

C. Canuto et al. Spectral Methods in Fluid Dynamics, 1988.

C. Canuto et al. Spectral Methods: Evolution to Complex Geometries and
Applications to Fluid Dynamics., 2007 .

R. Peyret. Spectral Methods for Incompressible Viscous Flow, 2002.

C. Pozrikidis, Introduction to Theoretical and Computational Fluid Dynamics, 2011.



Reminder so far
A) Rheology of complex fluids

1) overview
2) continuum models
3) 0D - 1D - 2D: a study in bulk flow instabilities

B) Hydrodynamics of active fluids

1) overview
2) continuum models
3) 0D - 1D - 2D: a study in bulk flow instabilities

C) Interlude - numerical methods



Today’s lecture

D) Surface instabilities in complex fluids

1) extensional necking
2) edge fracture

3) wall slip



Surface instabilities: three major challenges in experimental rheometry

Extension: Shear: Shear:
- O =
“necking” “edge fracture” “wall slip”
of filament of fluid-air interface of fluid w.r.t. plates
Theoretical goals: derive fluid-universal criterion for the onset of instability

understand the physical mechanism of instability

suggest practical strategies to mitigate instability



The three major challenges in experimental rheometry...?

Extension: Shear: Shear:
- O =
“necking” “edge fracture” “wall slip”
of filament of fluid-air interface of fluid w.r.t. plates
Theoretical goals: derive fluid-universal criterion for the onset of instability

understand the physical mechanism of instability

suggest practical strategies to mitigate instability



[ Review: McKinley + Sridhar, Ann. Rev. Fluid Mech. 2002 ]

Necking in extensional filament stretching rheometry

Experimental aim: Experimental practice:

E O%é —(
O'E<_ _}O-E

achieve homogeneous “necking” of filament
filament stretching. hampers measurement.

Measure extensional e.g.

constitutive curve: o, (€ ) (Partially controlled by

O . = tensile stress (force/area) feedback strategies

£ = Hencky strain rate e.g. Hoyle et al. JoR 2013.)




Necking in extensional filament stretching

Introduction: experimental observations

Extension:

Pre-existing criterion in an elastic solid: Considére criterion

Here: criterion for necking in viscoelastic fluids

Calculation 0): “back of a postage stamp”

“necking” Calculation 1): constant imposed tensile stress

of filament

Calculation 2): constant imposed Hencky strain rate

Necking - conclusions



Introduction to necking: widely seen in complex fluids

Dense colloids
[Smith et al Nat. Comm. 2010]

Doi Edwards + chain stretch
[Lyhne et al PRL 2009]

-/~
— e —

Step strain, entangled melts Bubble raft
[Wang et al. PRL 2007] [Kuo + Dennin JoR 2012]
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Wormlike micelles

Associative polymers
[Bhardwaj et al. J. Rheol. 2007]

[Tripathi et al. Macromol. 2006]




Pre-existing criterion: necking in a nonlinear elastic solid

< >

l NECKING \

[ — e — ] \
_/—x

— Z P > E
high €low & €. oh

Considere criterion:

Necking arises if tensile force is non-monotonic in extensional strain

[Considére Ann. Ponts Chausees 1885]



Criterion for onset of necking instability in complex fluids?

Considére criterion widely discussed...

,’-

Uniaxial extensional rheology of well-characterized comb polymers An experimental study on the criteria for fallure of polymer meits in
H. Lentzakis, D, Viassopoulos, D, J, Read, H. Lee, T. Chang, P, Driva, and N. Hadichristidis uniaxial extension: The test case of a polyisobutylene melt in
different deformation regimes

V. C. Barroso, R. J, Andrade, and J. M, Maia

Citation: Journal of Rheology 57, 605 (2013); doi: 10,1122/1,4789443

Citation: Journal of Rheology (1978-present) 54, 605 (2010). dei: 10.1122/1.3378791

u u 3 s AU . «
-

Bss. This can be explained by the Considere criterion whic
stic material sample failure occurs at the maximum in engi
d Hassager (1999)]. Recent work with entangled polymer]

kI on the apparent failure data (as calculated from the Considére
ught it into excellent agreement with the visual indications for the
. it would scem that, for this particular sample, independently of the

... but has obvious shortcomings:

« Takes force = force (strain) only. For fluids, strain rate is important too

« Static criterion: can’t predict dynamical rate of necking onset



[ Ide + White JNNFM 1977; Olagunju JNNFM 1999 & Int J. Nonlin Mech. 2011 ]

Criterion for onset of necking instability in complex fluid

Initially uniform cylinder

.z

cross sectional area

t) Hencky strain rate

(f) tensile stress

t) tensile force =A(l‘)0’E(l‘)



[ Ide + White JNNFM 1977; Olagunju JNNFM 1999 & Int J. Nonlin Mech. 2011 ]

Criterion for onset of necking instability in complex fluid

How/why does it just start to neck

.z

E <« —_— _. &
O — — o Consider small perturbations, i.e.,
E — N, E
perform linear stability analysis.
A(Z,t) cross sectional area Consider long wavelengths, i.e.,
é(z t) Hencky strain rate use slender filament approach.
b

O, (Z,t) tensile stress Neglect surface tension, i.e.,

study highly viscoelastic filaments.
F(l) tensile force y highty



Criterion for onset of necking instability in complex fluid

How/why does it just start to neck Extensional constitutive curve
é ¢ o
o D=4 o
E E
> £

If attainable, defines steady

state stress vs. strain rate in

in uniformly thinning filament



Criterion for onset of necking instability in complex fluid

How/why does it just start to neck Extensional constitutive curve
€ — ~ O% € O, A
Op ¢ A~ - O,

Calculation 0)

Initially uniform thinning cylinder > ¢

with steady state € and o (é
4 E( ) If attainable, defines steady

on constitutive curve. state stress vs. strain rate in

(Idealised. Unrealistic...?) in uniformly thinning filament



Criterion for onset of necking instability in complex fluid

How/why does it just start to neck Extensional constitutive curve
E ~— O% &
Op ¢ A~ - O,

Calculation 1)

Initially unloaded cylinder

then subject to switch on

of a constant stress O,



Criterion for onset of necking instability in complex fluid

How/why does it just start to neck Extensional constitutive curve
E ~— O% &
Op ¢ A~ - O,

Calculation 2)

Initially undeformed cylinder

then subject to switch on

of a constant strain rate 8



Calculation 0) initial uniform cylinder that already attained constitutive curve
Back of postage stamp calculation O A

A=-€A4 mass conservation

F=Ao (8) uniform force
E .
> £

Initially perfectly uniform cylinder with thinning area A = Ao exp(—ét)

¢ &g

plus spatially varying perturbations of small amplitude (3é(z,t),5a(z,t)




Calculation 0) initial uniform cylinder that already attained constitutive curve
Back of postage stamp calculation O A

A=-€A4 mass conservation

F=Ao (8) uniform force
E .
> £

Initially perfectly uniform cylinder with thinning area A = Ao exp(—ét)
plus spatially varying perturbations of small amplitude 5é(z,t),(5a(z,t)
Od = —0€ where strains more, thins faster )
( where thins, must strain faster

OF =0=0,0a+(do, [dé)oé

» Simple mechanistic understanding of the physics of necking instability



Calculation 0) initial uniform cylinder that already attained constitutive curve
Back of postage stamp calculation O A

A=-€A4 mass conservation

F=Ao (8) uniform force
E .
> £

Initially perfectly uniform cylinder with thinning area A = Ao exp(—ét)

plus spatially varying perturbations of small amplitude 5é(z,t),5a(z,t)

Sa = O, Sa Any constitutive curve with positive slope O, '>0

O gives instability to necking

[prime denotes derivative w.r.t. strain rate € ]



Calculation 1) Necking following imposition of a step stress

A=-€A mass conservation

F = A()-E uniform force

0, =GW +3n¢ viscoelastic + solvent

W =... viscoelastic constitutive egn.

Impose stress O . in initially undeformed, unloaded sample

E



Calculation 1) Necking following imposition of a step stress

A=-€A mass conservation

F = A()-E uniform force

0, =GW +3n¢ viscoelastic + solvent

W =... viscoelastic constitutive egn.

Impose stress O . in initially undeformed, unloaded sample
Strain rate quickly attains constitutive curve

No significant necking during that fast evolution to constitutive curve



Calculation 1) Necking following imposition of a step stress

A=—¢A mass conservation O, A
4>
F = A()-E uniform force
. ->
O, =GW +3ne viscoelastic + solvent
. —>
W = .. viscoelastic constitutive eqgn. > 8

Impose stress O . in initially undeformed, unloaded sample
Strain rate quickly attains constitutive curve
No significant necking during that fast evolution to constitutive curve

Once attains constitutive curve, necks as per calculation 0) s, _ Y& s,
!
OE



Calculation 1) Necking following imposition of a step stress

Colourscale: normalised necking rate

c?)=a)/é=aE/éaE'

10° =

ok /
- p

10°

Giesekus , fene P (indistinguishable) )

for (curves clockwise)

10°

Rolie-poly + chain stretch

10" =

Rolie-poly + finite chain stretch ) Y SV SURYHTN U WY SR

Rolie-poly without chain stretch

Flatter constitutive slope - more spectacular necking




[ Likhtman and Graham JNNFM 2003 ]

Calculation 1) Necking following imposition of a step stress

Colourscale: normalised necking rate

~ . C
CO—CO/&'—O’E/FJO'E e I10.o
ol IV B .
For Rolie-poly + finite chain stretch i / o 2
I1I B
Four regimes: Op"t N.
101%— II p = 04
I. Unstable even in slow flow limit Fl S I
10‘1;— 0.1

II: saturated orientation - highly unstable N A I N A T

£

ITI: strongly stabilised by increasing chain stretch

IV: saturated chain stretch - highly unstable



Calculation 1) Necking following imposition of a step stress

o =
@ =

.

inverted constitutive curve é(aE)

attains constitutive curve

contours of constant Oa




Calculation 2) Necking in filament stretching at constant Hencky strain rate

O'EA

. T .
8%( O% E
v

In any filament stretching experiment:

At what time (or strain) does necking start?

Does this correspond to experimentally identifiable rheological signature...

... such as an overshoot in the force as a function of strain dF/de < 0 ?

...or some characteristic feature in the time evolving stress signal O, (t) ?

[note we can equivalently report evolution with time f or strain € = £t ]



Calculation 2) Necking in filament stretching at constant Hencky strain rate

A=—-¢A mass conservation O A

F = AO-E uniform force

0, =GW +3ne viscoelastic + solvent

W =... viscoelastic constitutive egn.

Initial uniform cylinder (“base state”) has time-evolving area and stress

Se( 098 A=Aoexp(—ét) and GE=OE(t)

Small amplitude spatially varying fluctuations to onset of necking

ée( - % £ 6é(z,t),5W(z,t),(5a(z,t)




Onset of necking and its rheological signature

constitutive curve




Onset of necking and its rheological signature

constitutive curve




Onset of necking and its rheological signature

constitutive curve

10! 10° 100 10°

stress transient

force evolution

10>

10°¢

f10°

10

10'2 - ' L -‘): 1 ||n||- 1 i dul (AN (RTT]
107 107 100 10° 10"

time, ¢



Onset of necking and its rheological signature

Recall: the Considere criterion predicts necking when F'<0

[prime now denotes derivative w.r.t. strain and so equivalently w.r.t. time]

constitutive curve stress transient
104;
102
10°F
Elmn_ l/[\lllll L di Ll 71 covvoml v vl vl 3
10" 10° 100 10° 10° 107 10" 10° 10
€ time, ¢

force evolution

10>

10°¢

F %

10

10~2 4 A -’)‘ X .....|-
107 107 100 10° 10

timé, t
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F
10

10

We find:

Onset of necking and its rheological signature

constitutive curve

stress curvature

stress transient

force evolution

107

f10}

10

(S
10° 107 100 10° 10

time, ¢




10

F
10

10

We find:

Onset of necking and its rheological signature

constitutive curve

stress curvature

stress transient

and

modified Considere

a)=—0(i\ F!

n ) elastic

force evolution

10°
10"
F o
10"
time, ¢



10

F
10

10

We find:

Onset of necking and its rheological signature

constitutive curve

stress curvature

stress transient

and

modified Considere

a)=—0(i\ F'

n ) elastic

G NOT

force evolution }

n Y 4
10° - - g
,/

&=

10'F
F %

10

10'2 - ' L -‘). 1 ||n||- 1 i dul (AN (RTT]
107 107 100 10° 10"

time, ¢
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Numerical results: Rolie-poly model with finite chain stretch

constitutive curve

10;

IV

aual 3 s aaual s

I: slow flow regime
II: saturated orientation

III: increasing chain stretch
IV: saturated chain stretch

contours of constant 0a

=== stress curvature criterion o, "=0
describes necking onset well

— — = Considere criterion F'=0
force overshoot exists but describes

necking onset much less well

- = = mMmodified Considere mode F"' =0

elastic

only unstable without chain stretch

(so not here!)



Rolie-poly model with finite chain stretch: compare with experiment

Strain at failure vs strain rate

410“ 10° 107 10

[Malkin + Petrie 1997]

I O® SBR241K
35}
[ © @ © SBR179K
| A A & SBR250K
[ D A D SBR325K
[ 4 4 4 SBR250K*

O W E SBR616K

v

[Zhu and Wang 2013]



Necking of a filament in extensional stretching: conclusions

Predicted necking will inevitably arise in (most) complex fluids

Moved beyond Considére criterion of elastic solids dF /de <0
Constant stress: necking rate goes as inverse slope of constitutive curve
Constant strain rate: identified curvature criterion dng /de® <0....
.... and modified-Considere criterion, carefully interpreted for liquids !
Criteria hold in six popular constitutive models...

...and capture four different regimes seen experimentally in entangled polymers

D. M. Hoyle and S. M. Fielding, J. Nonnewton. Fluid Mech. 247 (2017) 32
D. M. Hoyle and S. M. Fielding, J. Rheol. 60 (2016) 1347(a), 1377 (b)

D. M. Hoyle and S. M. Fielding,  Phys. Rev. Lett. 114 (2015) 158301
S. M. Fielding, Phys. Rev. Lett. 107 (2011) 258301



Three key challenges in experimental rheometry

Extension: Shear:
—>
“necking” “edge fracture” “wall slip”
of filament

of fluid-air interface

of fluid w.r.t. plate




Outline: edge fracture in sheared complex fluids

Introduction to edge fracture: experimental observations

Early scaling criterion for the onset of edge fracture

{/ ) " Here: new criterion

Nonlinear simulation study of edge fracture

“edge fracture” Linear stability analysis for onset of edge fracture

of fluid-air interface

Mechanism and possible mitigation of edge fracture

Edge fracture - conclusions



[ Mall-Gleissle et al. Rheol. Acta 2002; Schweizer JoR 2003; Costanzo Rheol. Acta 2018 ]

Edge fracture in shear rheometry

Experimental aim:

Experimental practice:

"
v >

% “““““ yL}

— ’ >
measure shear e.g.
flow curve o (%

(¥) “edge fracture” of fluid-air

O = shear stress interface hampers rheometry.
Y = shear rate

Mitigation strategies:

guard rings; cone-partitioned plates

x = flow, y = flow-gradient, z = vorticity



Experimental observations of edge fracture

Entangled polybutadiene solution: Li et al. J. Rheol. 2013

0s 5s 20 s 50s

Entangled polybutadiene solution: Keentok & Xue, Rheol. Acta (1999)
Inn, Wissbrun + Denn Macromol 2005.

Shell Barbatia
grease

“Edge fracture is the limiting factor
in rotational rheometry”

Jensen & Christiansen, JNNFM (2008)




[ Tanner and Keentok, J. Rheol (1983); Lee, Tripp, Magda, Rheol. Acta (1992) ]

Early scaling criterion for edge fracture

Assume initial semi-circular " crack’ of radius a

Assume flow only in main flow (theta) direction

| B

Assume flow field has form as for Newtonian fluid

Viscoelastic constitutive equation: second order fluid

Second normal stress N, destabilising, surface tension I' stabilising

Expect fracture for |No.| > 2I'/3a.




Simulation study of edge fracture

Cone and plate cartoon Curved Couette cartoon

> =
o




Simulation study of edge fracture

Sketched structure of equations ( with no slip/permeation at walls )

0=V.v incompressible

0= 77V2v +V> - ¢VM — Vp generalised Stokes balance

DtZ =... viscoelastic constitutive model
D¢ = MV’ u phase field = 1 inside fluid and = -1 in air

Chemical potential u 2 diffuse interface (width /) - contact line motion

Interfacial surface tension T. Boundary condition - contact angle



Simulation study of edge fracture

Sketched structure of equations ( with no slip/permeation at walls )

0=V.v incompressible

0= 77V2v +V> - ¢VM — Vp generalised Stokes balance

Dx=... Johnson Segalman or Giesekus model
D¢ = MV’ u phase field = 1 inside fluid and = -1 in air

Chemical potential u 2 diffuse interface (width /) - contact line motion

Interfacial surface tension T. Boundary condition - contact angle



i—»cc

Simulation study of edge fracture

surface tension

1072 = 0.5

shear-rate 0—10
e equilibrium contact angle 0. = 30 — 150°
JS slip parameter a=0—0.6

Giesekus anisotropy parameter

a=0.1,0.4

L./L, aspect ratio fix L,/L, =12

4, /Ly air-polymer interface width ¢,/L, =0.01

lc /Ly polymer-polymer interface width  |{¢/L, = 0.01

(L. —A)/L, _|air gap (L.—A)/L, =3
I|n/Gore  [ratio of solvent and polymer viscosi-| controls banding in JS (0.05
| ties banding, 0.15 non—banding),l
| in Giesekus fixed 0.01

Nair/GoTo air viscosity fixed small 0.01

:—g = EQ/MGMTC

ratio of interfacial and polymer re-
laxation times

fixed small < 0.1

Key parameters
to explore

converge to
small or large



r’@

Simulation study of edge fracture

~
Surface tension F/GLy
Equilibrium contact angle Geq
Imposed shear rate YT
Johnson Segalman slip parameter a

_/
Solvent viscosity n/Gr

Key parameters

to explore



r’@

Simulation study of edge fracture

Surface tension F/GLy
Equilibrium contact angle Geq
Imposed shear rate YT
Giesekus anisotropy parameter 04
Solvent viscosity n/Gr

Key parameters

to explore



Initial condition to shear simulations

Equilibrate liquid/air phase field without shear

Then slightly perturb the interface

1

1

1

: e~ 10mS
- -
1

1

1

1

.

(only need to do this for contact angle Bgq = 90° )

h(y)%h(y)+gcos(ny)



JS, a= 0.3, n=0.15, Beq = 90°

Simulation results

stable flat interface

air polymer

stationary bowed interface increasing shear rate YT

at fixed surface tension F/GLy

propagating fracture at wall




JS, a= 0.3, n=0.15, Beq = 90°

Simulation results

) X stable flat interface
:
X g X
X : . x
. x x -
al: 0 /0 .
= x x =
'/ GL[ e ] . :
S ] © stationary bowed interface
107F o .
! ! oo | ! ! L
10" 10° 10'

YT [ propagating fracture at wall




Results: robustness against choice of constitutive model

10 E | AN 10 3 I \
10" : 10 ) e :
; S .
i Q) i
B ‘\ L
[ — \ |
10_2; coa=0, n,/Gr=0.15 U : coa=01,7/Gr =001
g sa=03,n,/Gr=015| N\ 7 i o = 04,1,/Gr = 0.01
& oo a=0.6,n,/Gr =0.15 -/ ooa=1, 1,/Gr=0.15
. L] ‘ e 10-3,."..|1 i T
10" 10° . 10" 10 10" . 10 10>
’Y’T ")/T

Johnson-Segalman model Giesekus model

Broadly the same behaviour in both constitutive models

Stability against edge fracture recovered fora = 1 (JS) or a = 0 (Gk)

where each model reduces to Oldroyd B model, with no N,



Some movies (and effect of wetting angle...)

more wetting O,y = 60°

neutrally wetting 6, = 90°

less wetting O = 120°




r»@

Linear stability analysis of edge fracture

Simulations (just discussed) with walls

V=4L

T np =GT

r | J 1
107°F / *=6=90 E

6 =060
—0 =120
biperiodic (x 2)

107

Also simulated sheared periodic BCs

V=4L

TNa

np = GT
Ns

i—»c:

Simplifications in linear analysis:

Periodic BCs

Sharp interface / = 0

(still with surface tension)

Air viscosity n, =0



Linear stability analysis of edge fracture

s i
3 V =vylL.
! o) N, ()
L e e e e e e - - -

e Work in limit of slow imposed shear flow, YT — 0

e Initial base state with stationary flat interface

Shear stress a(y) and second normal stress N, (y) in fluid



Linear stability analysis of edge fracture

C U T V =yL.
r e N, ()
I | R

Work in limit of slow imposed shear flow, YT — 0

Initial base state with stationary flat interface

Shear stress a(y) and second normal stress N, (y) in fluid

Add small amplitude perturbations in interfacial profile, flow fields, stresses

Substitute base state + perturbations into governing equations

Expand in powers of perturbation amplitude, keep only first order terms



Linear stability analysis of edge fracture

|
r o) N,()
| I | S

e Work in limit of slow imposed shear flow, YT — 0
e Initial base state with stationary flat interface

Shear stress a(y) and second normal stress N, (y) in fluid
e Add small amplitude perturbations in interfacial profile, flow fields, stresses
in-plane streamfunction: P (y, z,t) = (Ae~9% + Be™*?)eWteld,
out-of-plane velocity: #(y,z,t) = Ce 9%eWteldy,

interfacial profile: h(y,t) = iqDeWtelqy



Linear stability analysis of edge fracture

e Resulting eigenvalue is positive (giving instability) when:

surface tension

1 0 | Nz | / (stabilising)
2q°
\

wavevector of polymer stresses
perturbation (destabilising)




Compare linear stability prediction against simulations

Predicted threshold for instability

1 0|N2|/

10°E
Longest wavelength mode,
i.e., the one with q=2m/L, , 10
is first to go unstable r
10'25—
So threshold for this mode _3i/’//
gives threshold for edge 10 5_1
10

first to destabilise

Re-entrance due to saturating N, (y)



Compare linear stability prediction against simulations

Predicted threshold for instability

1 5|N2|/

Longest wavelength mode,
i.e., the one with q=2m/L, ,

is first to go unstable

So threshold for this mode
gives threshold for edge
first to destabilise

Re-entrance due to saturating

numMerics

stable

N, ()



Compare linear stability prediction against simulations

Eigenfunction of stability analysis (left) compared with simulation (right)

analytics simulation

in-plane
streamfunction

out of plane
velocity




[ Tanner and Keentok, J. Rheol (1983), Keentok and Xue, Rheol. Acta (1999) ]

Comparison with Tanner’s original prediction

e Our linear analysis gives e Tanner’s scaling predicted

106|N2|/ a|N,| > 2I'/3

e Our calculation: identifies role of shear stresses as well as N,
identifies differential nature of criterion
considers all wavelengths, without pre-assuming a crack size

reveals mechanism of instability and possible mitigation

e Setting ¢~! = @ and noting that for weak shear g~V and |N, |~ 2
we find our predictions and Tanner’s happen to give same low )/ scaling

e In strong shear, the two criteria depart markedly from each other



Hemingway et al. PRL (2017)  cf. Hinch, Harris, Rallison, JNNFM (1992) , Wilson & Rallison, INNFM (1997)

Mechanism of the edge fracture instability (zero surface tension here)

~

8y 77/ :}’ 5N2 | shear (%

+
,, o [= |+ |-
: 2 — 0| 0 |0
i OO =t R
5 4+ (0| 0 |o
! 0 |— |+ [ =

—_—

1. Tilt ayh in interface exposes jump in shear-stress Ao

2. To maintain force balance, need shear-rate perturbation y

3. N, then suffers a shear perturbation, &, = dN,/dy x y

4. This must be balanced by opposite extensional perturbation, ~
which is achieved by a flow field ¥, that enhances original tilt 0,/



How might we seek to mitigate edge fracture ?

T \\\\‘ T 1T T

B e_enbath 001 N 7 1 a N
e sape } I 2|/
o, g 2q
I i il
2 — . . .
10°¢ (i.e., bathing fluid)
[ - viscosity increases
10°E E .
e R in curves downwards
10 10'

e Now re-do linear analysis with non-negligible viscosity for outside “air”
e j.e., in experimental practice, bathe flow cell in an immiscible Newtonian fluid

e Destabilising jump Ac in shear stress between fluid & “air” reduced



Edge fracture: conclusions, outlook....

Edge fracture near ubiquitous and limits rheological measurements
Linear stability analysis and nonlinear simulations of edge fracture

New criterion for, mechanism and possible mitigation of edge fracture
E. J. Hemingway, H. Kusumaatmaja + S. M. F.  Phys. Reuv. Lett., 119, 029006 (2017)

E. J. Hemingway and S. M. Fielding, J. Rheol, 63, 138002 (2019)
Modest precursors of edge fracture can cause (apparent) bulk shear banding
E. J. Hemingway and S. M. Fielding, Phys. Rev. Lett., 120, 138002 (2018)

Bulk shear banding can cause edge fracture
S. Skorski and P. D. Olmsted, J. Rheol., 55, 1219 (2011)

There is a complicated interplay between shear banding and edge fracture
E. J. Hemingway and S. M. Fielding, J. Rheol., 64, 1147 (2020)



Three key challenges in experimental rheometry

Extension:

“necking”

of filament

Shear:

B

“‘edge fracture”

of fluid-air interface

“‘wall slip”

of fluid w.r.t. plates




Wall slip in shear rheometry

Introduction to wall slip in soft jammed suspensions

Experimental observations

Immersed boundary simulation method

of fluid w.r.t. plates
Slip - conclusions




Wall slip in shear rheometry

Experimental aim:

measure shear e.g.

flow curve & (y)

O = shear stress

3./ = shear rate

Experimental practice:

Vs

“‘wall-slip” where fluid meets

plate(s) hampers rheometry.

Common mitigation strategies:
chemically coat or

physically roughen wall




Introduction to wall slip: key measurements

v
W> y=L=1
—— - Ywall = Vy/ Ly I
v=v(y) velocity profile across gap coordinate, y

Vi, = V(o) slip velocity, often as function of shear stress, &

c=0(y) flow curve, using either..
shear rate from plate velocities, including slip "ywau

shear rate within fluid bulk, removing slip Vbulk



[Zhang et al. PRL 2017; Review: Cloitre, Bonnecaze, Rheol. Acta 2017 + refs therein]

Slip in jammed suspensions of soft particles (emulsions, microgels...)

flow curve, including slip

velocity profiles across gap

[Cloitre et al. PRL 2004]
100

[Becu et al. PRL 2006]

rough walls | 4

o (Pa)
o,
N

A emulsion AA

as ; | @O
microge

smooth walls g

103 102 10" 10° 10" 102 10°

Vap(S7)

0O 02 04 06 08
X (mm)

Slip velocity versus stress: usually fitto V,~ G 7

but exponent controversial (p = 1 > 2), and different above/below yield



[ See also: Pelusi et al. Europhys. Lett. 2019 ]
Simulate densely packed soft particles sheared between hard bumpy walls

—

hard walls with hard bumps Stokes fluid inside particles

elastic soft particle perimeters Stokes fluid between particles



[Review of immersed boundary methods: Peskin Acta Numerica 2002 ]

Simulate densely packed soft particles sheared between hard bumpy walls

hard walls with hard bumps Stokes fluid inside particles
(Lagrangian “immersed boundary' e ) (solve Stokes eqn on Eulerian grid + )
elastic soft particle perimeters Stokes fluid between particles
(Lagrangian “immersed boundary’ e ) (solve Stokes eqn on Eulerian grid + )
‘\_/'

Peskin delta functions



Typical resolution of Stokes flow between particles

Capture fluid mechanics in
particle-particle and
particle-wall gaps
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Units and key parameters

fix B/b =5.0
Key parameters: Units:
particle area fraction ¢ average particle radius, R
wall roughness 3 =b /R particle surface elastic constant

imposed stress o viscosity of Stokes fluids



A movie
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Steady state flow curve (removing slip)

- 0.5 1
=00 —@—
o > Gy m o 8 =0.117
O B=0.235 sy
i - B =0.295 @
O
O 6 =0.37
o0, - — -
Y 001 e - O+ A - - [T - ] 6—059 B
L = b I |
1076 107* 1072
Ybulk

» Steady shear above yield stress, with Herschel-Bulkley fit

» Indefinitely slowing creep below yield stress, with no steady state



Steady state flow curve (including slip)

- 0.5 =
B=00 —e—
G>GCy 7 ¢ 8 =0.117
0.1 - B=0.235 sy
= - 6 =0.295 @
B=0.37
CS<CSy - $=0.59 -m
0.01 p:----+
i {1 |
107° 10~ 10~2

Ywall

» Steady shear above yield stress, with Herschel-Bulkley fit

> Apparent steady shear below yield stress, for smooth walls, due to slip



Steady state flow curve (including slip)

B 05 - | , B
g B=00 —@—
c>c, 1 © £ 8 = 0.117
0.1 - llb2 — B=0.235 sy
- a v [ B=0.205 -
/ B =0.37
o< Gy - B=0.59 . m&-
0.01 - £ —
! /[ |
10~° 10~4 10~2
Ywall

» Steady shear above yield stress, with Herschel-Bulkley fit

> Apparent steady shear below yield stress, for smooth walls, due to slip



Normalized profiles of velocity across gap with smooth walls

l—T—T—7 _
0.3 oc=0.01 =-- L o<,
o= 0.05 _
. 0.6
W 1 o =0.10
O = 0.15 == - G>Gy
0.2 1 o0=030 —
0 N

0 02 04 06 08 1

yHOI'l’l'l

» Almost total slip below yield stress. Partial slip above yield stress.



Normalized profiles of velocity across gap with smooth walls

1 I I I I | 1. Thin Newtonian solvent layer,
08k ! depleted of particles,
=y immediately adjacent to wall
- 0.6|- ",.-*""' | (above and below vyield stress)
*g | D |
= (04 >0 —

2. Enhanced fluidisation
of first few particles layers
into the bulk

|
il | | I I (only above yield stress)
0 0.2 04 06 08 1

yHOI'IIl

» There are two separate contributions to the slip, with different physics

(Only one involves depletion of final layer of particles away from wall.)



Normalized profiles of velocity across gap with smooth walls

1 I I I I | 1. Thin Newtonian solvent layer
|
0.8 ‘, 0.50)—
~ 0.25F
= 0.6 P | 0.00
5 | ST 0.00 0.01 0.02
£ 0.4 —

2. Enhanced fluidisation
of first few particles layers
into the bulk

|
il | | I I (only above yield stress)
0 0.2 04 06 08 1

ynorm

» There are two separate contributions to the slip, with different physics

(Only one involves depletion of final layer of particles away from wall.)



Normalized profiles of velocity across gap with smooth walls

l—T—T—7 _
0.3 oc=0.01 =-- L o<,
o= 0.05 _
. 0.6
W 1 o =0.10
O = 0.15 == - G>Gy
0.2 1 o0=030 —
0 N

0 02 04 06 08 1

yHOI'l’l'l

» Almost total slip below yield stress. Partial slip above yield stress.



Slip velocity vs. shear stress for smooth walls

0 0.05 0.1 0.15 0.2

Fit to two separate linear scalings:
Vi(o < oy) =vn(B)o
V(o > ay) = v(B)(0 — ay)



Slip velocity vs. shear stress for increasing wall roughness

. 08 roughness
C‘E 82 of V\?all, B,
) . increases

0.2
0&

0.5

» For walls rough enough compared with particle radius, slip is suppressed



Slope of slip velocity with shear stress vs. wall roughness, 3

2.0
N

1.0

0.0
0 0.25 0.5

» For walls rough enough compared with particle radius, slip is suppressed



Wall slip: conclusions, outlook...

Wall slip occurs widely in sheared complex fluids

In jammed soft particle suspensions, it dominates flow curve at low shear
Immersed boundary simulation method capable of properly capturing slip

Find flow curve indeed strongly modified at low shear

Two contributions to slip: Newtonian layer at wall; fluidised particle layers

Separate linear scalings of slip velocity with stress above and below yield

Strong suppression of slip above a critical wall roughness

[ G. Jung and S. M. Fielding, submitted for publication ]
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