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1 Preface

The purpose of these lectures is to give a pedagogical introduction into the diagrammatic and
field theoretic techniques for disordered conductors. I will try to expose the main physical
ideas behind the formalism and introduce a language that has been developed in the theory
of disordered systems. Hopefully these lectures will serve as a basis for the more advanced
courses in this school.

When studying theoretical techniques it is useful to have a clear qualitative picture of
the physics they describe. I think this is especially important in the theory of disordered
conductors, where a compact and intuitive language based on the diagrammatic technique
has been developed. This language was developed in informal personal discussions between
researchers advancing the field. It is ideally suited for personal communications but is difficult
to present in a format of a monograph, where a certain degree of rigor is expected. Lectures
at a summer school seem like an ideal setting to present this informal and intuitive language
behind the formalism. 1 I would be happy even with a partial success in this regard.

2 Classical treatment of electron transport

In this section I will review the classical theory of electron transport.

2.1 Boltzmann kinetic equation

Let us begin with a brief survey of the Boltzmann kinetic equation. It will help us develop
intuition and introduce terminology relevant for the subsequent discussion. More importantly
it will help us place the quantum effects that will be the focus of this school in a broader
context of general theory of transport phenomena in disordered conductors. I will assume
familiarity with the Boltzmann equation and will be somewhat sloppy with notations hoping
that some of them will be obvious. A more detailed exposition of the Boltzmann equation be
found in many textbooks, for example Ref. [1]. The approach was introduced by Boltzmann,
and was originally applied to classical gased. Peierls realized that it also applied to electrons 2

in metals as long their motion between collisions was classical. This condition is expressed
by the inequality kF l � 1, where kF is the Fermi momentum (in units of h̄) and l is the
mean free path of electrons.

1Anatoly Larkin liked to say that different branches of human knowledge can be classified into “oral” and “written” sciences.
Written sciences are those that can be formalized and yield themselves to a rigorous exposition in a texbook (calculus is a good
example). The oral sciences are best passed on in informal personal discussions. For example geometry in ancient Greece was
taught in informal settings with pictures being drawn in the sand. This tradition is largely lost because of the difficulty of
putting it into a written form.

2Strictly speaking it describes the motion of quasiparticles in the Landau theory of Fermi liquid, see e.g. Ref. [2]. They obey
Fermi statistics and bare many similarities with non-interacting fermions.
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The Boltzmann equation describes time evolution of the electron distribution function
f(r,p, t) in the presence of an external force F, and is usually written in the form

(∂t + v · ∇+ F · ∂p) f = St[f ]. (1)

The left hand side describes the time evolution of f due to the free motion of electrons,
whereas the collision integral St[f ] in the right hand side describes the evolution due to
collisions of electrons with impurities, phonons, and other electrons. Collisions are treated
as instantaneous and local (occurring at a single point in space). The collision integral
should in general be expressed in terms of higher order correlation functions. Let us take
electron-electron collisions as an example. In this case the collision integral is expressed
in terms of the two-point distribution function for the colliding electrons. The two point
function satisfies its own kinetic equation, where the collision integral is expressed in terms
of higher order correlation functions. This procedure leads to a chain of coupled equation for
all higher order correlation functions, known as the BBGKY (for Bogoliubov, Born, Green,
Kirkwood, and Yvon) hierarchy.

A crucial assumption underlying the Boltzmann description is that of relaxation of cor-
relations. The basic idea is that many-body correlations, which are necessarily induced
by collisions between particles, decay during the long stretches of subsequent free motion.
Therefore the distribution functions of the colliding electrons may be assumed uncorrelated.
This enables us to express the higher order distribution functions appearing in the collision
integral in terms of the one-point function f itself. This procedure decouples the different
levels in the hierarchy and makes Eq. (1) a closed equation for the one particle distribution
function f . According to the principle of relaxation of correlations collisions of different types
(electron-electron, electron-phonon, electron-impurity) are also treated as uncorrelated and
are described by independent collision integrals. An important outcome of this treatment is
that the resistivity turns out to be proportional to the sum of momentum relaxation rates
— the result known as the Matthiessen’s rule.

In semiconductors and many metals at low temperatures the umklapp processes are frozen
out. Therefore electron-electron collisions conserve (quasi-)momentum, and the resistivity is
controlled by electron-impurity and electron-phonon collisions. The latter are also suppressed
at low temperatures, and the low temperature (so called residual) resistivity is determined
by electron-impurity scattering. The corresponding collision integral has the form

St[f ] =
∫

(dp′)W (p,p′)[f(r,p′, t)− f(r,p, t)]. (2)

Here W (p,p′) denotes the scattering probability per unit time form state p′ to state p,

(dp′) = d3p′

(2πh̄)3
, and we used the Stückelberg transformation of the collision integral.3

In linear response we typically consider monochromatic electric fields E = −F/e =
E(r)e−iωt (e is the absolute value of the electron charge) and write the distribution function
as f = f0(ε) + δf , where f0(ε) is the equilibrium distribution function which depends only
on the energy ε. Recalling that the equilibrium distribution nullifies the collision integral

3This transformation relies on the identity
∫

(dp′)W (p′,p) =
∫

(dp′)W (p,p′), which follows from unitarity of scattering, see

§§ 2, 3 of Ref. [1]
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and passing to the Fourier representation we obtain to linear order in E,

(−iω + v · ∇) δf − St[δf ] = eE(r) · vdf0(ε)

dε
. (3)

Let us assume the simplest spectrum ε = p2/2m and write the nonequilibrium part of the
electron distribution in the form δf(ε, r,n) where n is the momentum direction. Keeping
in mind that the electron energy is conserved in collisions with impurities we observe the
distribution functions at each different energies obey independent equations,

Bεδf(ε, r,n) = evE(r) · n df0(ε)

dε
, (4)

where Bε denotes the Boltzmann operator defined by

Bεδf(ε, r,n) =
(
−iω + vn · ∇+

1

τ

)
δf(ε, r,n)− niv

∫
dn′σε(n,n

′)δf(ε, r,n′). (5)

Here we expressed the scattering probability in terms of the electron velocity v = p/m,
impurity concentration ni and the (energy dependent) differential scattering cross-section
σε(n,n

′) at a single impurity. We also introduced the (energy dependent) “out” scattering
rate

1

τ
= niv

∫
dn′σε(n,n

′). (6)

It is useful to introduce the resolvent of the Boltzmann operator K ≡ B−1
ε . It satisfies the

inhomogeneous equation(
−iω + vn · ∇r +

1

τ

)
Kε(r,n; r′,n′)− niv

∫
dñσε(n, ñ)Kε(r, ñ; r′,n′) = δ(r− r′)δ(n− n′).

(7)
The boundary conditions at insulating interfaces correspond to the condition of zero current
across the interface. We will see that the resolvent Kε corresponds to the series of “ladder”
diagrams in the quantum diagrammatic treatment of electron transport. With its aid the
solution of Eq. (4) may be formally expressed as

δf(ε, r,n) = ev
df0(ε)

dε

∫
dn′dr′Kε(r,n; r′,n′) E(r′) · n′. (8)

Resolvent for s-wave scatterers. Let us consider an instructive example of purely s-wave
scattering. This approximation of point-like impurities captures much of the essential physics
and is frequently used in the theory of disordered metals to simplify the treatment. In this
case the scattering differential cross-section σε(n, ñ) is independent of the initial and final
momenta. As a result the second term in the left hand side of (7) becomes independent of
n. Let us specialize to a bulk conductor, for which the resolvent Kε depends only on the
coordinate difference, r − r′. Upon a Fourier transformation with respect to this variable
Eq. (7) reduces to(

−iω + ivq · n +
1

τ

)
Kε(n,n′)−

1

τ
〈Kε(n,n′)〉n = δ(n− n′), (9)

3



where 〈. . .〉n denotes the average over the directions, n. The solution of this equation is

Kε(n,n′) =
τδ(n− n′)

1− iωτ + ilq · n
+

1

1− iωτ + ilq · n
τ(

1−
〈

1
1−iωτ+ilq·n

〉
n

) 1

1− iωτ + ilq · n′
,

(10)
where l = vτ is the mean free path.

The average over the directions is readily evaluated in two (d = 2) and three (d = 3)
dimensions, 〈

1

1− iωτ + ilq · n

〉
n

=


1√

(1−iωτ)2+q2l2
, d = 2,

1− 1
2iql

ln 1−iωτ+iql
1−iωτ−iql , d = 3.

(11)

The expression (9) for the resolvent apply in both the ballistic (ωτ, ql � 1) and diffusive
(ωτ, ql� 1) regimes. In the ballistic case the resolvent Kε(n,n′) has a sensitive dependence
on the directions n,n′.

In some cases, for example in the study of propagation of waves through random media
both the source (injection) and the observable (detector) may have a high selectivity with
respect to direction, and the detailed dependence ofKε(n,n′) on n,n′ is essential. In contrast,
in disordered conductors we are often interested in the diffusive regime, where both the
observables and the external perturbations correspond only to the zeroth (density) or first
(current) spherical harmonics in n,n′.

Diffusive regime. For ωτ, ql� 1 the expressions in Eq. (11) simplify to〈
1

1− iωτ + ilq · n

〉
n

= 1− τ(−iω +Dq2), (12)

where D = vl/d is the diffusion coefficient. Therefore in the diffusive regime the resolvent
Kε is given by

Kdiffε (n,n′) =
τδ(n− n′)

1− iωτ + ilq · n
+

1

(1− iωτ + ilq · n)(−iω +Dq2)(1− iωτ + ilq · n′)
. (13)

When transformed to position space the first term above decays exponentially on the scale
of the mean free path and represents the probability for the electron to remain unscattered
from the original momentum state. The second term corresponds to a convolution of three
kernels, two of which are short range, while the other, (−iω+Dq2)−1 represents the diffusion
propagator and has a long range character. Keeping only the leading terms in the zeroth
and first spherical harmonics in n,n′ we may further approximate the resolvent as

Kdiffε (n,n′) = τdn · n′ + (1− ilq · n)(1− ilq · n′)
(−iω +Dq2)

. (14)

Diffusive regime for general scatterers: transport relaxation time. Let us now turn to the
case of non-s-wave scatterers. In the Fourier representation Eq. (7) becomes(

−iω + ivq · n +
1

τ

)
Kε(n,n′)− niv

∫
dñσε(n, ñ)Kε(ñ,n′) = δ(n− n′). (15)
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In the diffusive regime it is convenient to use the multipole expansion in n,

Kdiffε (n,n′) = Nε(n′) + n ·J ε(n
′) + . . . . (16)

Projecting (15) onto the zeroth spherical harmonic in n and we get

−iωNε(n′) + i
v

d
q ·J ε(n

′) = 1. (17)

Note that the scattering rate disappeared from this relation. This is a consequence of con-
servation of the number of particles at each energy by collisions with impurities (the left
hand side represents the “continuity equation”).

Projecting Eq. (15) onto the first spherical harmonic we get to leading order in ωτ

J ε(n
′) = τtrdn′ − iltrqNε(n′), (18)

where ltr = vτtr is the transport mean free path. The transport mean free time, τtr, charac-
terizes relaxation of momentum (see e.g. § 11 of Ref. [1]) and is defined by the relation

1

τtr
= niv

∫
dn′σε(n,n

′)(1− n · n′). (19)

The difference between the transport and “out” relaxation rates is described by the second
term in the bracket in the right hand side. For purely s-wave scattering this term vanishes,
and the transport mean free time coincides with the “out” mean free time defined in Eq. (6).
In this regime the electron momenta before and after the collision are uncorrelated, electrons
“lose” memory of their momentum upon a single collision. In the opposite case of small
angle scattering the electron momentum electrons is randomized only after a large number
of collisions, τtr � τ .

Combining Eqs. (16), (17), and (18) we get

Kdiffε (n,n′) = τtrdn · n′ + (1− iltrq · n)(1− iltrq · n′)
(−iω +Dq2)

, (20)

where the diffusion constant is expressed in terms of the transport mean free path in the
usual way, D = vltr/d. The only difference with Eq. (13) is the replacement τ → τtr.

Diffusive response to a longitudinal electric field. Let us consider the electric field of the
form E(r, t) = −∇φ(r, t), where the electric potential is of the form φ(r, t) = φ0 e

iq·E(r)−iωt.
In this case Eq. (8) gives in the Fourier representation

δf(ε,n) = −ieφ0v
df0(ε)

dε

∫
dn′Kdiffε (n,n′) q · n′. (21)

We expand the nonequilibrium part of the distribution function δf to first order in the
spherical harmonics,

δf(ε,n) = Nε + n · Jε. (22)

The nonequilibrium part of density and the current density (at a given energy) are described
by the zeroth (Nε) and the first (Jε) spherical harmonics respectively.

n = 2
∫

(dp)Nε = 2
∫
ν(ε)Nεdε, (23)

j = −2e
∫

(dp)v (Jε · n) = −2
e

d

∫
ν(ε)vJεdε, (24)

5



where ν(ε) is the density of states per unit energy for a single spin component.
Substituting Eqs. (22) and (20) into (21) we obtain

Jε = −ieltrqφ0
df0(ε)

dε
− iltrqNε, (25)

where the density response is given by

Nε = − eDq2φ0

−iω +Dq2

df0(ε)

dε
= −

(
1 +

iω

−iω +Dq2

)
eφ0

df0(ε)

dε
. (26)

In the last expression we wrote the answer in a suggestive form that will be useful for com-
parison with the quantum diagrammatic treatment. The first term in the bracket describes
the static response. The second term corresponds to the density induced by the longitudinal
ac currents. Since it contains the diffusion constant, with the aid of the Einstein relation,
we can extract the conductivity from the ac density response to an external scalar potential.

The first term in Eq. (25) represents the current induced by the electric field. The second
term represents the diffusion current created by the density gradient. For a uniform electric
field it vanishes. In this case, combining Eqs. (24) and (25) and substituting the Fermi
function for f0(ε) we obtain the Drude result,

j = σE0, σ = 2e2Dν0, (27)

where ν0 is the density of states per spin at the Fermi energy.
The second expression above represents the Einstein relation between the conductivity

and the diffusion coefficient. It follows form the fact than in thermodynamic equilibrium in
the presence of an external electrostatic potential φ the gradiant of the electron density is
given by ∇n = 2eν0∇φ and the current, j = −σ∇φ + eD∇n, must vanish. The Einstein
relation enables us to extract the conductivity from the density response (26). This method
is often used in diagrammatic treatment of electron transport.
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