Athermal Photofluidization of Glasses or Controlling Viscosity with Light

Guanjiu Fang, Joe Maclennan, Youngwoo Yi, Matt Glaser Department of Physics University of Colorado, Boulder

> Matt Farrow, Eva Korblova, Dave Walba Department of Chemistry and Biochemistry University of Colorado, Boulder

> > Tom Furtak Department of Physics Colorado School of Mines

Dmitry Bedrov Department of Materials University of Utah

Nat. Comm. (2013)

azobenzene

azo – based photo-active glassy polymers

Broer

Ikeda

Wright- Patterson

azo-based tethered molecular monolayer (dMR)

optical absorbance of the dMR monolayer

compare to solution (monolayer ~70% coverage)

 a fluence of 20mJ/cm² gives 1photon absorbed/molecule (pa/mol)

Photo-orientation

t=0

After 9ns

writing dynamics

dynamic measurement of in-plane birefringence

- red probe light (632 nm, focused to 40µm)
- green write light (514 nm focused to 1mm)
- 100 µsec time resolution
- high extinction contrast between crossed polarizers (2.4 x 10⁻¹⁰)

a 2D nematic (smectic C monolayer)

comparing SmC* and dMR monolayers

tethered monolayer is a glass

 $\gamma_{DMR} \sim 10^{11} \gamma_{SmC}$

erasure by $k_B T$ at T = 300 K

dMR monolayer is an orientational glass

The barrier gap (activation energy)

erasure by $k_B T$ at T = 300 K

the power law tail

erasure by circularly polarized light

crossover to photo-controlled erasing

T_m increases with writing fluence

increasing erase intensity

τ occurs at F = 1 photon absorbed/molecule

erasure by circularly polarized light

every absorbed photon induces a local glass transition

This means that each 800K photo event melts (fluidizes) the local 7,500K barrier, i.e. produces a local glass transition

10-6

106

photofluidization

(c)

00

10-2

0-5

n-6

loiλ

CP) /

elativ

10-8

104

the photo-absorption event

Tiberio, Muccioli, Berardi, & Zannoni, ChemPhysChem (2010)

the photo-absorption event

writing dynamics

T_m increases with writing fluence

orientational work hardening at large fluence

azobenzene

summary

photo-indiced relaxation is essentially isothermal

- thermal and photo-induced relaxation events occur by random sequences of discrete local relaxation events.
- isomerizing molecules attack their confining barriers with an effective T ~ 800K
- the T ~ 800K attacks produce local glass transitions, such that every photon generates a barrier escape event

barrier height distributions

$$\tau(U) = \tau_r \exp(U/k_B T)$$

$$Q(t) = A \int_0^\infty e^{-(t/\tau)} H(\tau) d\tau = \int_0^\infty e^{-(t/\tau(U))} f(U) dU$$

$$\tau = \tau_r \exp(U(t) / k_B T)$$
$$U() = k_B T \log(/\tau_r)$$

it's an orientational glass

dependence on writing and erasing

azo-based tethered molecular monolayer

precursor
 (a derivative of methyl red - dMR)

- covalently bonded to glass surface
- photo-orients in-plane

Weigert mechanism:

photo-orientable 2D XY system

a different model

Michael F. Shlesinger Ann. Rev. Phys. Chem. 1988. 39: 269–90

orientational diffusion with a divergent distribution of waiting times:

 $Q(t) = \int exp(-t/\tau) H(\tau) d\tau$

- $\tau = \tau_o \exp(\Delta/kT)$, the rate is determined by activated hopping with barrier Δ
- $f(\Delta) = (kT_o)^{-1} \exp(-\Delta/kT_o)$, the barrier is distributed with a mean width kT_o
- With these assumptions Schlesinger shows

 $H(\tau) \propto (\tau_o/\tau)^{\beta}$

with

 β -1 = T/T_o

barrier model results

• integration gives

 $Q_e(t) = [1 + (t/\tau_o)]^{(1-\beta)}$, with $\beta > 1$

- power-law writing and erasing:
 - β controls erasing: $\Delta n(t) \sim Q_e(t) = (t/\tau_o)^{(1-\beta)} = (t/\tau_o)^{-T/To}$ at large t
 - writing: $\Delta n_w \propto (1 Q_e(t)) \propto (t/\tau_o)$ at small t
- β depends on net energy that generated the written state through mean barrier height T_o

 β -1 = T/T_o

T_o increases as log(dose)

 $T_o \propto \delta(t)$

coverage measured by absorbance

(d-MR in chloroform at 40 nm)

 $\frac{1}{N_s} \approx 1.0 \text{ nm}^2 \implies \text{monolayer} (~70\% \text{ coverage})*$

* **AFM** shows uniform layer morphology

aligns nematics

reorienting the writing polarization (+45° to -45°)

- $Q(t) = in-plane nematic-like order parameter \propto \Delta n$
- transmission (thin layer) = $T \propto \Delta n^2 \propto Q^2$

model: orientational diffusion with a divergent distribution of waiting times:

relaxation: $Q_e(t) = \int H(\tau) * \exp -(t/\tau)^{\alpha} d\tau$

where data indicates: $H(\tau) \sim (\tau_0/\tau)^{\beta} * \exp (\tau_0/\tau)^{\alpha}$

erasing the birefringence with circular polarized light

statistics of extreme values of random functions

Scher Shlesinger distribution

Gumbel distribution

Schlesinger, Ann. Rev. Phys. Chem. (1988)

Schleshinger, Ann. Rev. Phys. Chem. (1988)

 $f_G(U) = \{\beta / [U_m \Gamma(1/\beta)]\} \{exp-[U|U_m + exp-(\beta U|U_m)]\}$

 $\boldsymbol{H}_{\boldsymbol{G}}(\tau) = \left[\alpha/\Gamma(\mathbf{h}/\beta)\tau_{t}\right] \left[\boldsymbol{exp} - (\tau_{t}/\tau)^{\alpha}\right] \left[\tau/\tau_{t}\right]^{-(\eta+1)}$

 $\Delta n(t) \propto Q_G(t) = 1/[1 + (t/\tau_t)^{\alpha}]^{\eta/\alpha}$

dMR monolayer is an orientational glass

