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GDR « Theoretical challenges 
for climate sciences »

• Identify and work on key theoretical issues that need to be solved 
for improving the quantitative predictions in climate sciences. 

• A multidisciplinary consortium: climate sciences, mathematics, 
physics, computer sciences, statistical physics, data sciences.  

• Examples : i) How to reduce the uncertainty about climate sensitivity? ii) 
How to reduce uncertainty when quantifying probabilities of climate 
extreme events? iii) How to integrate data and theoretical constraints, 
using machine learning, to build the next generation of climate models? 
iv) How to make quantitative the study of future and past climate? v) 
How to build effective coarse-grained descriptions of climate 
processes?





How to build a strategy for the 
ecology transition at ENS de Lyon 
Proposition by the ecology transition group at ENS de Lyon: 

Chapter 1 Ecology transition at ENS de Lyon : how to build together a 
cultural change?
Chapter 2 Quantifying the environmental impact of ENS de Lyon 
Chapter 3 How to reduce the impact of building and infrastructures
Chapter 4 Impact of travels 
Chapter 5 Daily life and environment (recycling, wastes, transport, 
bikes, ...) 
Chapter 6 Environmental impact of digital technologies
Chapter 7 Teaching, research, and the environment
Lien Web : lettre d'interpelation des collegues et de la direction 
(01/2021)

Lien Web : construire une stratégie (01/2021)7

http://perso.ens-lyon.fr/freddy.bouchet/Divers/Lettre_Aux_Membres_ENS_De_Lyon_Transition_Ecologique_Fevrier_2021.pdf
http://perso.ens-lyon.fr/freddy.bouchet/Divers/Lettre_Aux_Membres_ENS_De_Lyon_Transition_Ecologique_Fevrier_2021.pdf
http://perso.ens-lyon.fr/freddy.bouchet/Divers/Analyse_Impacts_Ecologique_ENS_De_Lyon_Transition_Ecologique_Fevrier_2021.pdf
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The few most extreme climate events 
have more impact than all the others

We need to study extremely rare events.  
This is a serious scientific challenge.

Annual deaths by major climate related disaster 
(CRED, UNISDR, 2018) 
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What is the probability (return time) 
of the 2003 Europe heatwave ?

July 20 2003-August 20 2003 
land surface temperature 
minus the average for the 
same period for years 2001, 
2 0 0 2 a n d 2 0 0 4 ( T E R R A 
MODIS).
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Why are return times so hard to estimate?  
i) lack of observation data, ii) model biases,  

iii) because of rareness, gathering good model statistics is too costly. 



The 2021 northwest America 
heatwave - Unprecedented
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June, 27, 2021. 
2m air temperature  
anomaly (°C).

How often shall we expect this to happen?   
We do not know (see WWA study).

Lytton, British Columbia,
hit 121°F (49.6°C) on June 29

Image Joshua Stevens 
NASA, GEOS

https://earthobservatory.nasa.gov/about/joshua-stevens


 Potential impacts of global 
warming and extreme events

Maximal wet bulb temperature (red color =31-32°C), in 2070, with the RCP8.5 scenario. 

(Kang, Elfatih and Eltahir, 2018)

Hundreds of thousands of people leave now in area of the world that will 
become inhabitable before the end of the century if we do not halt global 
warmings. Thinking of these phenomena in a classical economic framework 
does not make any sense.





Three key problems in the study 
of climate extreme events

• The historical records are way too short to make any meaningful 
predictions for the rarest events (those that matter the most).


• Climate models are wonderful tools, but they have biases. The 
more precise they are, the more computationally costly they are. 


• Because they are too rare, the most extreme events cannot be 
computed using direct numerical simulations (the needed 
computing times are often unfeasible).


The practical questions: How to sample the probability and 
dynamics of rare events in complex models? How to build 
effective models which are relevant for estimating the 
probability of rare events?
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How to study a 10 000 year heat 
wave with a 200 year simulation ?

• Because they are too rare, extreme events cannot be 
computed using direct numerical simulations (the needed 
computing times are often unfeasible).


• Rare event algorithms: Kahn and Harris (1953).


• Statistical mechanics: diffusion Monte-Carlo, Wang Landau 
algorithms, go with the winners, …  

• Applied Mathematics: Chandler, Vanden-Eijnden, Schuss, Del 
Moral, Dupuis, Lelièvre, Guyader, …


• For turbulence and climate applications: J. Weare and D. Abbot, 
R. Grauer and T. Grafke, E. Vanden-Eijnden, Lyon group, …
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III) Rare event algorithms 
to study extreme heat 

waves with climate models

Francesco Ragone 
RMI, Bruxelles, Belgium

Jeroen Wouters 
University of Reading, UK17



Long lasting summer heat waves 

We will study extremes of the time averaged temperature: 

                     

• Scandinavia, Europe, France, Alberta, Russia, …


•  one week, a few weeks, a month, or a season.


• Climate models (CESM or PLASIM) or reanalysis datasets.

a =
1
T ∫

T

0
dt

1
|𝒜 | ∫𝒜

dr TS(r, t)

𝒜 =

T =
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The Giardina—Kurchan (Del-Moral
—Garnier) rare event algorithm

• With , we sample the tilted path-distribution





• We simulate an ensemble of  trajectories . At each time step , each 
trajectory can be killed or cloned according to the weights


 


• Algorithm: Giardina et al. 2006. Mathematical aspects: Del Moral's book (2004).

A[X](t) =
1

|𝒜 | ∫𝒜
dr TS(r, t)

P̃k ({X(t)}0≤t≤T) =
1

exp(Tλ(k))
P0 ({X(t)}0≤t≤T) exp [k∫

T

0
A[X](t) dt] .

N xn(t) ti = iτ

1
Wi(k)

exp (k∫
ti

ti−1

A[xn](t) dt) with Wi(k) =
N

∑
n=1

exp (k∫
ti

ti−1

A[xn](t) dt) .
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Genealogical algorithm: selecting, 
killing and cloning trajectories

(from Bouchet, Jack, Lecomte, Nemoto, 2016)
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The trajectory statistics 
is tilted towards the 
events of interest.

Sample paths of the Giardina Kurchan algorithm



Return time plot computed using 
a rare event algorithm (PLASIM)

At a fixed numerical cost, we can study events which 
are several orders of magnitude rarer.
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Extremes of 90-day Europe heat waves

F. Ragone, J. Wouters,  
and F. Bouchet, PNAS, 2018 

PLASIM model.

No seasonal cycle. 
Del-Moral—Garnier (or Giardina—
Kurchan) algorithm. 
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GCModel - No algorithm

With a rare event 
algorithm



Heat wave dynamics 

Plasim heat wave 
over Scandinavia
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500 hPa geopotential height and temperature anomalies



II-b) Heat wave dynamics 
and global teleconnection 

patterns for extremes

Francesco RagoneGeorge MiloshevichDario Lucente 23



Heat wave = unusual quasi stationary 
pattern + progressive Rossby wave
Hayashi spatio-temporal spectrum for eastward waves - CESM model 

(from the 500 hPa geopotential height over a latitudinal band )55o − 75oN
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pattern 

Usual progressive  
Rossby waves



Extreme teleconnection pattern

500 hPa geopotential height and temperature anomalies

Extreme teleconnection patterns 
= conditional averages with





and 40 days.


Plasim model.  
Summer Scandinav ian heat 
waves.

1
T ∫

T

0
dt

1
|𝒜 | ∫𝒜

dr TS(r, t) > 2 K

T =

F. Ragone, J. Wouters,  
and F. Bouchet, PNAS, 2018 
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Extreme teleconnection pattern

500 hPa geopotential height and temperature anomalies

Extreme teleconnection patterns 
= conditional averages with





and 40 days.


Plasim model.  
Summer Scandinav ian heat 
waves.

1
T ∫

T

0
dt

1
|𝒜 | ∫𝒜

dr TS(r, t) > 2 K

T =

F. Ragone, J. Wouters,  
and F. Bouchet, PNAS, 2018 
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Extreme teleconnection pattern

500 hPa geopotential height and temperature anomalies

Extreme teleconnection patterns 
= conditional averages with





and 40 days.


Plasim model.  
Summer Scandinav ian heat 
waves.

1
T ∫

T

0
dt

1
|𝒜 | ∫𝒜

dr TS(r, t) > 2 K

T =

F. Ragone, J. Wouters,  
and F. Bouchet, PNAS, 2018 
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Extreme teleconnection pattern

500 hPa geopotential height and temperature anomalies

Extreme teleconnection patterns 
= conditional averages with





and 40 days.


Plasim model.  
Summer Scandinav ian heat 
waves.

1
T ∫

T

0
dt

1
|𝒜 | ∫𝒜

dr TS(r, t) > 2 K

T =

Extreme teleconnection patterns differ from teleconnections for typical fluctuations and 
are not characterized by a single wavenumber but are much constrained by geography.

F. Ragone, J. Wouters,  
and F. Bouchet, PNAS, 2018 
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2018 heat wave over Scandinavia

Climate models correctly predict extreme teleconnection patterns. 

Observed in July 2018 (ERA5)Published in January 2018  
(PLASIM model)
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IV) Predicting extreme heat 
waves and committor functions 

using deep neural networks
With P. Abry, P. Borgnat, V. Jacques-Dumas, G. Miloshevich, and F. Ragone

31

Valerian Jacques-Dumas George Miloshevich



Machine learning, climate, 
and weather forecast models
• The Earth (atmosphere, ocean, land, etc.) is the most observed 

system with an exponentially growing dataset.


• Those observations are coupled to physical models through 
data assimilation techniques (a very old and very smart machine 
learning scheme for physically based data integration).


• Machine learning and deep neural networks enter in many 
different ways for both weather forecast and climate dynamics.


• For many (not all) of these problems, machine learning should 
be performed in a regime of lack of data. This is key for 
understanding the challenge for machine learning.



Jet stream dynamics

Higher troposphere wind speed. (NASA/Goddard Space Flight Center 
Scientific Visualization Studio, MERRA reanalysis dataset)
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Predicting heat waves with a 
deep neural network - 1) Data

34

• Plasim and CESM climate models.


• We use summer (JJA) data: 8 maps/day, 90 days/year, 1000 year = 720 000 
maps.


• For Plasim data, each field has a resolution , restricted to  
above  North. 

64 × 128 25 × 128
30o

Surface temperature ( colors) and 500 hPa geopotential height ( lines) anomaliesTs, Zg,



Heat wave definition
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•  field at time , or  fields at time .


• : time and space averaged surface temperature anomaly within  days: 




• . A heat wave occurs if .


• We have a classification problem for the data . We want to learn the 
probability  that  given that  (committor function).


• 5% most extreme events: . 2.5% most extreme events: 
. 1.25% most extreme events: . 

X(t) = Ts t X(t) = (Ts, Zg) t

Y(t) τ

Y(t) =
1
T ∫

t+τ+T

t+τ

1
|𝒜 | ∫𝒜

Ts( ⃗r, u) d ⃗r du,

and Z(t) = 1 if Y(t) > a, and Z(t) = 0 otherwise

Z(t) ∈ {0,1} Z = 1

(X, Z)
q(x) Z = 1 X = x

a = a5 = 3.08 K
a = a2.5 = 3.7 K a = a1.25 = 4.23 K



Predicting heat waves with a 
deep neural network 

Observing the temperature and geopotential height at 500 hPa today, what is 
the probability to observe a -day heat wave starting  days from now?T τ
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Machine learning for 
extreme heat waves

• Supervised learning from 1,000 years of climate model 
data (720 000 couples ).


• We use undersampling to deal with class imbalance.


• We use transfer learning between return levels , first 
training a deep neural network for less rare events, and 
then transferring to learn rarer events with less data.

(X, Z)

a
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Predicting heat waves

Predictability,  day ahead, for a 14-day heatwave from the temperature and GPH fieldsτ

V. Jacques-Dumas, F. Ragone, F. Bouchet, P. Borgnat and P. Abry, 2021, sub. to IEEE TPAMI + ArXiv

Heat waves over France 
T = 14

We have very interesting prediction capabilities up to 15 days ahead of time for 
-day heatwaves  T = 14
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Probabilistic versus 
deterministic classification

• Recognize cats from dogs with a neural network is an example of a 
probabilistic prediction for a deterministic classification.  We predict 
the class, in a probabilistic way measuring the level of confidence.


• We use scores like the Mathew correlation coefficient to test the 
class prediction.


• Predict the occurence of heat waves  days ahead with a neural 
network is an example of a probabilistic prediction for a 
probabilistic classification.  We predict the class probability. 


• We use scores like the logarithmic or the Brier score, to test the 
prediction of the class probability.

τ



The Normalized and Positively 
oriented logarithmic score 

• In order to test the efficiency of the probabilistic prediction of the 
probabilistic classification, we use the logarithmic score 

.


• We define a normalized and positively oriented logarithmic score


 ,


where  and  are such that  for the prediction according to 
the climatology (prediction using no information on the state ) and 

 for perfect prediction. 

𝔼 {log [pYn (Xn)]}

NP log = a𝔼 {log [pYn (Xn)]} + b

a b NP log = 0
X

NP log = 1



Machine learning for climate 
applications: a lack of data regime

Days ahead of the heat wave start
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1,000 years of data

200 years of data

100 years of data

The observation dataset is way too small for good machine learning prediction

CNN classification of 
2-week heatwaves  
days ahead of time

τ

.  The  input  consists  of 
(t2m,zg500,mrso)  with  resolution 
(18,42,3). filtering applied to mrso 
(no part of the map is set to zero. We 
were using out-of-the-box CNN
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Which is the optimal 
dataset geographical area?
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Days ahead of the heat wave start

CNN classification of 
2-week heatwaves  
days ahead of time

τ

The best performance is obtained for an area of an intermediate size.  
This also points to a regime of lack of data for optimal learning.

Small area 
(Europe)

Intermediate 
size area 
(Europe+North 
Atlantic)

Large area (North 
hemisphere mid-
latitudes)



Conclusions: predicting heat 
waves with deep neural networks
• Prediction of heat waves is an example of a probabilistic 

classification problem.


• We use off-the-shelf CNN algorithms, adapted to this 
situation (probabilistic scores, undersampling, transfer 
learning).


• Two-week heat waves can be efficiently predicted up to 
15 days ahead. 


• We are clearly in a regime of lack of data for an optimal 
prediction.
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Conclusion: Coupling machine 
learning with rare event algorithms
• We can learn committor functions from dynamical datasets either 

using the definition, or first learning an approximate Markov 
dynamics.


• The analogue Markov chain does not require an impossible 
discretization of the phase space, and can use any kind of 
dynamical data, including short trajectories.


• Using learned committor functions is much more efficient than using 
user-defined score functions with the AMS rare event algorithm.


• The range of applicability of this approach, in terms of system 
dimension and complexity, is a key question for the future.

D.  Lucente, J. Rolland, C. Herbert and F. Bouchet, ArXiv, submitted to. JSTAT



Coupling rare event algorithms with 
machine learning of committor functions

Machine Learning

Rare Event Algorithm 

Optimal score 
functionDataDirect 

sampling

(Committor function)

Work in progress for climate models!



Conclusions: Studying rare and extreme 
climate events with rare event algorithms 

and machine learning
• We can use rare event algorithms to gather an amazing statistics for 

extreme heat waves with PLASIM (PNAS, 2018), and CESM (GRL, 2021) 
models. 


• The dynamical mechanism is the birth of quasi-stationary non zonal 
global patterns, which are much affected by the orography and oceans 
(PNAS, 2018, GRL 2021).


• With CNN machine learning, we predict the probability of extreme 
heat waves up to 15 days ahead of time (Sub. to Frontiers in Climate, 2021).  

• The coupling of learned committor functions with rare-event 
algorithms is extremely efficient for toy models (Sub. to JSTAT, 2021). 
Work in progress for climate models.

Studying rare events is extremely fascinating! 
Opened post-doc positions47


