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We use the Ehrenfest urn model to illustrate the subtleties of error estimation in Monte Carlo
simulations. We discuss how the smooth results of correlated sampling in Markov chains can fool
one’s perception of the accuracy of the data and show via numerical and analytical methods how to
obtain reliable error estimates from correlated samples. © 2010 American Association of Physics Teachers.
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I. INTRODUCTION AND SUMMARY

The Ehrenfest urn model1 is sometimes picturesquely de-
scribed as fleas jumping between dogs. One imagines a sys-
tem of N numbered fleas residing on dog A or dog B, each
jumping from one dog to the other when its number is called.
This model has been used to illuminate thermodynamic
equilibration and equilibrium.2–4 Monte Carlo simulations of
the process are particularly instructive. One of us noticed,5

but let pass without investigation, the errors associated with
such simulations. This neglect is remedied in the present
paper, raising issues known to specialists but perhaps not
widely enough appreciated. Despite its importance, the topic
is not covered in depth in most text books.6,7 The tutorial
exposition given here may therefore be of general interest.

Although the message of this paper is that single flea hops
are an inefficient way of sampling the steady state, the pro-
cess is ideally suited to understanding thermodynamically
irreversible transitions from unlikely to likely
configurations,2–5 as well as fluctuations in equilibrium,
which in typical physical situations also proceed with small
local changes similar to the flea hops in our model.

The paper is organized as follows. Sec. II contains a brief
description of the essence of the Monte Carlo method. Al-
though the procedure is useful in cases where an enumera-
tion of possibilities is prohibitively difficult, the urn model is
simple enough to allow explicit analysis. In the main body of
the paper we exploit only the fact that the steady state prob-
ability of n fleas on dog A is a binomial distribution and use
this analysis as a check for various numerical simulations. In
Sec. III we show that trials of N-flea configurations yield
good results with expected errors. We then simulate the
single flea transfer used in Refs. 3–5 and encounter the ap-
parent inaccuracies we have mentioned. In Sec. IV correla-
tions between successive samples and their effect in reducing
the number of independent trials are studied, and a numerical
method �“binning analysis”� is used to illuminate and elimi-
nate the problem, leading to the conclusions in Sec. V. In the
Appendix the Markov �that is, memory less� random process
underlying single flea transfers is treated analytically using
methods similar to those in Ref. 2, revealing nice features of
the approach to equilibrium and the autocorrelation problem.

II. THE MONTE CARLO METHOD

It is said that Stanislav Ulam8 invented the Monte Carlo

method in the 1940s when playing Solitaire while lying sick
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in bed. He wanted to know the probability of winning in
Solitaire but was faced with the problem that with 52!
�1068 different ways of arranging the cards, he could not
exactly calculate the chance of winning. He realized that by
just playing 100 games and counting the number of wins, he
could get a pretty good estimate.

This insight suggested a way of tackling the problem
caused by the exponential growth with size in the number of
states of a statistical system. In a general statistical context,
we might wish to calculate weighted averages over configu-
rations. However, even in our simple model the number of
ways of distributing fleas between the two dogs is 2N. These
configurations may be denoted by N-dimensional vectors x�
of which each element xn, 1�n�N, can take on two values.
If each configuration is assigned a normalized weight p�x��,
�x�p�x��=1, the weighted mean of an arbitrary function A�x�� is

�A� 	 �
x�

A�x��p�x�� . �1�

An exact summation over all states is usually impossible for
N�40 even on the most powerful supercomputers. The
Monte Carlo method,6,7 which Ulam named after the famous
casinos in Monaco,9 estimates such sums by a partial sum
over a sample of only M �2N configurations x�i,

Ā 	
1

M
�
i=1

M

Ai, �2�

where the configurations x�i are chosen randomly with the
correct probability p�x��, and we have introduced the short-
hand notation Ai	A�x�i�.

Choosing the sample randomly and with the correct prob-
abilities is as crucial here as in opinion polls before presi-
dential elections: only a truly random and representative
sample will give meaningful results.

The estimate Ā of the true expectation value �A� is a fluc-
tuating quantity that will deviate from the true value. Ac-

cording to the central limit theorem, Ā is normally distrib-
uted around �A� with a standard deviation �A, which we shall
calculate in the following.

As a warm-up we show that the expectation value of Ā is

�A�,
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�Ā� =
 1

M
�
i=1

M

Ai� =
1

M
�
i=1

M

�Ai� �3a�

=
1

M
�
i=1

M

�A� = �A� . �3b�

In going from Eq. �3a� to Eq. �3b�, we have used the linearity
of the expectation value. We also have made use of the fact
that the samples x�i are all chosen from the same distribution
p�x�� so that the Ai’s have the expectation value given by
Eq. �1�.

Similar reasoning allows the calculation of the average of
the square of the sample mean,

�Ā2� =
� 1

M
�
i=1

M

Ai2� =
1

M2�
i=1

M

�
j=1

M

�AiAj� �4a�

=
1

M2�
i=1

M

�Ai
2� +

M − 1

M
�A�2 �4b�

=
1

M
�A2� +

M − 1

M
�A�2, �4c�

where we have inserted the definition of the average �2�,
used the linearity of the expectation value, and also exploited
the fact that for independent samples x�i and x� j, the expecta-
tion value for i� j factorizes as

�AiAj� = �Ai��Aj� = �A�2. �5�

The statistical error �A, the root-mean-square deviation of

the sample mean Ā from the true expectation value �A�, is
thus given by

�A
2 	 ��Ā − �A��2� �6a�

=
1

M2�
i=1

M

�Ai
2� −

1

M
�A�2 �6b�

=
1

M
��A2� − �A�2� 	

1

M
Var A , �6c�

which is the basis of the central limit theorem. It is, however,
more useful to express the error in terms of the sampled Ai’s.

A naïve guess would be to estimate the variance as A2− Ā2,
where

A2 	
1

M
�
i=1

M

Ai
2. �7�

If we calculate the expectation values via Eq. �4c�, we obtain

�A2 − Ā2� =
M − 1

M
Var A . �8�
The true estimator is thus
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Var A �
M

M − 1
�A2 − Ā2� , �9�

where the �small� fluctuations in the right-hand side of Eq.
�9� have been ignored. Taking the square root, we obtain the
final result

�A =�Var A

M
��A2 − Ā2

M − 1
. �10�

The �1 in the denominator, which is irrelevant for the large
values of M in the simulations, reflects the loss of one piece
of information in calculating the sample mean.

III. DOGS AND FLEAS

After these preliminaries, let us consider the fleas on two
dogs game as played in Refs. 5 and 4. The game starts with
two dogs—a flea-ridden dog B �Burnside� with N=50 fleas
and a clean dog A �Anik�. Once per time step a randomly
chosen flea hops from one dog to the other so that asymp-
totically the probability of a flea being on one of the dogs is
1/2. In this simple case it is possible to analytically calculate
the probability distribution P�n� of having n of the N fleas on
one dog. It is the binomial distribution

Peq�n� =
1

2N�N

n
 =

1

2N

N!

n ! �N − n�!
. �11�

This exact solution will be very useful as a test for our
Monte Carlo simulations.

A. Direct sampling

Our first Monte Carlo simulation does not follow the
above game but will directly sample the asymptotic distribu-
tion. For each sample, we loop over all fleas and draw a
uniformly distributed random binary integer u� �0,1�. If u
=0, the flea is positioned on Anik, otherwise on Burnside. To
estimate the distribution P�n� for the number of fleas n on
Anik, it is sufficient to record the histogram H�n�, which
counts how often n fleas are on Anik. From a histogram built
from M repetitions, we can compute an estimate for P�n� as

P�n� =
1 � H�n� + 0 � �M − H�n��

M
=

H�n�
M

�12�

because our estimator is one whenever there were n fleas on
Anik and zero otherwise. Because 12=1 and 02=0, we obtain
the same estimator for the square,

P�n�2 =
12 � H�n� + 02 � �M − H�n��

M
=

H�n�
M

, �13�

from which we obtain the error estimate

�P�n� ��H�n�/M − H�n�2/M2

M − 1
. �14�

In Fig. 1 we compare the exact solution to the Monte Carlo
solution for M =10 000 samples and find that, as expected
from the normal distribution, the exact solution lies within
the error bars about 2/3 of the time. The Monte Carlo simu-

lation is working well!
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B. The dogs and fleas simulation

We next implement the simulation of the dog and fleas
game. We start with all N=50 fleas on Burnside and hence
n=0. In each simulation step we then choose one of the N
fleas at random by drawing a uniform integer random num-
ber u between 1 and N and move that flea to the other dog. In
practice, we label the fleas so that fleas 1 , . . . ,n are on Anik
and fleas n+1, . . . ,N are on Burnside. Hence if u�n, we
move a flea from Anik to Burnside and decrease n by 1;
otherwise we move a flea in the opposite way and increase n
by 1.

In our simulation we need to wait a while until the distri-
bution of fleas has equilibrated, and we can expect to observe
the asymptotic distribution. We thus perform M /5 flea hops
for equilibration without recording any measurements. Only
then do we start with the actual simulation and perform M
flea hops, recording the histogram H�n�.

In simple examples like this simulation, we might actually
be able to guess the number of steps needed for equilibration.
As we show in the Appendix, only about 50 hops are needed
to reach equilibrium. Why then did we throw away 20%, or
2000 samples? The reason is that in more complex cases we
often have no idea of the actual equilibration times. It is then
strongly recommended to err on the side of throwing away
too many samples rather than too few. By throwing away the
first 20% of our samples, we increase our statistical error by
only about 10% �remember the inverse square root scaling of
the error with the number of samples�, which is a small price
to pay to be on the safe side regarding equilibration.

In Fig. 2 we compare P�n� to the exact solution and ob-
serve deviations that have been noted earlier.5 At first sight,
the deviations are puzzling because the curves look smooth.
However, the asymmetric shapes cannot be correct, and the
errors bars calculated using Eq. �10� with M =8000 are too
small. That these features are general can be seen by repeat-
ing the simulations with different random seeds. Sometimes
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Fig. 1. Comparison of the flea distribution P�n� obtained in a direct Monte
Carlo simulation with the exact asymptotic result. M =10 000 samples were
recorded.
the results look mostly right, but often they are just plainly
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wrong as in Fig. 2. The large variations observed also con-
firm that something is wrong with the error estimates.

A little further thought suggests the reason. Equation �14�
is an estimate for the relative deviation from the mean of M
trials of a binomial process with a success probability esti-
mate P�n�. But M single flea hops is not the same as M trials
of the whole distribution as performed to obtain Fig. 1.

IV. AUTOCORRELATION EFFECTS AND ERROR
ESTIMATES

We need to reconsider the derivation of the errors in Eqs.
�6a�–�6c� and �7�–�10�. The only assumption, besides a finite
variance, in Eq. �5� was the independence of samples x�i and
x� j for i� j. Although this independence is clear in the direct
simulation—at least as long as we use independent random
numbers to create the flea distributions—it is not true of the
original dogs and fleas simulation in which subsequent
samples differ only by a single flea. The samples form a
“Markov chain.” As remarked, this method of sampling ex-
plores the space of states much less efficiently than the cal-
culation of Fig. 1 in which every flea is addressed at every
trial. Equation �5� and thus also the error estimate �10� are
not valid for correlated samples from a Markov chain. The
correlation between samples is also responsible for the
smooth shape of the results, which fools our intuition about
the errors of the results.

In the following we will discuss two methods for obtain-
ing reliable errors of a Monte Carlo simulation.

A. Error estimates from independent simulations

The easiest way of obtaining reliable error estimates is to
create independent samples. To obtain them we perform the
simulation multiple times with different random seeds. In
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Fig. 2. Comparison of the flea distribution P�n� obtained in Monte Carlo
simulations of the original dog and fleas game with the exact asymptotic
result. Two different random seeds were used; M =10 000 and M /5 steps
were used for equilibration. Something is wrong because the exact results
are significantly outside the error bars, not even the two simulations agree,
and the asymmetric shape cannot be right.
each simulation we record an estimate for P�n�. Then we
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obtain a final estimate for P�n� by averaging the P�n� ob-
tained in the individual simulations and an error estimate by
applying Eq. �14� to the P�n� obtained from these indepen-
dent simulations.

We show results from performing L=10 simulations of
M /L=1000 measurements each in Fig. 3. Although we still
see large deviations and the maximum appears too high as in
Refs. 4 and 5, the error bars are now much larger and appear
correct—they include the correct value most of the time.

Although performing L independent simulations gives re-
liable error bars, we pay the price that each of the L simula-
tions needs to be equilibrated independently so that in our
case we performed LM /5=20 000 equilibration steps in ad-
dition to M =10 000 measurement steps.

B. Error estimates from uncorrelated samples

Another way of obtaining reliable errors is not to measure
after every flea hop but to let many fleas hop before perform-
ing a measurement. In Fig. 4 we show the results from a
simulation performing Nhop=99 flea hops10 between each of
the M =10 000 measurements. Now the Monte Carlo results
agree with the exact results, and the error bars are again
much smaller but at the cost of having to perform Nhop=99
times more flea hops and also losing all of the potentially
useful information between measurements. In addition, we
have no way of knowing whether Nhop=99 hops between
measurements are sufficient to create uncorrelated samples
for which Eq. �5� holds, or whether a much smaller suffices
or a much larger number is needed.

C. Error estimates for correlated samples

The previous analysis clearly demonstrates that the corre-
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Fig. 3. Comparison of the flea distribution P�n� obtained in Monte Carlo
simulations of the original dog and fleas game with the exact asymptotic
result. Now L=10 independent simulations were performed for a total of
M =10 000 measurements. Each simulation performed M /L measurements,
and was equilibrated for M /5 steps. Now the error bars, estimated from the
L=10 independent simulations are much larger and agree with the exact
result, but at the cost of having to equilibrate L simulations.
lation between samples x�i and x� j is the origin of our prob-
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lems. Instead, let us correct the error estimate Eq. �10� for the
case of correlated samples by including the terms that we
omitted under the assumption of independence �5� to obtain

�A
2 =

Var A

M
+

1

M2 �
i�j=1

M

��AiAj� − �A�2� . �15�

Previously we had assumed that due to independence the
second term is zero. Let us now replace the assumption of
independence by a rapid decay as �i− j�→� �Ref. 11� and
rewrite the second term as

1

M2 �
i�j=1

M

��AiAj� − �A�2� =
2

M2 �
i�j=1

M

��AiAj� − �A�2� �16a�

=
2

M2�
i=1

M

�
t=1

M−i

��AiAi+t� − �A�2�

�16b�

=
2

M
�
t=1

M−1

��A1A1+t� − �A�2� �16c�

�
2

M
�
t=1

�

��A1A1+t� − �A�2� �16d�

	
2

M
�Var A�	A. �16e�

To go from the right-hand side of Eq. �16a� to Eq. �16b�, we
relabeled the indices. In Eq. �16c� we used the identical
distributions to limit the sum over i to the first index; in
Eq. �16d� we extended the sum over t to infinity because the
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Fig. 4. Comparison of the flea distribution P�n� obtained in Monte Carlo
simulations of the original dog and fleas game with the exact asymptotic
result. Now Nhop=99 flea hops were made between the M =10 000 measure-
ments and M /5 steps were used for equilibration. Nhop=99 seem to be
enough hops to decorrelate the samples and give reliable error estimates.
correlations are expected to decay fast enough; and in
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Eq. �16e� we used the definition of the integrated autocorre-
lation time 	A of A,

	A 	
�t=1

� ��A1A1+t� − �A�2�
�A2� − �A�2 . �17�

We substitute Eq. �16e� into Eq. �15� and obtain the final
error estimate

�A =�Var A

M
�1 + 2	A� �18�

and see that due to correlation effects, the error is increased
by a factor of �1+2	A. Equation �18� gives the effective
number of uncorrelated samples as �M / �1+2	A���M.

Although this equation explains the failures of the simple
error estimate �10�, it does not help us much because the
estimation of 	A via Eq. �17� is expensive and cumbersome.
A fast and easy way of estimating errors is explained in the
following, and an exact calculation of the autocorrelation
time for this model is presented in the Appendix.

D. Error estimates from a binning analysis

The binning analysis is a method of analyzing Monte
Carlo data based on Eq. �18�. It provides both an estimate for
the error �A and for the integrated autocorrelation time 	A.
Starting from the original series of measurements Ai

�0�=Ai,
we iteratively create “binned” series by averaging over two
consecutive entries,

Ai
�l�
ª

1
2 �A2i−1

�l−1� + A2i
�l−1�� �19�

for i=1, . . . ,Ml	M /2l.
Every entry in this new and shorter time series is the av-

erage of two adjacent values in the original one. The mean of
the new binned time series is the same as the original time
series. The averaged values are, however, less correlated than
the original ones. The �incorrect� error estimates using Eq.
�10� for uncorrelated samples gives errors,

�A
�l� �� 1

Ml�Ml − 1��i=1

Ml

�Ai
�l� − A�l��2, �20�

which increase as a function of bin size 2l. These errors
converge to the correct error estimate

�A = lim
l→�

�A
�l� �21�

when the bins become uncorrelated for sizes 2l
	A.
It is best to stop this binning procedure when the number

of bins is still larger than 30, which statisticians consider a
large sample. Below that the sampling errors may become
too big.

This binning analysis thus gives a reliable recipe for esti-
mating errors and autocorrelation times. One has to calculate
the error estimates for different bin sizes l and check if they
converge to a limiting value. If convergence is observed, the
limit �A is a reliable error estimate, and 	A can be obtained
from Eq. �18� as

	A =
1

2�� �A

�A
�0�2

− 1� . �22�

If no convergence of the �A
�l� is observed, we know that 	A is
longer than the simulation time, and we have to perform
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much longer simulations to obtain reliable error estimates.
This is illustrated in Fig. 5.

Let us redo one of the simulations in Sec. III B and per-
form a binning analysis. In Fig. 6 we show our results for
M =100 000 measurements, calculating the errors using the
binning analysis. Now everything is consistent.

Note that the autocorrelation time depends on the variable
being sampled. For example, calculating this quantity for the
number n of fleas yields 24.0, which is larger than the value
obtained from Fig. 5 for the peak of the histogram.
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Fig. 5. Binning analysis of the error �P�25� of the central value P�25� of the
distribution. It is seen that for M =10 000 samples, the errors have not yet
converged, while for M =100 000 samples, convergence starts to be seen. At
least M =100 000 samples have to be taken to get reliable results.
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Fig. 6. Comparison of the flea distribution P�n� obtained in Monte Carlo
simulations of the original dog and fleas game with the exact asymptotic
result. This time M =100 000 correlated measurements were taken, and the

errors were calculated using a binning analysis.
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To implement the binning analysis, it is not necessary to
store the full time series. Instead, the memory of 2 log2 M
numbers is sufficient. Interested readers are encouraged to
look at the implementation in the file src/alps/alea/
simplebinning.h of the ALPS libraries.12

V. CONCLUSIONS: LESSONS LEARNED

In the discussion of the dogs and fleas simulation, we have
seen some of the subtleties and pitfalls in estimating reliable
errors for results of Monte Carlo simulations. Correlation
effects make it necessary to perform a binning analysis in-
stead of using Eq. �10�, which is valid only for independent
samples.

We have not touched on the issue of cross-correlations
between different quantities that influence error estimates,
for example, the specific heat CV= ��E2�− �E�2� /kBT2. To cal-
culate such errors a bootstrap or jackknife method13 is re-
quired in addition to a binning analysis.

An important lesson learned is that a reliable analysis of
errors of a simulation can be much more difficult than per-
forming the simulation but is an essential part for any nu-
merical project. We might have drawn incorrect conclusions
and conjectured a new physical phenomenon based on our
too small error bars.

We have also seen that using improved methods, such as
the direct sampling of the distribution in Fig. 1, smaller er-
rors and more reliable results can be obtained. Unfortunately
direct sampling is impossible in all but the simplest
models—but improved algorithms are the key to reliable
large scale simulations. It is interesting that over the past
three decades progress in algorithms for the simulation of the
Ising model has outperformed Moore’s law. Running modern
algorithms on 30 year old computers would be faster than
running 30 year old algorithms on the fastest supercomputers
of today!14

All of the programs used to produce the data in this paper
are included in the example/sampling directory of the latest
release of the ALPS libraries.12
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APPENDIX: EXACT CALCULATION OF THE
EQUILIBRATION AND AUTOCORRELATION
TIMES

The evolution of the number of fleas on Anik in our Monte
Carlo simulation is done probabilistically using a Markov
process. Let Pi�n� ,n=0,1 , . . .N, be the ith update of the
probability of n fleas on Anik. Then2,4,5

Pi+1�n� =
N − n + 1

Pi�n − 1� +
n + 1

Pi�n + 1� �A1a�

N N
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=
1

N
�

n�=0

N

T�n,n��Pi�n�� , �A1b�

where the coefficients are the relative probabilities for a flea
to hop on or off Anik, written in the last line in terms of a
�N+1�� �N+1� tridiagonal matrix T with the entries N ,N
−1,N−2, . . . ,2 ,1 on the subdiagonal, 1 ,2 ,3 . . . ,N−1,N on
the superdiagonal, and zero elsewhere,

T 	�
0 1 0 . . . 0 0 0

N 0 2 . . . 0 0 0

0 N − 1 0 . . . 0 0 0

] ] ] � ] ] ]

0 0 0 . . . 0 N − 1 0

0 0 0 . . . 2 0 N

0 0 0 . . . 0 1 0

� . �A2�

The N+1 eigenvalues � and right eigenvectors r�n� of this
matrix can be obtained from the generating function

f�u,v� = �
n=0

N

unvN−nr�n� . �A3�

When used with the eigenvalue equation �n�T�n ,n��r�n��
=�r�n�, f is seen to obey the differential equation

�f = �u
�

�v
+ v

�

�u
� f , �A4�

whose solution in the required form f�u ,v�=vNh�u /v� is

f� = K��v + u��N+��/2�v − u��N−��/2, �A5�

where K� is independent of u and v. The series in u and v
must terminate, requiring the two exponents in Eq. �A5� to
be non-negative integers, thus implying that the eigenvalues
are �N , � �N−2� , . . . , �1 �for odd N� or zero �for even N�.

The left �dual� eigenvectors l�n� are generated by

g�u,v� = �
n=0

N

unvN−n�N

n
l�n� . �A6�

The coefficient is the combinatorial coefficient defined in Eq.
�11�. When used with the eigenvalue equation
�n�l�n��T�n� ,n�=�l�n�, g is seen to obey the identical differ-
ential equation as f , namely, Eq. �A4�. The constants in the
solution Eq. �A5� determine the normalization. One choice is
to take K�=1 /2N for f� and

K� = � N

N + �

2
� �A7�

for g�, whereupon rN�n� is given by Peq�n� in Eq. �11�, the
stationary normalized solution of Eq. �A1b�, and lN�n�=1 for
every n. That this choice also achieves the completeness re-
lation for orthonormal eigenvectors,

�
�

r��n�l��n�� = n,n�, �A8�
can be seen from Eqs. �A3�, �A5�, and �A6�.
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These considerations facilitate analysis of the approach to
equilibrium. The initial condition of flealess Anik may be
written using Eq. �A8� as

P0�n� = n,0 = �
�

r��n�l��0� , �A9�

where after t hops Eq. �A1b� yields

Pt�n� = � T

N
t

�
�

r��n�l��0� = �
�

� �

N
t

r��n�l��0� . �A10�

The moments of this distribution may now be calculated.
If we compare partial derivatives with respect to u in Eqs.
�A3� and �A5�, we find

�
n

nr��n� =
N

2
�,N −

1

2
�,N−2, �A11�

and

�
n

n�n − 1�r��n� =
N�N − 1�

4
�,N −

�N − 1�
4

�,N−2

+
1

2
�,N−4. �A12�

Because l��0� can be seen to be equal to the K� in Eq. �A7�,
we deduce that

�
n

nPt�n� 	 N��t� =
N

2
�1 − �1 −

2

N
t� �A13a�

→
N

2
�1 − e−2t/N� , �A13b�

showing that the mean number of fleas approaches equal
partitioning exponentially with an equilibration time N /2.
The decay as �1− �2 /N��t=�2

t is a general result: in any Mar-
kov process the equilibration is controlled asymptotically by
the second largest eigenvalue �2.

Similarly, it is seen using Eqs. �A11� and �A12� that the
mean square fluctuation in the number at time step t is given
within the exponential approximation of Eq. �A13b� by

�
n

�n − ��t��2Pt�n� = N��t��1 − ��t�� . �A14�

Equation �A14� shows that the relation between the mean
and width of a binomial distribution for the probabilities as-
sociated with tossing a biased coin is preserved during stages
of the evolution long before equilibrium is reached.

These methods also permit the exact calculation of the
integrated autocorrelation time 	A defined in Eqs. �16� and
�17� for this simple model. As an example, we consider the
number n of fleas on Anik and calculate the corresponding
autocorrelation time 	n. We need to calculate the average
�n�n�, where n� is the number of fleas a given number of
hops later than an n-flea state. For t hops, this average is

Ct 	 �
n.n�

n�
Tt�n�,n�

Nt nPeq�n� , �A15�

where T is given in Eq. �A2� and Peq is the equilibrium

distribution in Eq. �11�. In Eq. �A15�, n is picked at random
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from the known correct distribution, and n� is correlated with
n via the conditional probability for t hops.

Now T can be represented in terms of its eigenvalues and
eigenvectors as

T�n�,n� = �
�

r��n���l��n� , �A16�

and it follows using the orthonormality relation
�nl��n�r���n�=�,�� that

Tt�n�,n�
Nt = �

�

r��n��� �

N
t

l��n� . �A17�

The contribution of the highest eigenvalue �=N to this sum,
obtained from the eigenvectors given above Eq. �A8�, is in-
dependent of n and equal to Peq�n�� for any t. This conve-
nient fact leads to the identity

Tt�n�,n�
Nt − Peq�n�� = �

��N

r��n��� �

N
t

l��n� . �A18�

If the right-hand side of Eq. �A18� is substituted into Eq.
�A15�, we encounter the average given in Eq. �A11� and also
the average

�
n

nPeq�n�l��n� = � N
N+�

2
�N

2
�,N −

1

2
�,N−2� , �A19�

which has been evaluated via a partial derivative with respect
to u of the generating function g in Eq. �A6�. Thus only the
eigenvalue �=N−2 contributes to the simple result

�
t=1

�

�Ct − �n�2� = �
��N

�
n,n�

n�r��n��
�/N

1 − �/N
l��n�nPeq�n�

�A20a�

=� N

N − 1
1 – 2/N

2/N �1

2
2

�A20b�

=
N�N − 2�

8
. �A20c�

Because the equilibrium variance of n is N /4, we see by
comparison with Eq. �17� that the integrated autocorrelation
time for sampling N fleas one at a time is

	n�N� =
N − 2

2
�A21�

so that M single hops are equivalent to only

Meff =
M

2	n + 1
=

M

N − 1
�A22�

trials of N-flea configurations. In our simulation of N=50
fleas, we determined 	n=24.0 using the binning analysis, in
perfect agreement with the prediction 	n= �N−2� /2=24.

It is gratifying that these learned considerations show that
randomizing the number of “heads” among N coins by arbi-
trarily choosing and turning over one is 1 / �N−1� times as
effective as tossing all N at once. As mentioned in Sec. I, it is
the less efficient processes that are typically at work in physi-

cal situations.
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Superb Calculation of the Pressure in a Fluid
Bob Panoff, Shodor Foundation

Tune: Supercalifragilisticexpialidocious

Bernoulli knew he had a rule he used for wings in air
For fluid incompressible he’d never have a scare.
The density of energy’s the same at every spot
A caveat is cavitation in which case it’s not!

Oh, Superb calculation of the pressure in a fluid
Is simple so that anyone with any sense can do it.
We all deserve a force conserved among the objects paired.
Just add to pressure rho gee aitch then add half rho vee squared

A water tower tower’s o’er a town so water goes
Through every pipe, and when you turn the faucet on it flows.
The pressure head is now instead a steady stream, you see,
The pipe’s diameter determines stream velocity.

The sum at every point’s a constant, check it if you care
Each term can change within a range for water or for air.
The key’s to keep the units straight and don’t have any gap
Or else your fluid starts to leak and then you’ll just get Oh... .
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