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Outline

I) Introduction to large deviation theory and its applications to
dynamical problems (Wednesday)
II) Large deviation theory for kinetic theories, geostrophic
turbulence, and atmosphere dynamics (Thursday)
III) Rare and extreme events in climate dynamics: sampling using
rare event algorithms and machine learning (Friday)
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Outline for Lecture II.

1 Large deviations for dilute gases (for the Boltzmann equation)
Dilute gases and heuristic derivation of the Boltzmann
equation
Derivation of the large deviation action for dilute gas dynamics
The irreversibility paradox

2 Kinetic theory for two dimensional turbulent flows
The barotropic quasi-geostrophic model and averaging
Kinetic theory of the quasi-geostrophic model
An explicit formula for the Reynolds stress for small scale
forces

3 Rare transitions and Jupiter’s abrupt climate changes
Rare transitions for zonal jets
Large deviations in the weak noise regime
Rare event algorithms and rare transitions for turbulent flows
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Boltzmann’s Equation

∂ f

∂ t
+v.

∂ f

∂ r
=
∫

dv2dv′1dv′2w(v′1,v
′
2;v,v2)

[
f
(
v′1, r

)
f
(
v′2, r

)
− f (v, r) f (v2, r)

]
.

A cornerstone of physics.
The irreversibility paradox and the 19th century controversy
(Loschmidt, Zermelo, Poincaré).
Classical explanation of the paradox: Lanford work (1973).
It is a very active contemporary subject both in physics and
mathematics.
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Motivation 1: Joule Expansion and Large Deviations

(Figures: Reif)

What is the probability of a dynamical rare fluctuation? The
answer is not known.
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4 Dimensional Parameters

Four dimensional independent parameters: the volume V , the
particle number N (or ρ = N/V ), the energy E (or β = 1/kBT
with E = 3NkBT/2), and the typical value of the cross section
a2.
A typical velocity is vT =

√
1/β . The mean free path l is

determined by
ρa2l = 1.

A typical collision time is τc = l/vT .

Orders of magnitude: Hydrogen at the room temperature and
standard pressure: a' 1.410−10m, ρ ' 2.1025m−3

(1/ρ1/3 = 3.710−9), l = 2.510−6m and V = 1m−3,
vT = 1.6103m.s−1, and τc = 6.710−11s.
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2 Non-Dimensional Parameters

4 dimensional independent parameters. We can choose time
units and space units.
We have thus 2 non-dimensional parameters. We choose the
number of particles N and the inverse of the number of
particle per volume of size l

ε =
(
ρ l3
)−1

= a2/l2 = a6n2

Then Nε = V /l3.
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The Boltzmann–Grad Limit

The Boltzmann–Grad limit:

ε → 0 with either εN ' 1 or εN � 1

In this limit, we actually have

a� 1
ρ1/3

� l ,

and
l ' V 1/3 or l � V 1/3
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Collision Rates

A thread of particles with velocities v1 meets a thread of
particle with velocities v2. We assume homogeneous densities
(point Poisson processes).
Collisions: particle pairs with velocities (v1,v2) undergo a
random change towards particle pairs with velocities (v′1,v

′
2),

up to (dv′1,dv
′
2).

This occurs at a rate (in units m−3s−1) proportional to the v1
particle density, the v2 particle density, dv′1, and dv′2. The
proportionality coefficient is called the collision kernel and is
denoted

1
2
w
(
v′1,v

′
2;v1,v2

)
.

As w (v′1,v
′
2;v1,v2)dv′2dv

′
1ρ(v1)ρ(v2) is in units m−3s−1, w is

in units m−3s5.
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Collision Rate Symmetries

Time reversal symmetry:

w(v′1,v
′
2;v1,v2) = w(−v1,−v2;−v′1,−v′2).

The space rotation symmetry: For R that belongs to the
orthogonal group SO(3)

w(v′1,v
′
2;v1,v2) = w(Rv1,Rv2;Rv′1,Rv′2).

Inversion symmetry: The combination of the time reversal
symmetry and of the space rotation symmetry for R =−I,
where I is the identity rotation, gives

w(v′1,v
′
2;v1,v2) = w(v1,v2;v′1,v

′
2).
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The Diffusion Cross Section

The conservation of the momentum and kinetic energy implies

w(v′1,v
′
2;v1,v2) = σ(v′1,v

′
2;v1,v2)δ

(
v1 +v2−v′1−v′2

)
δ

(
v2
1 +v2

2−v′21−v′22
)
.

σ , in units of m2 , is the diffusion cross section.
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The Distribution Function

N particles. Each particle 1≤ n ≤ N has a position rn(t) and
a velocity vn(t). We define the empirical distribution as

f (r,v, t)≡
N

∑
n=1

δ (v−vn(t))δ (r− rn(t)) .

We assume that the particles evolve according to their own
velocity and their mutual collisions only. The evolution of the
empirical density is given by

∂ f

∂ t
+v.

∂ f

∂ r
= C

where C accounts for the collision effects.

F. Bouchet CNRS–ENSL Large deviations in turbulence and climate



Large deviations for the Boltzmann equation
Kinetic theory for two dimensional turbulent flows

Rare transitions and Jupiter’s abrupt climate changes

The Boltzmann equation
Derivation of the large deviation action
The irreversibility paradox

A Reformulation of Boltzmann’s Assumptions

i) The collision duration is neglected compared to the average
collision time. The collision geometry is also neglected (point
particle assumption).
ii) The probability of three particle encounters is neglected.
iii) Propagation of chaos hypothesis (Boltzmann’s
stosszahlansatz): At any time, the effect of (v1,v2)→ (v′1,v′2)

collisions on the distribution f can be quantified as if, locally in
position space, the particles with velocity v1 up to dv1 and v2 up to
dv2 would be mutually statistically independent and each distributed
according to a local Poisson point process in position space with
densities ρ(v1) = f (r,v1, t)dv1 and ρ(v2) = f (r,v1, t)dv2 respectively.
iv) Law of large numbers: The average collision number is
evaluated. Possible fluctuations of this number are not considered.
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Boltzmann’s Equation

From Boltzmann’s hypothesis, we get Boltzmann’s equation

∂ f

∂ t
+v.

∂ f

∂ r
=
∫

dv2dv′1dv′2w(v′1,v
′
2;v,v2)

[
f
(
v′1, r

)
f
(
v′2, r

)
− f (v, r) f (v2, r)

]
.

It conserves the mass M, total momentum P and kinetic
energy E .
The entropy

S [f ] =−
∫

dvdr f log(f )

increases along solution to Boltzmann’s equation.
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Maxwell–Boltzmann Distributions

Maxwell–Boltzmann distributions:

f = arg sup{S |M [f ] = N, P [f ] = Np0, and E [f ] = Ne0}
= ρ

(
β

2π

)3/2
exp
(
−β

(v−p0)2

2

)
.

Under generic hypothesis on the collision rates w , the equality

dS
dt

[f ]≥ 0

is strict except for the Maxwell–Boltzmann distributions.
Then solutions to Boltzmann’s equation converge to the
Maxwell-Boltzmann distributions.
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Path Large Deviations for the Boltzmann Equation
Dynamical large deviations for the empirical distribution:

P
[
{fN(t)}0≤t<T = {f (t)}0≤t<T

]
�

ε↓0
exp

− supp

∫ T
0 dt

{∫
ḟ pdrdv−HB [f ,p]

}
ε

 .

ε is the inverse of the number of particles in a volume of size
the mean free path.
The large deviation Hamiltonian is HB = HC +HT , with HT

the free transport part, and with the collision part Hc given by

HC [f ,p] =
1
2

∫
drdv1,2,1′ ,2′ w(v′1,v

′
2;v1,v2)f (r,v1)f (r,v2)

{
e[p(r,v1)+p(r,v2)−p(r,v′1)−p(r,v′2)]−1

}
.

- C. Leonard, 1995. F. Rezakhanlou, 1998: stochastic model with Boltzmann
like behavior.
- F. Bouchet, 2020, for dilute gases.
- T. Bodineau, I. Gallagher, L. Saint-Raymond and S. Simonella, 2020, for a
mathematical proof for short times.
- D. Heydecker, 2022, and G. Basile, D. Benedetto, L. Bertini and E. Caglioti,
2022: energy non-conserving solutions with probability O

(
e−N

)
.
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A Reformulation of Boltzmann’s Assumptions

i) The collision duration is neglected compared to the average
collision time. The collision geometry is also neglected (point
particle assumption).
ii) The probability of three particle encounters is neglected.
iii) Hypothesis of propagation of chaos (Boltzmann’s
stosszahlansatz): At any time, the effect of (v1,v2)→ (v′1,v′2)

collisions on the distribution f can be quantified as if, locally in
position space, the particles with velocity v1 up to dv1 and v2 up to
dv2 would be mutually statistically independent and each distributed
according to a local Poisson point process in position space with
densities ρ(v1) = f (r,v1, t)dv1 and ρ(v2) = f (r,v1, t)dv2 respectively.
iv) Law of large numbers: The average collision number is
evaluated. Possible fluctuations of this number are not considered.
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A Reformulation of Boltzmann’s Assumptions
Except for the law of large numbers

i) The collision duration is neglected compared to the average
collision time. The collision geometry is also neglected (point
particle assumption).
ii) The probability of three particle encounters is neglected.
iii) Hypothesis of propagation of chaos (Boltzmann’s
stosszahlansatz): At any time, the effect of (v1,v2)→ (v′1,v′2)

collisions on the distribution f can be quantified as if, locally in
position space, the particles with velocity v1 up to dv1 and v2 up to
dv2 would be mutually statistically independent and each distributed
according to a local Poisson point process in position space with
densities ρ(v1) = f (r,v1, t)dv1 and ρ(v2) = f (r,v1, t)dv2 respectively.

What is the large deviation rate?
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Remember Example 2: Network of Reacting Particles

N particles Xn, with 1≤ n ≤ N. Each of them can be in K
different states: Xn = k with 1≤ k ≤ K

The number of particles which are in the state k is NFk :

Empirical distribution :FN = {Fk}1≤k≤K
We assume that the particles have reactions:

k1 +k2→ k3 +k4 at a rate
λk1k2k3k4

N
.

Number of reactions per unit of time: of order N. Number of
reactions per particle per unit of time: of order 1.
During a time of order 1, the empirical distribution changes N
times, each time with a modification of order 1/N.
We expect

P

[{
FN(t)

}
0≤t≤T

= {f(t)}
]
�
N↑∞

exp

(
−N

∫ T

0
dt L

(
f, ḟ
))

.
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Larges Deviations for the Network of Reacting Particles

The infinitesimal generator for the empirical distribution
FN = {Fk}1≤k≤K is

G(f) =N ∑
k1,k2,k3,k4

λk1k2k3k4 fk1 fk2

[
φ

(
fk1 −

1
N
, fk2 −

1
N
, fk3 +

1
N
, fk4 +

1
N
, f̃
)
−φ (f)

]
.

Using the formula for the Hamiltonian
H(x ,p) = limε↓0 εGε

[
e

p.x
ε

]
e−

p.x
ε , we get

H (f,p) = ∑
k1,k2,k3,k4

λk1k2k3k4fk1fk2
(
ep3+p4−p2−p1−1

)
.

Shouldn’t the Boltzmann large deviation Hamiltonian be
analogous?
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Rescaled Distribution Function and Collision Rates

In units of the mean free path l and of the typical collision
time τc , velocities are of order one.
We have ρ = ε/l3.
We work with a rescaled distribution function

f (r,v, t)≡ ε

N

∑
n=1

δ (v−vn(t))δ (r− rn(t)) .

such that it is of order one in the Boltzmann–Grad limit ε → 0.
The cross section σ is of order a2 = ε l2. We use a rescaled
cross section σ0 = σ/ε. The rate is then

w(v′1,v
′
2;v1,v2) = εσ0(v′1,v

′
2;v1,v2)δ

(
v1 +v2−v′1−v′2

)
δ

(
v2
1 +v2

2−v′21−v′22
)
.

Each collision occurs at a rate of order ε, produces a change
on f of order of ε. On a time scale of order 1, an order one
evolution of f results from 1/ε independent collisions. This is
clearly a large deviation scaling with rate ε.
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Large Deviations Produced by a Large Number of Small
Amplitude Independent Moves

Continuous time Markov processes {Xε (t)}0≤t<∞ , with
infinitesimal generator Gε .
We assume that for all p ∈ Rn the limit

H(x ,p) = lim
ε↓0

εGε

[
e
p.x
ε

]
e−

p.x
ε .

Then the family Xε verifies a large deviation principle

P
[
{Xε (t)}0≤t<T = {X (t)}0≤t<T

]
�
ε↓0

exp

−∫ T0 dt L
(
X , Ẋ

)
ε

 ,

with L(x , ẋ) = sup
p
{pẋ−H(x ,p)} .

(see for instance physics literature, or J. Feng papers, or
Freidlin-Wentzell, 3rd edition, 2012)
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The Infinitesimal Generator

We get
G [φ ] [f ] = GC [φ ] [f ] +GT [φ ] [f ]

with

GC [φ ] [f ] =
1
2ε

∫
dv1dv2dv′1dv

′
2drw(v′1,v

′
2;v1,v2)f (r,v1)f (r,v2) ...

...
{

φ

[
f (.) + ε

(
−δv1δr−δv2δr + δv′2

δr + δv′1
δr

)]
−φ [f ]

}
and

GT [φ ] [f ] =−
∫

drdvv.
∂ f

∂ r
(r,v)

δφ

δ f (r,v)
.
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Large Deviation Rate Function from the Infinitesimal
Generator

Continuous time Markov processes {Xε (t)}0≤t<∞ . For instance
Xε (t) ∈ Rn.
We assume that for all p ∈ Rn the limit

H(x ,p) = lim
ε↓0

εGε

[
e
p.x
ε

]
e−

p.x
ε

Then the family Xε verifies a large deviation principle

P
[
{Xε (t)}0≤t<T = {X (t)}0≤t<T

]
�
ε↓0

exp

−∫ T0 dt L
(
X , Ẋ

)
ε

 .

with rate ε and rate function

L(x , ẋ) = sup
p
{pẋ−H(x ,p)} .
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The Action Hamiltonian

We obtain a large deviation principle for the empirical
distribution dynamics

P
[
{fε (t)}0≤t<T = {f (t)}0≤t<T

]
�

ε↓0
exp

− supp
∫ T
0 dt

{∫
ḟ pdrdv−H [f ,p]

}
ε

 .

We get
H [f ,p] = HC [f ,p] +HT [f ,p] with

HC [f ,p] =
1
2

∫
dv1,2,1′ ,2′drw(v′1,v

′
2;v1,v2)f (r,v1)f (r,v2)

{
e[p(r,v1)+p(r,v2)−p(r,v′1)−p(r,v′2)]−1

}

and HT [f ,p] =−
∫

drdvp(r,v)v.
∂ f

∂ r
(r,v).
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Boltzmann’s Equation is the Most Probable Evolution

The corresponding fluctuation paths (most probable paths)
solve ∂ f

∂ t = δH
δp [f ,0].

It is easily checked that it is Boltzmann’s equation

∂ f

∂ t
+v.

∂ f

∂ r
=
∫

dv2dv′1dv
′
2w(v′1,v

′
2;v,v2)

[
f
(
v′1,r

)
f
(
v′2,r

)
− f (v,r) f (v2,r)

]
.
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Conserved Quantities

If C is equal to either the mass

M =
∫

drdv f ,

or the momentum
P =

∫
drdvvf ,

or the kinetic energy

E =
1
2

∫
drdvv2f ,

we easily check that

for any f and p,
∫

drdv
δH

δp(r,v)

δC

δ f (r,v)
= 0.

As expected, the mass, momentum, and kinetic energy are
conserved quantities.
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Is Entropy the Quasipotential

We expect from equilibrium statistical, that for dilute gazes
(non interacting particle limit)

U [f ] =

{
−S [f ] if M [f ] = Nε = V /l3, P [f ] = Np0, and E [f ] = Ne0
−∞ otherwise.

Can we check this directly from our action?
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Definition of Detailed Balance for Stochastic Processes

We consider a time homogeneous stationary stochastic process
{X (t)}0≤t<∞ (for instance a continuous time Markov process).
PS is the stationary probability distribution function, and P is
the two point transition probability distribution function

PS(x) = E [δ (x−X (t))] and P (y ,T ;x ,0) = Ex [δ (y −X (T ))] .

The definition of time reversibility for this process is

for any (x ,y ,T ) , P (y ,T ;x ,0)PS(x) = P (x ,T ;y ,0)PS(y).

This is called the detailed balance condition.
If the N-particle dynamics is time-reversible (for instance
Hamiltonian), we expect the stochastic process of the
empirical distribution to be time reversible. How does this
translate at the level of the path large deviations?
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Detailed Balance Condition for Large Deviations

Detailed balance condition for path large deviations:

for any x and ẋ , L(x , ẋ)−L(x ,−ẋ) = ẋ .∇U,

or equivalently

for any x and p, H (x ,−p) = H (x ,p+ ∇U) .

I is the time-reversal symmetry involution. We assume that I is
self adjoint for the scalar product I (x).p = I (p).x . Generalized
detailed balance condition: if U(x) = U (I [x ]) and

L(x , ẋ)−L(x ,−I [ẋ ]) = I [ẋ ] .∇U

or equivalently

H (I [x ] ,−I [p]) = H (x ,p+ ∇U) .

All the large deviation Hamiltonians for kinetic theories verify
this large deviation detailed balance condition.
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Dynamical Large Deviations and the Irreversibility Paradox
of Kinetic Theories

We expect a large deviation action which is time-reversal
symmetric with respect to the entropy.
The time reversal symmetry is not broken neither by the
mesoscopic description nor by the Stosszahlansatz!
However the most-probable evolution (or the average, due to
the law of large number) is irreversible. It increase entropy.
Fluctuation paths are time reversed relaxation paths
(non-linear Onsager relations).
The picture is clear and simple. There is no more any paradox.
Any path is possible. The probability of any path is quantified.
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Path large deviations for kinetic theories

fN(r,v,t)≡ 1
N

N

∑
n=1

δ (v−vn(t))δ (r− rn(t)) .

P
[
{fN(t)}0≤t<T = {f (t)}0≤t<T

]
�

ε↓0
exp

− supp
∫ T
0 dt

{∫
ḟ pdrdv−H [f ,p]

}
ε

 .

What is ε? Can we compute H?
Dilute gases (Boltzmann equation). F. Bouchet, JSP, 2020.
Plasma beyond debye length. O. Feliachi and F. Bouchet, JSP,
2021.
Systems with long range interactions. O. Feliachi and F.
Bouchet, JSP, 2022.
Weak turbulence theory (wave turbulence). J. Guioth, G. Eyink
and F. Bouchet, 2022, arXiv:2203.11737.

Slides for lectures at ENS-Lyon, SISSA and the Weizmann Institute.
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Rare transitions for zonal jets
Large deviations in the weak noise regime
Rare event algorithms and rare transitions for turbulent flows

F. Bouchet CNRS–ENSL Large deviations in turbulence and climate



Large deviations for the Boltzmann equation
Kinetic theory for two dimensional turbulent flows

Rare transitions and Jupiter’s abrupt climate changes

The barotropic quasi-geostrophic model
Kinetic theory of the quasi-geostrophic model
An explicit formula for the Reynolds stress for small scale forces

Jupiter’s Zonal Jets
We look for a theoretical description of zonal jets

Jupiter’s atmosphere
Jupiter’s zonal winds (Voyager and
Cassini, from Porco et al 2003)
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The Barotropic Quasi-Geostrophic Equations

The simplest model for geostrophic turbulence.
Quasi-Geostrophic equations with random forces

∂q

∂ t
+v.∇q = ν∆ω−αω +

√
2αfs ,

where ω = (∇∧v) .ez is the vorticity, q = ω + βy is the Potential
Vorticity (PV), fs is a random Gaussian field with correlation
〈fS(x, t)fS(x′, t ′)〉= C (x−x′)δ (t− t ′), ε is the average energy input
rate, λ is the Rayleigh friction coefficient.
Spin up or spin down time = 1/α� 1 = jet inertial time scale.
A reasonable model for Jupiter’s zonal jets.
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The 2D Stochastic Navier-Stokes Equations (β = 0)

∂ω

∂ t
+u.∇ω = ν∆ω +

√
νfs

Some recent mathematical results: Bricmont, Debussche,
Hairer, Kuksin, Kupiainen, Mattingly, Shirikyan, Sinai, ...

Existence of a stationary measure µν . Existence of limν→0 µν ,
In this limit, almost all trajectories are solutions of the 2D
Euler equations.

Kuksin, S. B., & Shirikyan, A. (2012). Mathematics of two-dimensional
turbulence. Cambridge University Press.

We would like to describe the invariant measure
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Dynamics of the Barotropic Quasi-Geostrophic Equations

Top: Zonally averaged vorticity (Hovmöller diagram and red curve)
and velocity (green). Bottom: vorticity field

F. Bouchet CNRS–ENSL Large deviations in turbulence and climate


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





Large deviations for the Boltzmann equation
Kinetic theory for two dimensional turbulent flows

Rare transitions and Jupiter’s abrupt climate changes

The barotropic quasi-geostrophic model
Kinetic theory of the quasi-geostrophic model
An explicit formula for the Reynolds stress for small scale forces

Which Mathematical Framework for the Inertial Limit?

Quasi-Geostrophic equations with random forces

∂q

∂ t
+v.∇q =−αω +

√
2αfs .

Inertial limit: spin up or spin down time = 1/α � 1 = jet
inertial time scale (a relevant assumption for Jupiter).
This is an averaging problem for an Hamiltonian system
perturbed by weak non Hamiltonian forces.
The Hamiltonian system is an infinite dimensional one with an
infinite number of conserved quantities.
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Dynamics of the Barotropic Quasi-Geostrophic Equations

Top: Zonally averaged vorticity (Hovmöller diagram and red curve)
and velocity (green). Bottom: vorticity field
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Decomposition Between Zonal Jets and Turbulence: A
Slow/Fast Dynamical System

∂q

∂ t
+v.∇q =−αω +

√
2αfs with α � 1

Time scale separation. We decompose into slow (zonal flows)
and fast (eddy turbulence) variables

U(y)ex = 〈v〉 ≡ 1
2π

∫
D
dx v and v = U(y)ex +

√
αvm.

Stochastic averaging using the time scale separation (τ = αt).

∂U

∂τ
= F (U).
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Averaging for the Stochastic Quasi-Geostrophic Eq.

∂U

∂τ
= F (U).

F [U] =−EU 〈vm,yqm〉. The average of the Reynolds stress is
over the statistics of the quasilinear inertial dynamics:

∂tqm +U(y)
∂qm
∂x

+ vm,y
∂qz
∂y

=−αqm + fs

and
〈vm,yqm〉=

1
Ly

∫
dy vm,yqm.

We identify SSST by Farrell and Ioannou (JAS, 2003); quasilinear
theory by Bouchet (PRE, 2004); CE2 by Marston, Conover and
Schneider (JAS, 2008); Sreenivasan and Young (JAS, 2011).
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Dynamics of the Relaxation to the Averaged Zonal Flows
The turbulence has been averaged out
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Figure by P. Ioannou (Farrell and Ioannou)

Extremely efficient numerical simulation of the averaged jet
dynamics.
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Averaging and Atmosphere Jets
Troposphere Dynamics: comparison of averaging and a direct numerical simulation
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Kinetic approach.

Zonal wind and momentum convergence for the primitive equations.

Farid Ait Chaalal and Tapio Schneider (Caltech and ETH Zurich).

The qualitative structure of a fast rotating Earth troposphere
is well approximated by the averaged equations.
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The Earth Jet Stream

Higher troposphere winds
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Decomposition Between Zonal Jets and Turbulence: A
Slow/Fast Dynamical System

∂q

∂ t
+v.∇q =−αω +

√
2αfs with α � 1

Time scale separation. We decompose into slow (zonal flows)
and fast (eddy turbulence) variables

U(y)ex = 〈v〉 ≡ 1
2π

∫
D
dx v and v = U(y)ex +

√
αvm.

Stochastic averaging using the time scale separation.

∂U

∂τ
= F (U).

Mathematics: we have identified a small parameter such that a
stochastic averaging approach might be relevant.
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Averaging for the Stochastic Quasi-Geostrophic Eq.

∂U

∂τ
= F (U).

F [U] =−EU 〈vm,yqm〉. The average of the Reynolds stress is
over the statistics of the quasilinear inertial dynamics:

∂tqm +U(y)
∂qm
∂x

+ vm,y
∂qz
∂y

=−αqm + fs

and
〈vm,yqm〉=

1
Ly

∫
dy vm,yqm.

Mathematics: questions about the ergodicity of the fast
process. Classical results about averaging do not apply.
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Proof for the Validity of Averaging and Inviscid Damping of
the 2D Euler Equations

The first step is to understand the asymptotic stability of zonal jets
v = U(y)ex for the inertial equation, the 2D Euler equation:

∂ω

∂ t
+v.∇ω = 0.

A problem analogous to nonlinear Landau damping for Vlasov
equation (Mouhot, and Villani, 2010).
Inviscid damping for the linearized 2D Euler equations for any
stable shear flow U(y) (Bouchet and Morita, 2010).

Proof of the inviscid relaxation (asymptotic stability) of the
velocity field for linear shear flows U(y) = syex (Bedrossian
and Masmoudi, 2015).
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Inviscid Damping of the Linearized Euler Eq.

Base state: a stable steady state v0 = U (y)ex , with vorticity
Ω(y): v0.∇Q = 0

∂tωm +U(y)
∂ωm

∂x
+ vm,y

∂ Ω

∂y
= 0 with ω(t = 0) = ω0 .

For the linearized 2D Euler equation and non-monotonous base
flow, the velocity field decreases algebraically at large times

vm,x (y ,t) ∼
t→∞

vm,x ,∞ (y)

t
exp(−ikU(y)t) and vm,y (y ,t) ∼

t→∞

vm,y ,∞ (y)

t2
exp(−ikU(y)t) .

F. Bouchet and H. Morita, 2010, Physica D.
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Validity of Averaging?

∂tqm +U(y)
∂qm
∂x

+ vm,y
∂qz
∂y

=−αωm +
√
2fs

We need to prove that the Gaussian process has an invariant
measure which has a limit when α → 0.
For the linearized 2D Euler equation and non-monotonous base
flow, the velocity field decreases algebraically at large times

vm,x (y ,t) ∼
t→∞

vm,x ,∞ (y)

t
exp(−ikU(y)t) and vm,y (y ,t) ∼

t→∞

vm,y ,∞ (y)

t2
exp(−ikU(y)t) .
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Invariant Measure in the Inertial Limit

∂tqm +U(y)
∂qm
∂x

+ vm,y
∂qz
∂y

=−αωm +
√
2fs

The two point correlation function Eα (vm(y1)vm(y2)) has a
limit when α ↓ 0.
The two point correlation function Eα (qm(y1)qm(y2)) has a
limit when α ↓ 0., as a distribution.
The two two point correlation function Eα (∇qm(y1)∇qm(y2))
diverges when α ↓ 0.
The Reynolds stress Eα (vm,y (y)qm(y)) has a limit when α ↓ 0.
F. Bouchet, C. Nardini and T. Tangarife, J. Stat. Phys., 2013
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Reynolds Stress Ergodicity in the Inertial Limit

The Reynolds stress Eα (vm,y (y)qm(y)) has a limit when α ↓ 0.
Pointwise divergence of the ergodic average:

Eα

{[
1
T

∫ T

0
dtvm,y (y)qm(y)−Eα (vm,y (y)qm(y))

]2}
∼

T↑∞ α↓0
A(y)

αT

Convergence as a distribution: for any test function φ

Eα

{∫
dy φ(y)

[
1
T

∫ T

0
dtvm,y (y)qm(y)−Eα (vm,y (y)qm(y))

]}2
∼

T↑∞ α↓0
A

T

F. Bouchet, C. Nardini and T. Tangarife, J. Stat. Phys., 2013

T. Tangarife’s PhD thesis, 2015.
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Validity of Averaging at the Level of the Law of Large
Numbers

The fast variable dynamics has an invariant measure in the
inviscid limit thanks to inviscid damping.
Velocity like observables have a finite expectation in the
inviscid limit.
The Reynolds stress has a finite expectation in the inviscid
limit.
The ergodic average of the Reynolds stress converges as a
distribution.
We have partial answers only, for the validity of averaging!

F. Bouchet, C. Nardini and T. Tangarife, J. Stat. Phys., 2013

T. Tangarife’s PhD thesis, 2015.
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An Explicit and “Universal” Formula for the Reynolds Stress

∂U

∂τ
= F (U)

For small scale forces we have an explicit expression for F (U)

F (U) =− ∂

∂y

(
ε

∂U/∂y

)
−αU, where ε is the energy injection rate.

Jupiter’s velocity profile
(Sanchez Lavega, 2008)

Theoretical/numerical velocity
profile

E. Woillez and F. Bouchet, EPL 2017 and JFM 2019
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Jupiter’s Abrupt Climate Change
Have we lost one of Jupiter’s jets ?

Jupiter’s white ovals (see
Youssef and Marcus 2005)

The white ovals appeared in 1939-1940 (Rogers 1995). Following
an instability of one of the zonal jets?
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Multistability for Quasi-Geostrophic Jets

Jupiter’s atmosphere
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QG zonal turbulent jets
Multiple attractors had been observed previously by B. Farrell
and P. Ioannou.

F. Bouchet CNRS–ENSL Large deviations in turbulence and climate



Large deviations for the Boltzmann equation
Kinetic theory for two dimensional turbulent flows

Rare transitions and Jupiter’s abrupt climate changes

Rare transitions for zonal jets
Weak noise large deviations (Freidlin–Wentzell)
Rare event algorithms and rare transitions for turbulent flows

Rare Transitions Between Quasigeostrophic Jets
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Rare transitions for quasigeostrophic jets (with E. Simonnet)

This is the first observation of spontaneous transitions.
How to predict those rare transitions? What is their
probability? Which theoretical approach?
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Kramer’s Problem: a Pedagogical Example for Bistability

Historical example: Computation by Kramer of Arrhenius’ law for
a bistable mechanical system with stochastic noise

dx

dt
=−dV

dx
(x) +

√
2kBTeη (t) Rate : λ =

1
τ

exp

(
− ∆V

kBTe

)
.
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)

τ / < τ>

< τ > = 36.2

The problem was solved by Kramer (30’). Modern approach: path
integral formulation (instanton theory, physicists) or large deviation
theory (Freidlin–Wentzell, mathematicians).
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Freidlin–Wentzell Theory

For dynamical systems with weak noises

dx
dt

= b(x) +
√

2εη (t) .

Path integral representation of transition probabilities
(Onsager–Machlup, 53’):

P (x−1,T ;x1,0) =
∫ x(T )=x−1

x(0)=x1
e−

1
4ε

∫T
0 [ẋ−b(x)]2D [x] .

We consider a saddle point approximation (WKB), and obtain
the Arrhenius law as a large deviation result λ �

ε↓0
e−

∆V
ε with

∆V = inf
T≥0

inf
{x(t)|x(0)=x1 and x(T )=x−1 }

{
1
4

∫ T

0
[ẋ−b(x)]2 dt

}
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Most Transition Paths Follow the Instanton

In the weak noise limit, most transition paths follow the most
probable path (instanton)

Figure by Eric Van
den Eijnden

Arrhenius law then follows, for both gradient (reversible) and
non gradient (irreversible) dynamics

λ �
ε→0

e−
∆V

ε .
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The Barotropic Quasi-Geostrophic Equations

The simplest model for geostrophic turbulence.
Quasi-Geostrophic equations with random forces

∂q

∂ t
+v.∇q = ν∆ω−αω +

√
2αfs ,

where ω = (∇∧v) .ez is the vorticity, q = ω + βy is the Potential
Vorticity (PV), fs is a random Gaussian field with correlation
〈fS(x, t)fS(x′, t ′)〉= C (x−x′)δ (t− t ′), ε is the average energy input
rate, λ is the Rayleigh friction coefficient.
Spin up or spin down time = 1/α� 1 = jet inertial time scale.
Using stochastic averaging we might justify a Freidlin-Wentzel
formalism for the slow U field.
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Rare Transitions and Stochastic Averaging for the
Quasi-Geostrophic Dynamics

∂Uα

∂ t
= F (Uα ) +

√
ασ(Uα , t)

σ(Uα ) quantify the statistics of the time-averaged Reynolds
stress fluctuations.
Using stochastic averaging we might justify a Freidlin-Wentzel
formalism for the slow U field.
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Gaussian Fluctuations Do Not Describe Rare Transitions

Example of a solvable toy model for
∂Uα

∂ t
= F (Uα ) +

√
ασ(Uα , t) :

0 1 2 3 4 5 6 7
Ux

0

1

2

3

4

5

6

7

U
y

Minimizer

Minimizer (quad approx)

Relaxation path

(Figure from F. Bouchet, T. Grafke, T. Tangarife, and E.
Vanden-Eijnden, J. Stat. Phys. 2016)
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The Large Deviations that Describe Rare Transitions

 dUα

dt = f (Uα ,vt)
dvt
dt = 1

α
g (Uα ,vt) + 1√

α
hdW

dt

The equation for the slow variable is
∂Uα

∂ t = F (Uα ) +
√

ασ(Uα , t),

with P({Uα (t)}= {U(t)}) �
α↓0

exp

{
− 1

α

∫ T

0
dtL

[
U, U̇

]}
,

L[U, U̇] = sup
P

[
U̇P−H(U,P)

]
, and

H(U,P) = lim
T→∞

1
T

logEU

{
exp

[
P
∫ T

O
f (U,vt(t))

]}

Freidlin-Wentzell textbook, Veretennikov (2000), Kifer (2007).

F. Bouchet CNRS–ENSL Large deviations in turbulence and climate



Large deviations for the Boltzmann equation
Kinetic theory for two dimensional turbulent flows

Rare transitions and Jupiter’s abrupt climate changes

Rare transitions for zonal jets
Weak noise large deviations (Freidlin–Wentzell)
Rare event algorithms and rare transitions for turbulent flows

For Turbulent Flows: Large Deviations of Quadratic
Observables for an Ornstein–Uhlenbeck Process

For quadratic in vt f , and linear g and h (for instance for the
quasigeostrophic model), H solves a nonlinear Lyapunov eq. dUα

dt = vTt MUα
vt −Uα

dvt
dt = 1

α
LUα

vt + 1√
α
hdW

dt

H(U,P) = lim
T→∞

1
T

logEU

{
exp

[
P
∫ T

0
vTt MUvt

]}
= Tr(CN∞),

where C is the noise correlation function and N∞ is the asymptotic solution of
the matrix Ricatti equation

∂N

∂ t
+LTUN +NLU = 2NCN +PM.

We can solve this equation explicitely sometimes, or numerically.

F. B., T. Grafke, T. Tangarife, and E. Vanden-Eijnden, J. Stat. Phys., 2016, T.
Tangarife’s PhD thesis, and F.B., B.M., and T.T., 2017 POF.
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Lagrangian for the Large Deviations of the Time Averaged
Reynolds Stress

R
-0.24 -0.22 -0.2 -0.18 -0.16 -0.14 -0.12

L
 =

 -
lo

g
 P

 /
 ∆

 t

0

0.01

0.02

0.03

0.04

0.05

0.06
 L estimated
 Ricatti solution
 Gaussian

The Lagrangian that describes large deviations of Reynold stresses
(one point statistics)

In general, rare transitions involve non Gaussian fluctuations.
T. Tangarife’s PhD thesis. F.B., B.M., and T.T., 2017 POF.
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Work in Progress: Compute the Instantons and the
Transition Rates

∂Uα

∂ t
= F (Uα ) +

√
ασ(Uα , t)

The transition rate λ from an attractor U0 to an attractor UF

verifies an Arrhenius law

λ �
α↓0

e−
∆V

α with ∆V = inf
{U(t)|U(0)=U0 and U(T )=UF , }

∫ T

0
dt L

[
U, U̇

]
.

And the instanton is the minimizer.
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Outline

1 Large deviations for dilute gases (for the Boltzmann equation)
Dilute gases and heuristic derivation of the Boltzmann
equation
Derivation of the large deviation action for dilute gas dynamics
The irreversibility paradox

2 Kinetic theory for two dimensional turbulent flows
The barotropic quasi-geostrophic model and averaging
Kinetic theory of the quasi-geostrophic model
An explicit formula for the Reynolds stress for small scale
forces

3 Rare transitions and Jupiter’s abrupt climate changes
Rare transitions for zonal jets
Large deviations in the weak noise regime
Rare event algorithms and rare transitions for turbulent flows
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Rare Events and Adaptive Multilevel Splitting (AMS)
AMS: an algorithm to compute rare events, for instance rare transition paths

Rare event algorithms: Kahn and Harris (1953), Chandler,
Vanden-Eijnden, Schuss, Del Moral, Dupuis, ...
The adaptive multilevel splitting algorithm:

1

1 branched on 2

3
2

x

Q1Q2 Q3

Q1 < Q2 < Q3

A

B

N = 3 trajectories

AMS algorithm

Strategy: selection and cloning.
Probability estimate:

α̂ = (1−1/N)K , where

N is the clone number and K
the iteration number.

Cérou, Guyader (2007). Cérou, Guyader, Lelièvre, and Pommier (2011).
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A Transition from 2 to 3 Jets

Top: Zonally averaged vorticity (Hovmöller diagram and red curve)
and velocity (green). Bottom: vorticity field
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Atmosphere Jet “Instantons” Computed using the AMS
AMS: an algorithm to compute rare events, for instance rare reactive trajectories

Transition trajectories between 2 and 3 jet states

The dynamics of turbulent transitions is predictable.
Asymmetry between forward and backward transitions.
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Evolution of Velocity Fields During the Transition

0 1 2 3 4 5 6
y

-0.3

-0.2
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0
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Zonal velocity U

Nucleation of a new jet
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Zonal velocity U

Merging of two jets
Asymmetry between forward and backward transitions.
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Transition Rates for Unreachable Regimes Through DNS
With the AMS we can estimate huge average transition times

2.2e−04 4.5e−04 6.0e−04 9.0e−04 1.2e−03

2.0e+06

2.8e+07

2.5e+09

1.0e+11

1.6e+15

α

M
ea

n 
fir

st
 p

as
sa

ge
 ti

m
e

CPU time for computing 2000 reactive trajectories with 200 procs

α AMS DNS
1.20 · 10−3 1.0 d 21 d
0.90 · 10−3 1.4 d ∼ 200 d
0.60 · 10−3 2.2 d ∼ 70 y
0.45 · 10−3 3.4 d ∞
0.22 · 10−3 25.0 d ∞

Average transition time versus α

With the AMS algorithm, we study transitions that would
require an astronomical computation time using direct
numerical simulations.
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Atmosphere Jet “Instantons” Computed using the AMS
AMS: an algorithm to compute rare events, for instance rare reactive trajectories

Transition trajectories between 2 and 3 jet states

The dynamics of turbulent transitions is predictible.
Asymmetry between forward and backward transitions.
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A Complex Internal Dynamics for the 3-Jet States

5 6 7 8 9 10 11 12
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0.3
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|q
2|

Hysteresis α=5.10−4

Hysteresis experiment for the 2/3 jet bifurcations

The 3 jet states have larger fluctuations than the 2 jet states.
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Rare Transitions Between Quasigeostrophic Jets

500 1000 1500 2000 2500 3000 3500
0
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0.2
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Rare transitions for quasigeostrophic jets

It seems that the 3 jet states might have different structures.
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A Family of Different 3-Jet Attractors
Symmetry breaking within the set of 3-jet attractors

(σ2,σ1,σ3)

(σ2,σ3,σ1)

(σ3,σ2,σ1)

(σ3,σ1,σ2)

(σ1,σ3,σ2)

(σ1,σ2,σ3)

Schematic zonal velocity fields U(y) for the 3-jet attractors
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Internal Multistability for the 3-Jet Attractors
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Timeseries for the distance between jets within the 3-jet attractors

F. Bouchet CNRS–ENSL Large deviations in turbulence and climate



Large deviations for the Boltzmann equation
Kinetic theory for two dimensional turbulent flows

Rare transitions and Jupiter’s abrupt climate changes

Rare transitions for zonal jets
Weak noise large deviations (Freidlin–Wentzell)
Rare event algorithms and rare transitions for turbulent flows

Internal Multistability for the 3-Jet Attractors
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PDF of distances between jets within the 3-jet attractors.
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Bifurcation Diagram for the 3-Jet Attractors
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Attractors and saddles for the 3 jet states

Each axe represent one of the 3 distances between the 3 jets.
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A Richer Transition Phenomenology
Transitions through states with four jets are possible

T = 4.3 T = 8.4T = 2.7
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Conclusions

We have computed rare transitions between zonal jets, similar
to Jupiter’s abrupt climate changes, that can not be computed
using direct numerical simulations (with E.S.).
We have partial results for the justification of averaging
(ergodicity, etc ...), (with C.N., and T.T.).
For small scale forces, the average Reynolds stress can be
computed explicitly and is universal. We have a good
qualitative agreement with Jupiter’s jets. (with E.W.).
The rare transitions involve non-Gaussian fluctuations of the
Reynolds stress. (with T.G., B.M., T.T., and E.V-E).

http://perso.ens-lyon.fr/freddy.bouchet/
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