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1 Introduction

Although complex systems are ubiquitous in nature, physicists tend to prefer
“simple” systems. The reason if of course that simple systems obey simple laws,
which can be represented by simple mathematical equations, as expressed by
Goldenfeld and Kadanoff [1]:

One of the most striking aspects of physics is the simplicity of its
laws. Maxwell’s equations, Schrödinger’s equation, and Hamiltonian
mechanics can each be expressed in a few lines. The ideas that form
the foundation of our worldview are also very simple indeed: The
world is lawful, and the same basic laws hold everywhere. Everything
is simple, neat, and expressible in terms of everyday mathematics,
either partial differential or ordinary differential equations.

Everything is simple and neat—except, of course, the world.

Even though the world obviously is not simple, many systems can be split, be
it only in Gedanken, into simple components, each obeying simple laws. This is
the viewpoint of standard reductionism, upon which modern science has been
built [2]:

The reductionist hypothesis may still be a topic for controversy among
philosophers, but among the great majority of active scientists I think
it is accepted without question. The workings of our minds and bod-
ies, and of all the animate or inanimate matter of which we have
any detailed knowledge, are assumed to be controlled by the same set
of fundamental laws, which except under certain extreme conditions
we feel we know pretty well.

Reductionism was a key ingredient for the development of physics in the 19th
and the first half of the 20th century, when (classical and quantum) mechanics,
electromagnetism, relativity, thermodynamics, etc. came to huge success. But is
there anything fundamental beyond the simple laws of physics, or can one always
reconstruct the properties of composed systems from the workings of their parts?
This credo of “constructivism” has been challenged by P. W. Anderson, the
author of the preceding quotation and one of the physicists who played a major
role in the analysis of complex physical systems:

The ability to reduce everything to simple fundamental laws does
not imply the ability to start from those laws and reconstruct the
universe. In fact, the more the elementary particle physicists tell
us about the nature of the fundamental laws, the less relevance they
seem to have to the very real problems of the rest of science, much
less to those of society.

The constructionist hypothesis breaks down when confronted with the
twin difficulties of scale and complexity. The behavior of large and
complex aggregates of elementary particles, it turns out, is not to be
understood in terms of a simple extrapolation of the properties of a
few particles. Instead, at each level of complexity, entirely new prop-
erties appear, and the understanding of the new behaviors requires
research which I think is as fundamental in its nature as any other.
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which he summarized shortly with:

More Is Different.

It is one aim of these lectures to show—in a restricted context—how intricate
the interplay between the small and the large can be in complex systems. We
did not yet give a precise definition of the word “complex”. It turns out that the
very same word may be used in different contexts with different meanings. In
these lectures, we will address a specific example of complexity, viz., disorder. In
physics as in everyday life, disorder is associated with some lack of regularity. In
a disordered material, atoms are not arranged in crystalline periodic patterns,
but appear in more or less random positions. Randomness occurs because some
agents, called “degrees of freedom” by physicist, are not under control, either
because we cannot or chose not to control them. It means that we have to
learn to deal not with a single specific complex system—that is called a single
realization of the disorder—but with a whole family of systems whose properties
are described in terms of distribution laws, correlation functions, etc. The goal
of the game is not to describe as accurately as possible a single system, but
rather to predict global properties shared by (almost) all systems, i.e. to acquire
knowledge of universal features independent of the precise realization of the
disorder. These are instances of the “new behaviors” mentioned by Anderson.
And this is also the viewpoint taken long ago by classical thermodynamics where
one forfeits the microscopic description of a gas in terms of all positions and
momenta, concentrating instead on new concepts like entropy and temperature,
which prove to be the relevant, and therefore fundamental, concepts at this level
of complexity.

The specific problem we address in these lectures is the problem of transport
and localization in disordered systems, when interference is present, as charac-
teristic for waves. A wave propagates in some medium (be it vacuum), and
interference occurs when different waves overlap, for example scattered from
different positions with various wavevectors. The “simple laws” are the wave
equation in the homogeneous medium together with a microscopic description
of scattering by the impurities. The complex behavior we want to describe is,
for example, the propagation of the wave over long distances and for long times.
Physical situations of this type cover the propagation of sound in a concert
hall with complicated shape, seismic waves multiply scattered inside the earth,
electronic matter waves in dirty semiconductor crystals, atomic matter waves
in the presence of a disordered potential, etc. In this context, it is good to keep
in mind a warning issued by W. Thirring [3]:

It is notoriously difficult to obtain reliable results for quantum me-
chanical scattering problems. Since they involve complicated inter-
ference phenomena of waves, any simple uncontrolled approximation
is not worth more than the weather forecast.

1.1 Anderson localization with atomic matter waves

To start with a specific, state-of-the-experimental-art example, imagine a one-
dimensional non relativistic particle evolving in a potential V (z) as depicted
in Fig. 1. The evolution of the wavefunction ψ(z, t) is given by Schrödinger’s
equation:

i~∂tψ(z, t) = Hψ(z, t) (1)
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with the single-particle Hamiltonian

H =
p2

2m
+ V (z). (2)

Let us assume that the particle is initially prepared in a Gaussian wave-packet.
In the absence of any potential, the Gaussian wave-packet will show ballistic
motion, where the center of mass moves at constant velocity while the width
increases linearly with time at long times. In the presence of a certain realization
V (z) of the disorder, the wave function will take a certain form ψ(z, t). For
different realizations, different wave functions will be obtained. But we are
not interested in the fine details of each wave function. Rather, we wish to
understand the generic, if not universal, properties of the final stationary density
distribution |ψ(z)|2 obtained at long times. We will see that not only averages,
but also their fluctuations contain important information.

Let us forget for a moment interference effects and try to guess what happens
to a classical particle. If its kinetic energy is much larger than the typical
strength of the disorder V0, the particle will fly above the potential landscape,
and the motion is likely to be ballistic on the average. If on the other hand V0

is larger than the kinetic energy, the particle will be trapped inside a potential
well and transport over long distance is suppressed, i.e. localization takes place.

Quantum mechanics modifies this simple picture fundamentally: waves can
both tunnel through potential hills higher than the kinetic energy and be re-
flected even by small potential fluctuations. So the initial wavepacket will split
on each potential fluctuation into a transmitted part and a reflected part, no
matter how large the kinetic energy with respect to the potential strength may
in detail be. After many scattering instances, this looks like a random walk and
one naively expects that, on average, the motion at long times will be diffusive,
with a diffusion constant depending on some microscopic properties of particle
and potential.

This simple model system has been recently realized experimentally [4] using
a quasi-one-dimensional atomic matter wave, interacting with an effective opti-
cal potential created by a speckle pattern, see Fig. 1. The experimental result is
the following: at short times, the wavepacket spreads as expected, but at long
times, its average dynamics freeze, and the wavepacket takes a characteristic
exponential shape:

|ψ(z)|2 ∝ exp

(
− |z|
ξloc

)
(3)

where ξloc is called the localization length.1 Moreover, if a different realization
of the disorder is used (i.e. a microscopically different, but statistically equiva-
lent speckle pattern), an almost identical shape is obtained, meaning that the
phenomenon is robust versus a change of the microscopic details.

This surprising phenomenon is known as Anderson localization, sometimes
also called strong localization. Although it was predicted on theoretical grounds
in the late 50’s—most famously by P.W. Anderson himself [5]—it has only
been observed directly rather recently. Cold atoms, where an in situ direct

1In the literature, the localization length is defined as the characteristic length for the
decay of either |ψ|2 or of |ψ|. The two quantities of course differ by a factor 2. Usage of one or
the other definition depends on the community, but may also fluctuate from paper to paper.
One has to live with this source of disorder.
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Figure 1: Direct experimental observation of one-dimensional Anderson localization
of an atomic matter wave in a disorder potential. The disorder potential (represented
in blue in the lower part of the figure) is created by a speckle pattern. (a) An initially
localized wave packet (prepared in a harmonic trap at the center) evolves freely, diffuses
and eventually freezes at long times in a characteristic exponential shape (b). The pink
tube represents the transverse-confinement laser beam that ensures an effectively one-
dimensional dynamics. Reprinted from [4] (courtesy of Ph. Bouyer).

observation of the wavefunction is possible, are from that point of view highly
valuable.

In these lecture notes, we present an introduction to transport properties
in disordered systems, with a strong emphasis on Anderson localization. As an
appetizer, we show in section 2 how the one-dimensional case can be exactly
solved, providing us with useful physical pictures. We then introduce in section 3
the scaling theory of localization, a typical illustration of the appearance of new
concepts and parameters relevant at the long distance and long time scale.
After reviewing some of the most important experimental and numerical results
in section 4, we develop a microscopic description of quantum transport in
section 5, several applications of which are discussed in sections 6, 7 and 8.

Many other, interesting questions will not be touched upon, foremost the
impact of interaction between several identical particles. However, technically
speaking averages over disorder introduce an effective interaction. The rele-
vant diagrammatic approach, originally introduced in the context of quantum
electrodynamics, is quite versatile and used equally well to describe, e.g., in-
teracting electrons in solid state samples or interacting atoms in Bose-Einstein
condensates. In these lecture notes, we restrict the discusion to non-interacting
particles in a disordered medium, but the general framework and the technical
tools introduced should provide our readers with solid foundations to follow also
more advanced developments. Understanding the combined effects of interac-
tion and disorder has been, still is, and doubtlessly will remain the subject of
fascinating research for a long time to come.

6



e±ikz

zz1 z2 zN

t1

r1

1 ?
. . .

Figure 2: One-dimensional waveguide with randomly placed scatterers. We know the
reflection and transmission coefficients rj and tj of each scatterer. What is the total
transmission TN across the whole ensemble?

2 Transfer-matrix description of transport and
Anderson localization in 1d systems

In order to develop some intuition on transport in disordered systems, it is
useful to study solvable models, where one can identify relevant phenomena
and mechanisms. It turns out that a one-dimensional system, with the specific
choice of δ point scatterers put at random positions, provides such a solvable
model, that is moreover sufficiently rich to teach us useful lessons for more
realistic disorder and higher dimensions.

Consider therefore a spinless particle confined to a 1d wave-guide geometry
by tight transverse trapping to its ground state. Free propagation along the z-
direction with wave vector k is described by amplitudes ψ±k(z) = exp{±ikz}. In
the following, we discuss the transmission of a single, fixed k-component through
a series of obstacles j = 1, 2, . . . , N , well separated and placed at randomly
chosen distances ∆zj = zj − zj−1 as pictured in Fig. 2.

2.1 Scattering matrix

Each obstacle shall be described by a potential Vj(z). To fix ideas, we may
assume that it is sufficiently short-ranged to be well approximated by a δ-type
impurity, Vj(z) = V (z − zj) = σ0V0δ(z − zj), with an internal length scale
σ0 that is not resolved by the propagating wave, kσ0 � 1. Furthermore, we
suppose that the obstacles are well separated, i.e., their density n = N/L is
small compared to the wavelength, n� k.

Consider first scattering by a single impurity at z = 0. We can decompose
the wave functions to the left (L, z < 0) and right (R, z > 0) into left- and
right-moving components:

ψL(z) = ψin
L e+ikz + ψout

L e−ikz (4)

ψR(z) = ψout
R e+ikz + ψin

R e−ikz. (5)

The outgoing amplitudes are linked to the incident amplitudes by the reflection
and transmission coefficients r and t from the left, and r′, t′ from the right:

ψin
L ψout

R = t ψin
L + r′ ψin

R

ψin
Rr ψin

L + t′ ψin
R = ψout

L

t

t′

r r′ (6)
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Writing these relations in matrix form introduces the scattering or S-Matrix:(
ψout

L

ψout
R

)
= S

(
ψin

L

ψin
R

)
with S =

(
r t′

t r′

)
. (7)

For the present setting of a single-mode wave guide, the reflection and trans-
mission coefficients are complex numbers, and the probabilities for reflection
and transmission from the left are R = |r|2 and T = |t|2, respectively, and
similarly from the right. In a more general setting of multi-mode scattering
with m modes or “channels” on the left and m′ modes on the right, r and t are
matrices with m ×m and m′ ×m entries, respectively. And for example, the
total transmission probability “all channels in to all channels out” then reads
T =

∑
m,m′ tm′mt

∗
m′m =

∑
m′(tt

†)m′m′ =: tr′{tt†}. Within this section, we
have only use for the single-channel notation and refer to the literature for the
general case [6, 7, 8, 9]

Probability flux conservation requires that S be unitary, S† = S−1. From
S†S = 1, it follows directly that reflection and transmission probabilities add
up to unity: R + T = 1 and R′ + T ′ = 1. One also finds r∗t′ + t∗r′ = 0 and its
complex conjugate rt′∗ + tr′∗ = 0. From this, it follows for the single-channel
case that R = R′, T = T ′: the reflection and transmission probabilities are the
same from both sides.

Time reversal exchanges the roles of “in” and “out” states. For a time-
reversal invariant potential V (z), this implies S∗ = S−1. With unitarity, this
is equivalent to St = S or t = t′, a symmetry called reciprocity. This setting
defines the so-called “orthogonal” symmetry class of random matrix theory.
Reciprocity is typically violated in presence of an external magnetic field or
magnetic impurities (see Secs. 6.3 and 7 below).

Exercise 1 – Consider an elementary impurity with V (z) = σ0V0δ(z). Solve the
Schrödinger eigenvalue equation −ψ′′ + (2m/~2)V ψ = k2ψ at fixed k (use the conti-
nuity of the free wave function and compute its derivative discontinuity at z = 0) and
show that the S-Matrix in terms of f = mσ0V0/~2k is given by [10]

S =
1

1 + if

(
−if 1

1 −if

)
. (8)

2.2 Transfer matrix

If we now have several impurities in series, in principle the total transmission
can be calculated from the S-matrix of the whole system. But the total S-
matrix is not simply linked to the individual S-matrices. Since the transmission
depends on the incident amplitudes from both left and right, adding a scatterer
requires to recompute the entire sequence. So instead of distinguishing in/out
amplitudes, one prefers to decompose the wave function into right-/left moving
amplitudes, respectively: ψ(z) = ψ+e+ikz + ψ−e−ikz, and this on both sides
R/L of the obstacles. The transfer matrix M then maps the amplitudes from

8



the left side of the obstacle to the right:

ψ+
L ψ+

R

ψ−Rψ−L

M
or

(
ψ+

R

ψ−R

)
= M

(
ψ+

L

ψ−L

)
. (9)

One can easily determine its matrix elements in terms of t, t′, r, r′. For instance,
ψout

L = rψin
L +t′ψin

R rewrites as ψ−L = rψ+
L +t′ψ−R , which we can immediately solve

for ψ−R = 1
t′ψ
−
L − r

t′ψ
+
L , and similarly for ψ+

R . Eliminating r′, t′ with unitarity
relations in favor of r, t and their complex conjugates yields a simple form:

M =

(
1/t∗ −r∗/t∗
−r/t 1/t

)
. (10)

Exercise 2 – Check the following interesting properties of the transfer matrix:

(i) detM = 1.

(ii) Current conservation (unitarity of S) implies now that MσzM
† = σz, with σz =(

1 0
0 −1

)
the third Pauli matrix.

(iii) Equivalently, M−1 = σzM
†σz.

(iv) (M†M)−1 = σzM
†Mσz. Thus, the hermitian matrices (M†M)−1 and M†M have

the same (real) eigenvalues. Verify this property by computing the eigenvalues
directly using (10). Since these eigenvalues must also be each other’s inverses,
they can only be of the form λ+ = 1/λ− = e2x.

(v) As a matrix, 2 + (M†M)−1 + M†M = 4/T . Thus, the total transmission proba-
bility is T = 1/(coshx)2.

2.2.1 Chaining transfer matrices

By construction, the transfer matrix maps the amplitudes from left to right
across each scatterer. Therefore, the total transfer matrix across N scatterers
is obtained by multiplying them:

M12...N = MN . . .M2M1. (11)

Consider the simplest case of two obstacles j = 1, 2 in series, for which M12 =
M2M1. After matrix multiplication, one finds the transmission coefficient

t12 =
t1t2

1− r′1r2
(12)

This transmission amplitude contains the entire series of repeated internal re-
flection between the two scatterers: t12 = t2t1 + t2r

′
1r2t1 + t2(r′1r2)2t1 + . . . .

The transmission probability reads

T12 =
T1T2

|1−√R1R2eiθ|2 (13)

where θ is the total phase accumulated during one complete internal reflection.
Since the scatterers are placed with a random distance k∆z � 2π, the phase θ

9



will also be randomly distributed in [0, 2π], independently of the details of the
random distribution of distance between consecutive scatterers or their reflection
phases. One can calculate expectation values of any function of θ by

〈f(θ)〉 =

∫ 2π

0

dθ

2π
f(θ). (14)

But as we will see in the following, a very important question is: “what quantity
f(θ) should be averaged?”

2.2.2 Incoherent transmission: Ohm’s law

The most natural thing seems to average directly the transmission probability
(13). One finds

〈T12〉 =
T1T2

1−R1R2
. (15)

The same transmission probability is obtained for a purely classical model where
only reflection and transmission probabilities are combined:

Exercise 3 – Show that the rule (15) is also obtained if one uses an S-matrix propa-

gating probabilities instead of amplitudes, S̊ =

(
R T
T R

)
, by determining the corre-

sponding transfer matrix M̊ and chaining it.

In this case, the distance ∆z of ballistic propagation between the two scatter-
ers is completely irrelevant, and T12 is given by (15). This classical description
applies to systems that are subject to strong decoherence, where the phase of the
particle is completely scrambled by coupling to an external degree of freedom,
while traveling between scatterers 1 and 2.

The so-called element resistance of the obstacles, (1−T )/T , calculated with
the classical transmission, is additive:

1− T12

T12
=

1− T1

T1
+

1− T2

T2
. (16)

Therefore, the classical resistance across N identical impurities distributed with
linear density n = N/L along a wire of length L grows like

R

T
(L) = N

R1

T1
=:

L

l1
(17)

where l1 = T1/(nR1) is a length characterizing the backscattering strength of a
single impurity.

Within the context of electronic conduction, the result (17) is known as
Ohm’s law, stating that the total classical resistance of a wire grows linearly with
its length L. Obviously, averaging the transmission itself at each step has wiped
out completely the phase-coherence and left us with a purely classical transport
process. This process can be formulated equivalently as a persistent random
walk on a lattice where the particle has uniform probability T1 to continue in
the same direction at each time step and probability R1 to make a U-turn. For
long times, this random walk leads to diffusive motion with diffusion constant
[11]

D = vl0
T1

2R1
. (18)

10



Here v is the velocity of the particle and l0 = 1/n the distance between consec-
utive scatterers. Since the diffusion constant is related to the transport mean
free path l by the general relation D = vl/d, with d = 1 the dimension of the
system, one can identify l1 as twice the transport mean free path, l1 = 2l.

2.2.3 Phase-coherent transmission: strong localization

The relation (15) cannot be easily generalized to more than two scatterers.
Indeed, already for three scatterers, the average of the complicated product
of transmission matrices even over independent, random phases θ12 and θ23

becomes very complicated. In order to predict the behavior of transmission
across long samples, it is advantageous to find a quantity that is additive as
new scatterers are added to the wire. There is such a quantity that becomes
additive under ensemble-averaging, namely the so-called extinction coefficient
κ = − lnT = | lnT |. When averaging the logarithm of (13), the denominator
drops out since ∫ 2π

0

dθ

2π
ln
∣∣∣1−√R1R2eiθ

∣∣∣ = 0 (19)

due to the analyticity of the complex logarithm for all 0 ≤ R1R2 < 1. Thus, one
immediately finds that the average extinction across two consecutive scatterers
is strictly additive:

〈lnT12〉 = ln(T1) + ln(T2). (20)

The generalization to many scatterers is now easy because 〈lnT 〉 is additive:
the total extinction of a channel of length L grows on average like |〈lnT 〉| =
nL| lnT1|. With this scaling behavior, one obtains that the log-averaged trans-
mission

exp{〈lnT 〉} = e−L/ξloc (21)

drops exponentially fast with increasing sample length L. In the absence of
absorption, this is a hallmark of strong localization by disorder, and we have
found the localization length ξloc = 1/(n| lnT1|). In a weak scattering situation
where nl1 = T1/R1 � 1, we approximate | lnT1| ≈ 1/nl1 and thus find the
localization length as ξloc = l1 = 2l.

What is the meaning of the log-averaged transmission (21)? It is important
to realize that the transmission T as a function of the microscopic realization
of disorder is a random variable. We will show in the following sections that
T itself is not a self-averaging quantity, meaning that its average 〈T 〉 has no
resemblance to the most likely found value of T , called the typical transmission
Ttyp. We will shortly see that for long samples, the probability distribution of
lnT is very close to a normal distribution (see (32) below), which is centered at
〈lnT 〉 = lnTtyp. And since the logarithm is monotonic, the most probable value
of the transmission is indeed Ttyp = exp{〈lnT 〉} = e−L/ξloc .

How does one go about to identify a properly self-averaging quantity in
the first place? — By observing that the transmission matrices of several ob-
stacles multiply, see eq. (11). Thus, their logarithm is additive: lnM12...N =∑N
j=1 lnMj . Summing a large number of these random log-transmission ma-

trices therefore realizes a variant ot the central limit theorem, from which we
know that the limiting probability distribution is a normal (Gaussian) distribu-
tion with a width that decreases with the number of addends. And really, many
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of the rigorous results available for (quasi-)1D Anderson localization make use of
Furstenberg’s theorem on products of random matrices [12]. Thus, the extinc-
tion or log-averaged transmission is indeed a good candidate for a self-averaging
quantity.

2.3 Scaling equations

In order to substantiate the previous arguments, we should find the full distri-
bution function P (T, L) that permits to derive expectation values for arbitrary
functions of T at length L. This distribution function can be found exactly by
solving recursion relations that describe how the transmission is changed when
a small bit ∆L is added to a sample of length L:

0 L

TL

L+ ∆L

T∆L

We know already that the transfer matrices multiply, ML+∆L = M∆LML. The
composition law (13) then gives

TL+∆L =
TLT∆L

|1− eiθ
√
RLR∆L|2

. (22)

The idea is now to study the change in the expectation values of T as the “time”
t = L/l1 grows. For this, we assume that the added part ∆L is long enough such
that an independent disorder average 〈. . .〉∆L in this section is meaningful. We
also assume that the scatterers are weak such that the backscattering probability
remains small:

R∆L = ∆L/l1 =: ∆t� 1. (23)

These assumptions are verified if ∆L is of the order of n−1 = l1R1 with a single
weak scatterer on average. We may now expand (22) using T∆L = 1 − ∆t to
leading order in ∆t, finding for the change

∆T = TL+∆L − TL = TL

[
2
√
RL∆t cos θ + (4RL cos2 θ − 1−RL)∆t

]
. (24)

Thus, to order ∆t, we find by averaging 〈. . .〉∆L = 〈. . .〉θ that

〈∆T 〉θ
∆t

= −T 2
L,

〈
(∆T )2

〉
θ

∆t
= 2T 2

L(1− TL),
〈(∆T )n〉θ

∆t
= 0 (n ≥ 3)

(25)
So only the first two moments of fluctuations contribute. From the first rela-
tion we can read off that the transmission decreases with increasing length, an
expected result. But the second relation shows that the relative fluctuations,
while small in the beginning where 1− T = R � 1, will grow for long samples
where T � 1.

2.4 Fokker-Planck equation and log-normal distribution

The above equations (25) describe a random quantity T (t) whose first two mo-
ments obey the equations ∂〈T 〉/∂t = 〈A(T )〉 and ∂

〈
T 2
〉
/∂t = 〈2TA(T ) +B(T )〉
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with A(T ) = −T 2 and B(T ) = 2T 2(1− T ). Here, we use the continuous nota-
tions ∆t→ dt and ∆T → dT while bearing in mind the coarse-grained character
of the averaged quantities. The theory of Brownian motion [13] then teaches us
that the probability distribution P (T, t) of T at time t obeys the Fokker-Planck
equation

∂tP = −∂T [AP ] +
1

2
∂2
T [BP ]. (26)

This equation of motion can be seen as a continuity equation, ∂tP + ∂TJ = 0,
for the locally conserved probability density with current J = AP − 1

2∂T (BP ).
Here, A describes the drift, whereas B/2 plays the role of a diffusion constant.

By standard terminology, the Fokker-Planck equation (26) is called “non-
linear”, because B(T ) and A(T ) depend non-linearly on T . By changing the
variable, one can try to simplify these coefficients. A first option consists in using
T = 1/(coshx)2 (remember exercise 2(v)). In the remainder of this section, let
us explore the consequences of this choice. Knowing that the change of variables
for a probability density requires

P (T, t)dT = P ((coshx)−2, t)

∣∣∣∣dTdx
∣∣∣∣dx = P̃ (x, t)dx, (27)

we find the corresponding Fokker-Planck equation:

∂tP̃ (x, t) = −1

2
∂x

[
coth(2x)P̃

]
+

1

4
∂2
xP̃ (28)

with initial condition P̃ (x, 0) = δ(x). With this choice of variable, the second
derivative describing the fluctuations has become most simple. Although this
equation is still (too) difficult to solve exactly, we can extract the limiting dis-
tribution for long samples in the limit t � 1 as follows. First we rewrite the
equation as [

∂t +
1

2
coth(2x)∂x

]
P̃ (x, t) =

1

(sinh 2x)2
P̃ +

1

4
∂2
xP̃ (29)

We may interpret the derivatives on the left hand side as a Lagrangian derivative
∂t + ẋ0∂x = Dt in a co-moving frame defined by ẋ0(t) = 1

2 coth(2x0), which is
solved by x0(t) = 1

2arcosh(et) ≈ 1
2 t, for large t. Developing all terms for small

deviations ∆ = x − x0(t) from this point of reference, we find a very simple
equation for F̃ (∆, t) = P̃ (x0(t) + ∆, t):

∂tF̃ (∆, t) =
1

4
∂2

∆F̃ (∆, t). (30)

This is the elementary diffusion equation, and the solution, perhaps best known
as the heat kernel, is readily obtained by Fourier transformation:

F̃ (∆, t) =
1

2
√
πt

exp

{
−∆2

4t

}
(31)

Going back to the transmission using lnT = −2x valid for large x, we thus find
the limiting distribution

Flog-norm(lnT, t) =
1

2
√
πt

exp

{
− (lnT + t)2

4t

}
(32)
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for small deviations around the most probable value lnT0(t) = −2x0(t) = −t.
We have successfully demonstrated that indeed the logarithm of the transmission
is a normally distributed random quantity. It is characteristic for disordered
channels that the two defining moments

|〈lnT 〉| = t, var(lnT ) =
〈
(lnT )2

〉
− 〈lnT 〉2 = 2t (33)

are determined by a single parameter, namely the length t = L/2l = L/ξloc

of the one-dimensional wire in units of the localization length. Clearly, the
relative fluctuations var(lnT )/〈lnT 〉2 = 2/t decay with system size. Thus we
are assured that the transmission logarithm is a self-averaging quantity, with
moreover a normal probability distribution whose most probable value is equal
to the mean.

But careful! Even in the limit t � 1, this does unfortunately not imply
that one may use the log-normal distribution (32) indiscriminately to calculate
moments of the transmission. A striking counterexample is

〈T 〉log-norm =
〈
elnT

〉
log-norm

=

∫
dyFlog-norm(y, t)ey = 1 (wrong), (34)

and quite obviously so. What goes wrong here? We will have a second look at
the end of the next section once we know the exact solution.

2.5 Full distribution function

Another choice of variable is ρ = T−1, the dimensionless total resistance of
the channel. The Fokker-Planck equation (26) for its probability distribution
W (ρ, t) = P (ρ−1, t)ρ−2 reads

∂tW = ∂ρ [ρ(ρ− 1)∂ρW ] (35)

with initial condition W (ρ, 0) = δ(ρ− 1), i.e., a wire of zero length has perfect
transmission. The solution can be calculated in closed form [14]:

W (ρ, t) =
exp{−t/4}√

πt3/2

∫ ∞
arcosh

√
ρ

exp{−y2/t}d(y2)√
(cosh y)2 − ρ

. (36)

Figure 3 shows how the distribution function F (κ, t) = W (eκ, t)eκ for the ex-
tinction κ = ln ρ = − lnT moves from a δ-distribution with growing system size
t to the log-normal distribution (32), drawn as a dashed line at t = 10.

The full distribution function permits to calculate all moments 〈ρ−n〉 = 〈Tn〉
of the transmission [14]. For t� 1, one finds the asymptotic expression

〈Tn〉 =
π3/2Γ(n− 1

2 )2

2Γ(n)2
t−3/2e−t/4, (37)

showing that all moments decay with the same dependence t−3/2e−t/4. The
first two moments are then

〈T 〉 =
π5/2

2
t−3/2e−t/4,

〈
T 2
〉

=
1

4
〈T 〉 � 1. (38)
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Figure 3: Probability distribution function F (κ, t) = W (eκ, t)eκ for the extinction κ =
ln ρ = − lnT across a one-dimensional channel of length t = L/ξloc = 0.5, 1, 2, 5, 10.
Dashed line at t = 10: log-normal distribution (32).

Although the average transmission and its fluctuations decay exponentially, as
expected for a strongly localizing system, the relative fluctuations of the trans-
mission itself grow very quickly: var(T )/〈T 〉2 ∝ t3/2et/4.

And why does the blind application (34) of the limiting log-normal distribu-
tion (32) predict 〈T 〉log-norm = 1 instead of the correct decrease (38)? Well, in
(34), we have used the normal distribution on the entire real axis for y = lnT ,
without paying attention to the constraint that the physically admissible trans-
mission is T ≤ 1. To take this into account, a popular recipe consists in using
a truncated log-normal distribution on the half-line κ ≥ 0 [9, 15]

F+
log-norm(κ, t) =

Θ(κ)

C(t)
√
πt

exp

{
− (κ− t)2

4t

}
(39)

with a normalization C(t) = 1 + erf(
√
t/2) ≈ 2. The moments of this dis-

tribution depend entirely on the value at truncation, limκ→0+ F+
log-norm(κ, t) =

(2
√
π)−1t−1/2e−t/4, that is the probability for perfect transmission T = 1. The

transmission moments for t� 1 are predicted to be

〈Tn〉+log-norm ≈
1

(2n− 1)
√
π
t−1/2e−t/4. (40)

Comparing them with the exact moments (37), we see that the truncated log-
normal distribution can describe the leading exponential decay, but fails to cap-
ture the algebraic dependence correctly. Mathematically, this is due to the fact
that the log-normal distribution overestimates the probability of perfect trans-
mission T = 1, which is really only W (1, t) = (π3/2/2)t−3/2e−t/4 for t� 1.

On physical grounds, this limited applicability of the log-normal distribu-
tion emphasizes the difficulties one faces when dealing with broad distributions.
Figure 4 shows the transmission probability distributions at different lengths
t = L/l. It is instructive to look at the last curve for the altogether moderate
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system size t = 10. The most probable or “typical” value for the transmission is
quite small, Ttyp = exp{〈lnT 〉} = e−10 ≈ 4.5 · 10−5. The exact average value is
much bigger, 〈T 〉 ≈ 1.06 · 10−2, indicating that this average is to a large extent
determined by very rare events with anomalously large transmission. The trun-
cated log-normal distribution, shown in dashed, overestimates the frequency of
large transmissions and predicts 〈T 〉 ≈ 1.28 · 10−2.

Let us close this section by emphasizing once more that the typical trans-
mission — averaged over all possible relative phases accumulated between con-
secutive scatterers — displays exponential decay at large distance as stated in
eq. (21). This is in sharp contrast to the classical transmission (17), where clas-
sical probabilities, not amplitudes, are combined to an algebraic decay. Clearly,
averaging over disorder implies averaging over quantum mechanical phases glob-
ally, but is not equivalent to removing phase-coherence and interference effects
locally from the very start. This is a striking example of a mesoscopic effect,
a rather counter-intuitive phenomenon, where microscopic phase coherence has
macroscopic physical consequences that survive averaging over quenched disor-
der.

3 Scaling theory of localization

3.1 What is a scaling theory?

A scaling theory describes the relevant properties of physical systems by con-
sidering their behavior under changes of size L 7→ bL. Quantitative scaling
arguments were invented in quantum field theory in the context of renormal-
ization. Scaling arguments became widely popular in statistical physics by the
mid-60’s for describing phase transitions and critical phenomena [16]. The im-
mense success of renormalization-group techniques developed in the 70’s [17]
rapidly radiated to the field of disorder-induced phase transitions that Ander-
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Figure 4: Probability distribution function P (T, t) for the transmission T across a
one-dimensional channel of length t = L/ξloc. Dashed line at t = 10: log-normal
distribution (32).
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son’s celebrated paper had founded [5]. After pioneering work by Wegner [18],
a scaling theory of localization was formulated by Abrahams, Anderson, Liccia-
rdello, and Ramakrishnan [19], a quartet that became known as the “gang of
four”.

A scaling theory can hope to capture those features that are important on
macroscopic scales, but will be insensitive to microscopic details. This means
that its predictions are only semi-quantitative, in the sense that it cannot furnish
the precise location of a critical point in parameter space nor provide any system-
specific data. In return, if one feeds it with the microscopic data (such as
the transport mean-free path), it can give general, and surprisingly accurate,
predictions of universal character.

Let us have a look at the different lengths characterizing quantum transport
in a disordered material:

| | | | size

λ ζ l ξloc

L L L

As short-scale lengths (in the left dotted box) one has the wavelength λ = 2π/k
of the propagating object and the correlation length ζ of the disorder. If ζ � λ,
the details of the disorder are unimportant, and models of δ-correlated scatterers
are appropriate. If ζ � λ, the disorder correlation can be resolved by the wave;
this is typically the case for our example of optical speckle potentials probed
with ultracold atoms [4].

As larger scales (in the right dotted box) one has the transport mean free
path l and the localization length ξloc. We have already seen in section 2.2.3
that in d = 1 these two lengths are practically identical, ξloc = 2l. In d = 2 the
localization length is much larger than the transport length, as will be discussed
in sections 3.6 and 7.4 below, and in d = 3 it may well be infinite. Depending
on the system size L, one can distinguish three basic transport regimes: ballistic
transport through small samples with L < l, diffusive transport for l < L <
ξloc with, possibly, weak-localization corrections, and finally strong localization
for large samples with ξloc < L. In d = 1, there is no room for diffusion
between l and ξloc, and strong localization is basically a single-scattering effect.2

The scaling theory of localization has the purpose of describing the transition
between these regimes as function of system size L [22].

3.2 Dimensionless conductance

Traditionally, the scaling theory of localization is formulated in terms of a chan-
nel’s proper conductance, a dimensionless parameter defined as g = T/R by
transmission and reflection probabilities. Equivalently, one may consider the
channel’s proper resistance g−1. A perfectly transmitting channel T = 1 has a
proper conductance of g =∞, and a perfectly resisting channel with T = 0 has
g = 0, which seems a rather sensible definition. Moreover, we have seen in sec-
tion 2.2.2 that this resistance is additive when classical subsystems are chained in
series. Alternatively, one could define the total resistance as ρ = 1/T = 1+g−1,

2See [20, 21] for a situation where backscattering of an atom by a smooth speckle potential
is zero at lowest order, but localization still prevails due to higher orders in perturbation
theory.
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Figure 5: Typical conductance (left panel) and resistance (right panel) of a 1d channel
as function of sample length L/l. Short channels have a resistance that grows linearly
as expected by Ohm’s law (green dashed, eqn (41)), whereas long channels show
exponentially large resistance (full line, eqn (42)).

where the additional 1 represents the “contact resistance” due to the leads con-
necting the sample to the external world.

In the previous section, we also learned that the transmission of a disordered
channel is a random variable with a broad distribution around a most probable,
typical value Ttyp = exp 〈lnT 〉. Therefore also g = T/(1 − T ) is a broadly
distributed random variable, fluctuating around the typical conductance gtyp =
Ttyp/(1 − Ttyp). In all of the following, we discuss the behavior of gtyp, but in
order not to overburden the notation, we will simply write gtyp = g.

In order to get used to this vocabulary, let us reformulate the results of
section 2 for the typical conductance. The exact exponential behavior (21) of
the typical transmission translates into

g(L) =
1

exp{L/2l} − 1
=

{
2l/L, L� l, (41)

exp{−L/2l} L� l. (42)

This conductance together with the resistance g−1 is plotted in Fig. 5. Only
the conductance of short, ballistic channels is given by the classical expression
(41), that we have already encountered as Ohm’s law in section 2.2.2.

The results of scaling for the conductance can be reformulated for other
quantities if those seem more convenient. One of the most popular, and useful,
quantities is the diffusion constant D = vl/d, the product of velocity and trans-
port mean free path divided by the number of dimensions d, a convention whose
rationale will become clearer below. For matter waves with wave vector k, the
velocity is v = ~k/m, and the diffusion constant can also be written D = ~

dmkl,
i.e., the product of an elementary diffusion constant (~/dm) by the dimension-
less quantity kl = 2πl/λ. This ratio describes the effective disorderedness of
the medium: kl � 1 means that the wave can travel over many periods before
suffering scattering. We will see in Sec. 7 below that kl is a crucial parameter
for transport and localization properties.

In a metallic sample with usual electrical conductivity, the Drude formula
σ̄ = ne2τ/m establishes the direct proportionality between the conductivity σ̄
and the classical diffusion constant D = v2τ/d of charge carriers with mean free
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path l = vτ . We are thus led to define a dimensionless classical conductivity3

σ̊ =
2mD

~
. (43)

The conductance g̊ of a sample of linear size L in d dimensions is the ratio
of σ̊ to L2−d. To see this, picture a metallic block where the voltage U is
applied along one dimension to give E = U/L, whereas the current density
j = σ̄E over the transverse area Ld−1 yields the total current I = Ld−1j, which
results in the dimension-full conductance G = I/U = Ld−2σ̄. In order to define
a dimensionless conductance g̊, one has to compensate the factors of L with
another length scale. The simplest choice is the inverse of the wave number k.
One can thus define a classical dimensionless conductance as

g̊(L) = (kL)d−2σ̊ (44)

In 1d, this definition gives g̊(L) = 2l/L, i.e., is fully compatible with the known
exact result at short distance, eq. (41) (this is the reason for the factor 2 in-
troduced in eq. (43)). It is of course no accident that the two definitions of
dimensionless conductance — through the diffusion constant or through the
transmission across a sample — coincide. The Landauer formula [23] makes the
connection explicit.

In any dimension, the classical dimensionless conductance can be rewritten
as:

g̊(L) =
2kl

d
(kL)d−2 (45)

In particular, in dimension 2 we have g̊ = kl itself, independently of the system
size.

3.3 Scaling in 1D systems

Since we wish to follow how the dimensionless conductance g evolves with system
size, we make use of the β-function,

β = L
d ln g

dL
=

d ln g

d ln(L/L0)
. (46)

β = 0 means that g does no change with L. Actually, β = cst implies purely
algebraic dependence g(L) ∝ Lβ . The celebrated function β(g) has been intro-
duced originally by Callan and Symanzik to describe the change of a coupling
constant under a change of scale within quantum field theory [24]. Let us famil-
iarize ourselves with the β-function, arguably the most important single object
of scaling theory, in the case d = 1, for which we know already everything
exactly. It is a matter of elementary calculus to find

β(L) = −L
2l

1

1− exp{−L/2l} . (47)

Since g(L) is a monotonous function of L/2l, one can easily invert this depen-
dence and express β as function of the conductance alone:

β(g) = −(1 + g) ln
[
1 + g−1

]
. (48)

3This definition, as well as (44), uses ~/m available for quantum matter waves. It should
be adapted to any other specific transport problem under study, along the same lines. The
somewhat arbitrary factor of 2 is included for future convenience.
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Figure 6: Conductance scaling β-function in d = 1, eq. (48). Arrows show the
flow from the Ohmian behavior (49) for g � 1 in short samples to the exponential
localization (50) for g � 1 in long samples.

This result can also be derived directly as follows: the linear scaling of the
typical-transmission logarithm implies Ttyp(bL) = [Ttyp(L)]b = exp{b lnTtyp(L)}.
Writing T−1

typ = 1 + g−1, differentiating with respect to b, and setting b = 1 at
the end leads to (48). The fact that β(g) can be expressed as function of g
instead of the original length scale L does not seem very profound in d = 1 [14].
However, in field theory this property is vital for renormalizability [24], and in
statistical physics it guarantees that β(g) can describe universal behavior close
to a phase transition.

Figure 6 shows the β-function for d = 1, plotted as function of ln(g) together
with its asymptotics. For short samples L � l, the conductance g ∝ L−1 is
large, and limg→∞ β(g) = −1. More precisely, one has the following asymptotic
behavior:

β(g) = −1− 1

2g
+O(g−2) (49)

which shows a weak-localization correction (see section 7 below). In the opposite
limit of a large sample, g � 1 is exponentially small, and

β(g) = ln g − g(| ln g|+ 1) +O(g2). (50)

The transition between the two asymptotic regimes occurs around g = 1. The
function β(g) entirely describes how the dimensionless conductance evolves with
system size L. Indeed, if g is known for some small size L, it can be deduced
for any other size by solving the differential equation (46), moving along the
arrows shown on the curve of figure 6. This is the so-called “renormalization
flow” followed by the system when its size is increased towards macroscopic
scales. For d = 1, β is always negative, implying that g always decreases with
increasing system size, and thus the renormalization flow is unidirectional from
right to left. Characteristically, when g decreases, β becomes more negative,
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which makes g decrease even faster, until it finishes by dropping exponentially
fast.

A crucial asset of scaling theory is that its predictions are valid for an arbi-
trary 1d system, although the specific form of β(g) was deduced using a specific
model. Suppose you have a large-size complex disordered system and that you
want to study its conductance. You may start with a small system for which you
can calculate the conductance microscopically using a method of your choice.
By following the renormalization flow, you are then provided, almost magically,
with the conductance at any scale. Moreover, you find the localization length
ξloc as the system size for which g(ξloc) = O(1). Of course, there is no real magic
here: your initial calculation yields the mean free path l and, as this is the only
macroscopic length scale relevant for transport in a 1d system, you finally have
everything.

3.4 Quasi-1D systems

The previous results may also be applied to quasi-one-dimensional systems that
consist of several parallel channels i = 1, . . . , N⊥. One may either have in
mind channels that are literally built parallel to each other [25] or a multi-mode
waveguide with spatially overlapping transverse modes. If there is no coupling
between channels, then the purely 1d description of section 2 applies. For weakly
coupled channels, which arises naturally by the disorder present, an equation of
motion for the full distribution function of transmission eigenvalues very similar
to (35) has been derived by Dorokhov and independently by Mello, Pereyra,
and Kumar, known as the DMPK equation [9]. Also the scaling picture remains
essentially the same. Keeping the number of transverse modes N⊥ fixed, the
short-scale conductance is g = N⊥2l/L, as expected for parallel resistors. Thus,
the initial condition for the scaling flow on the curve β(g) is changed, but the
transition to the localized regime is the same. Since the crossover again occurs
at L = ξloc with g(ξloc) = O(1), we simply find that the localization length is
increased toward ξloc = 2N⊥l.

3.5 Scaling in any dimension

In arbitrary dimension d, one changes the system size L 7→ bL in all directions,
but still looks at the transmission along one chosen direction. In the ballistic
regime L� l, we start again from the classical behavior, eq. (45), where g(L) ∝
Ld−2. One therefore expects to find limg→∞ β(g) = d− 2, and

β(g) = d− 2− cd
g

+O(g−2) (51)

where a microscopic calculation is required to find the coefficient cd that de-
scribes weak localization corrections.

In the strongly localized regime L � ξloc, exponential localization prevails.
And since adding parts to the system beyond the localization length in the
perpendicular direction cannot change its longitudinal transport, we still expect
the power law Ttyp(bL) = [Ttyp(L)]b to hold in each channel. Thence follows
the asymptotic behavior

β(g) = ln(g/gd) (52)
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in the strongly localized regime in any dimension, with a constant gd of order
unity.

Taking into account that the number of transverse channels scales as bd−1,
we would obtain the simple scaling relation Ttyp(bL) ≈ bd−1[Ttyp(L)]b, if there
were strictly no coupling between the channels. Then, the same calculation than
for 1d would give

β(g) = (d− 1)− (1 + g) ln
[
1 + g−1

]
, (53)

that is a simple vertical shift of (48) by d−1. In particular, this would imply that
the weak localization correction −cd/g is the same in all dimensions, a result
known to be wrong, see Sec. 7. It nevertheless remains true that the shape of
the true β(g) curves, interpolating smoothly between the known asymptotics,
is qualitatively given by (53), see also Fig. 7. Although the scaling description
encompasses arbitrary dimensions, its consequences are radically different in
d = 2 and d = 3, meriting a separate discussion.

3.6 d = 2

In the ballistic limit of short samples with typical conductance g � 1, β(g) ≈ 0
describes scale-independent conductance of N⊥ ∝ L transverse channels, each
with element conductance g ∝ L−1. But then, β(g) is not exactly zero. Starting
the flow at the finite conductance g0 of a sample of length L0, a slightly negative
β(g) = −c2/g makes g decrease with size (it will be shown in section 7 below
that c2 = 2/π). We can integrate the flow equation

β(g) = −c2
g

=
1

g

dg

d ln(L/L0)
(54)

by elementary means to find

g(L) = g0 − c2 ln(L/L0). (55)

To fix ideas, we can chose L0 = l, a scale on which transport is classical,
such that, from eq. (45), g(L0) = g̊ = kl � 1. The transition to the strong
localization regime occurs at g(ξloc) = O(1). Together with (55), this predicts
an exponentially large localization length

ξloc ∼ L0 exp{g0/c2)} = l exp{kl/c2}. (56)

The prediction of scaling theory for noninteracting particles in d = 2 is therefore
that all states are localized. This transcends also from the scaling flow depicted
in figure 7. However, the localization length can be extremely large if the system
is only weakly disordered with kl� 1. Let us take some figures from the Orsay
experiment [4]. With l = 100µm and k = 2.5µm−1, one finds the rather large
localization length ξloc ≈ le400, which would surely overstretch the possibilities
of even the most capable experimentalist. The take-home message here is: In
order to observe 2d localization, kl should be chosen as close to unity as possible.
In turn, this implies that the classical diffusion constant D = ~kl/2m must be of
the order of ~/m, which for a typical cold atomic gas is a rather small quantity of
the order of 10−9 m2/s. In order to observe 2d Anderson localization with atomic
matter waves, the experimentalist must be capable to observe the dynamics for
a long time while keeping phase coherence, a challenging task indeed.
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Figure 7: Schematic plot of the β-function in d = 1, 2, 3, showing a smooth interpola-
tion from the metallic regime (51) for g � 1 in short samples to the localized regime
(52) for g � 1 in long samples. Note the existence of an unstable fix-point at critical
gc in d = 3.

3.7 d = 3

In d = 3, we encounter a qualitatively new situation: the β-function is positive
for large g. So if we start with some g � 1, the conductance flow will take
us to even larger values of g. In renormalization-group terms, the behavior of
the system in the thermodynamic limit L → ∞ is described by the “infra-red
stable fix-point” g = ∞ (as in statistical physics, but in contrast to quantum
field theory, we are interested in the large-distance behavior, i.e., the infra-red
asymptotics with respect to momentum). Since large conductance characterizes
a good conductor, this is also known as the “metallic” fix-point.

By contrast, if we start with some g � 1, the negative β-function will drive
the system towards the stable insulating fix-point g = 0 with exponentially
small conductance at finite length. Between these two extrema, the β-function,
assumed to be continuous, must have a zero at some gc. A zero of β(g) ∝ dg/dL
is also a fix-point, but in this case an unstable one. This unstable fix-point
β(gc) = 0 marks the critical point and shows the possibility of a metal-insulator
phase transition at some critical strength of disorder. Although a scaling theory,
with its roughly interpolating β-function, cannot predict the precise position of
the critical point, it can give a semi-quantitative estimate. Indeed, a microscopic
calculation of the transport mean free path l provides us with the dimensionless
conductance g(l). At such a scale, interference effect are unimportant, and thus,
eq. (45) can be used, giving g(l) ≈ 2(kl)2/3. As the critical point is such that
gc ∼ 1, we obtain that the threshold for Anderson localization is given by:

kl ∼ 1 (57)

an equation known as the Ioffe-Regel criterion for localization. The precise value
of the critical kl depends on microscopic details and is thus not universal.

Let us assume that the microscopic physics involves disorder whose strength
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is measured by some parameter W , typically the width of the disorder proba-
bility distribution (cf. Sec. 4.1.4). Even though scaling theory does not predict
the precise position of the critical point, the behavior of the β-function around
the critical point yields precious information about the large-scale physics: it
permits to calculate critical exponents that are the hallmark of universality.
In their 1979 paper [19], Abrahams et al. showed that the localization length
diverges close to the transition for W > Wc as

ξloc ∼ (W −Wc)−ν , (58)

where the critical exponent ν = 1/s is determined by the slope of the β-function
at the transition, s = [dβ/d ln g]gc

.
The calculation leading to this prediction is elementary, but quite instructive

in order to appreciate the power of a scaling description. Let us start at some
length L0 with some value g0 < gc on the localized side of the fix-point. The β-
function always allows us to calculate any other g(L) implicitly by integration:

ln

(
L

L0

)
=

∫ ln g

ln g0

d ln g′

β(g′)
. (59)

Using the linearized form β(g) = s ln(g/gc) around the fix-point leads to(
L

L0

)s
=

ln(gc/g)

ln(gc/g0)
. (60)

Now we are free to choose L0 = ξloc for which g0 = O(1) such that ξloc ∼
L [ln(gc/g)]

−1/s
. Because the microscopic physics on small scales ignores the

critical behavior on large scales and can involve only smooth dependencies, one
can always write ln(g/gc) ≈ (g− gc)/gc ∝ (Wc−W ) close enough to the critical
conductance gc, and we finally end up with (58).

For the simplest possible interpolation (53), one finds ν ≈ 1.68. This value
is not disastrously far from the true value ν = 1.58± 0.01 that is known today
from extensive numerical simulations [26, 27], cf. Sec. 4.3.

The “metallic” side of the transition can also be studied using a similar ap-
proach, but following the metallic branch β > 0 of the renormalization flow. For
smaller-than-critical disorder strength W < Wc, the microscopically computed
g at some size L0 will be slightly larger than gc. It is left as an exercise for
the reader to show that this results at large scale in a diffusive (i.e., metallic)
behavior with a diffusion constant

D ∝ (Wc −W )ν . (61)

The continuous (algebraic) vanishing of diffusion constant and conductance on
the metallic side of the Anderson transition is characteristic of a continuous
second order phase transition.

3.8 d > 3

The Anderson transition is expected to take place in any dimension d ≥ 3.
According to the simple scaling theory sketched above, the transition point will
shift to lower and lower gc, requiring a more strongly scattering medium to
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observe localization, and thus a Ioffe-Regel criterion, eq. (57), with a smaller
constant.

Contrary to conventional phase transitions, the Anderson metal-insulator
transition does not have a finite upper critical dimension above which fluctua-
tions would be unimportant and critical exponents simply given by their mean-
field values [15]. This is compatible with the observation that as the dimension
d increases, the zero of the β-function must shift more and more to the asymp-
totic ln(g)-wing where the slope tends towards s = 1. Thus, from the scaling
description it is tempting to surmise that the critical exponent tends towards
ν = 1 only continuously as d → ∞. We will see in section 8 below that this
observation is not only a theoretician’s spleen but may be put to experimental
testing.

4 Key numerical and experimental results

Over the past 50 years, a wealth of numerical and experimental results has been
accumulated on localization phenomena, especially on Anderson localization
in dimension 1, 2, 3 and beyond. In the following, we present a selection,
necessarily subjective and limited, of the most remarkable results.

4.1 d = 1

Anderson localization is a generic feature in phase-coherent 1d and quasi-1d
systems, as explained in Section 2.2.3 above. Any amount of disorder, even
very small, will eventually localize a wavepacket, independently of how large its
energy is. Of course, the localization length can be huge if the energy is large
compared to the disorder; see Section 5.2.4 for a quantitative estimate.

4.1.1 Localization of cold atoms

Concerning the experiment described in the Introduction, there is thus no sur-
prise that a quasi-1d atomic wavepacket displays localization in an optical
speckle potential. Figure 8a) shows the experimentally measured spatial shape
of the wavepacket at various times. One clearly distinguishes an exponential
decrease in the wings, from which a localization length is extracted by a fit to
exp{−2|z|/Lloc}. As shown in b), this localization length first increases with
time, then settles for a stationary value after about 500 ms. In the stationary
regime, the wavepacket displays spatial fluctuations which are different for each
single realization of the disorder. In addition, there remains a large fraction of
the atoms still trapped near the original location of the wavepacket.

How can we understand these experimental results? The initial wavepacket
is not monochromatic at all: it contains plane waves with a large dispersion in
the wave-vector k and consequently in the kinetic energy ~2k2/2m (the added
optical potential also contributes to the total energy, but is a small correction
here). The initial, free expansion of an interacting Bose-Einstein condensate
released from a harmonic trap leads to a population of the various k classes
that is given by an inverted parabola [28]:

Π0(k) =
3(k2

max − k2)

4k3
max

Θ(kmax − |k|), (62)
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exponent of 1.956 0.10 (62 s.e.m.), in agreement with the theor-
etical prediction that density decreases like 1/z2 in the wings. The
semi-log plot (inset) confirms that an exponential would not work as
well. For comparison, we present in Fig. 4b a log–log plot and a semi-
log plot (inset) for the case with kmaxsR5 0.65 and VR/min5 0.15,
where we conclude in favour of exponential rather than algebraic
tails. These data support the existence of a crossover from an expo-
nential to an algebraic regime in our speckle potential.

Direct imaging of atomic quantum gases in controlled, optical
disordered potentials is a promising technique to investigate a variety
of open questions on disordered quantum systems. First, as in other
problems of condensed matter simulated using ultracold atoms,
direct imaging of atomicmatter waves offers unprecedented possibil-
ities to measure important properties, such as localization lengths.
Second, our experiment can be extended to quantum gases with
controlled interactions where localization of quasi-particles26,27,
Bose glass14,15,28 and Lifshits glass29 are expected, as well as to Fermi
gases and to Bose–Fermi mixtures where rich phase diagrams have
been predicted30. The reasonable quantitative agreement between our
measurements and the theory of one-dimensional Anderson local-
ization in a speckle potential demonstrates the high degree of control
in our set-up. We thus anticipate that it can be used as a quantum
simulator for investigating Anderson localization in higher dimen-
sions31,32, first to look for the mobility edge of the Anderson trans-
ition, and then to measure important features at the Anderson
transition that are still under theoretical investigation, such as critical
exponents. It will also become possible to investigate the effect of
controlled interactions on Anderson localization.

METHODS SUMMARY
Momentum distribution of the expanding BEC. To compare measured local-
ization lengths with those calculated from equation (1), we need to know kmax,
the maximum amplitude of the k-vector distribution of the atoms, at the begin-
ning of the expansion in the disordered potential.Wemeasure kmax by releasing a
BEC with the same number of atoms in the waveguide without disorder, and
observing the density profiles at various times t. Density profiles are readily
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Figure 3 | Localization length versus amplitude of the disordered potential.
Lloc is obtained by an exponential fit to the wings of the stationary localized
density profiles, as shown in Fig. 2. Error bars, 95% confidence intervals for
the fitted values (62 s.e.m.); 1.73 104 atoms ; min5 219Hz. The dash–dot
line is plotted using equation (1), where kmax is determined from the
observed free expansion of the condensate (see Methods). The shaded area
represents uncertainty associated with the evaluations of kmax and sR. We
note that the limited extension of the disordered potential (4mm) allows us
to measure values of Lloc up to about 2mm.
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Figure 4 | Algebraic and exponential regimes in a one-dimensional speckle
potential. Log–log and semi-log plots of the stationary atomic density
profiles, showing the difference between the algebraic (kmaxsR. 1) and
exponential (kmaxsR, 1) regimes. a, Density profile for VR/min5 0.15 and
kmaxsR5 1.166 0.14 (62 s.e.m.). The momentum distribution of the
released BEC has components beyond the effective mobility edge 1/sR. The
fit to the wings with a power-law decay 1/ |z | b yields b5 1.926 0.06
(62 s.e.m.) for the left-hand wing and b5 2.016 0.03 (62 s.e.m.) for the
right-hand wing. The inset shows the same data in a semi-log plot, and
confirms the non-exponential decay. b, For comparison, a similar set of plots
(log–log and semi-log) in the exponential regime for the same VR/min5 0.15
and kmaxsR5 0.656 0.09 (62 s.e.m.).
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Figure 2 | Stationarity of the localized profile. a, Three successive density
profiles, from which the localization length Lloc is extracted by fitting an
exponential, exp(22 | z | /Lloc) (dotted black lines), to the atomic density in
the wings. b, Localization length Lloc versus expansion time t. Error bars,
95% confidence intervals for the fitted values (62 s.e.m.).
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exponent of 1.956 0.10 (62 s.e.m.), in agreement with the theor-
etical prediction that density decreases like 1/z2 in the wings. The
semi-log plot (inset) confirms that an exponential would not work as
well. For comparison, we present in Fig. 4b a log–log plot and a semi-
log plot (inset) for the case with kmaxsR5 0.65 and VR/min5 0.15,
where we conclude in favour of exponential rather than algebraic
tails. These data support the existence of a crossover from an expo-
nential to an algebraic regime in our speckle potential.

Direct imaging of atomic quantum gases in controlled, optical
disordered potentials is a promising technique to investigate a variety
of open questions on disordered quantum systems. First, as in other
problems of condensed matter simulated using ultracold atoms,
direct imaging of atomicmatter waves offers unprecedented possibil-
ities to measure important properties, such as localization lengths.
Second, our experiment can be extended to quantum gases with
controlled interactions where localization of quasi-particles26,27,
Bose glass14,15,28 and Lifshits glass29 are expected, as well as to Fermi
gases and to Bose–Fermi mixtures where rich phase diagrams have
been predicted30. The reasonable quantitative agreement between our
measurements and the theory of one-dimensional Anderson local-
ization in a speckle potential demonstrates the high degree of control
in our set-up. We thus anticipate that it can be used as a quantum
simulator for investigating Anderson localization in higher dimen-
sions31,32, first to look for the mobility edge of the Anderson trans-
ition, and then to measure important features at the Anderson
transition that are still under theoretical investigation, such as critical
exponents. It will also become possible to investigate the effect of
controlled interactions on Anderson localization.

METHODS SUMMARY
Momentum distribution of the expanding BEC. To compare measured local-
ization lengths with those calculated from equation (1), we need to know kmax,
the maximum amplitude of the k-vector distribution of the atoms, at the begin-
ning of the expansion in the disordered potential.Wemeasure kmax by releasing a
BEC with the same number of atoms in the waveguide without disorder, and
observing the density profiles at various times t. Density profiles are readily
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Figure 3 | Localization length versus amplitude of the disordered potential.
Lloc is obtained by an exponential fit to the wings of the stationary localized
density profiles, as shown in Fig. 2. Error bars, 95% confidence intervals for
the fitted values (62 s.e.m.); 1.73 104 atoms ; min5 219Hz. The dash–dot
line is plotted using equation (1), where kmax is determined from the
observed free expansion of the condensate (see Methods). The shaded area
represents uncertainty associated with the evaluations of kmax and sR. We
note that the limited extension of the disordered potential (4mm) allows us
to measure values of Lloc up to about 2mm.
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Figure 4 | Algebraic and exponential regimes in a one-dimensional speckle
potential. Log–log and semi-log plots of the stationary atomic density
profiles, showing the difference between the algebraic (kmaxsR. 1) and
exponential (kmaxsR, 1) regimes. a, Density profile for VR/min5 0.15 and
kmaxsR5 1.166 0.14 (62 s.e.m.). The momentum distribution of the
released BEC has components beyond the effective mobility edge 1/sR. The
fit to the wings with a power-law decay 1/ |z | b yields b5 1.926 0.06
(62 s.e.m.) for the left-hand wing and b5 2.016 0.03 (62 s.e.m.) for the
right-hand wing. The inset shows the same data in a semi-log plot, and
confirms the non-exponential decay. b, For comparison, a similar set of plots
(log–log and semi-log) in the exponential regime for the same VR/min5 0.15
and kmaxsR5 0.656 0.09 (62 s.e.m.).
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Figure 2 | Stationarity of the localized profile. a, Three successive density
profiles, from which the localization length Lloc is extracted by fitting an
exponential, exp(22 | z | /Lloc) (dotted black lines), to the atomic density in
the wings. b, Localization length Lloc versus expansion time t. Error bars,
95% confidence intervals for the fitted values (62 s.e.m.).
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Figure 8: a) The atomic density of a BEC expanding in a quasi-1d optical speckle
potential, shown in logarithmic scale at various times, displays clear exponential local-
ization in the wings, from which the localization length is extracted by a fit (dashed
line). b) The localization length first increases linearly with time, then saturates in
the stationary regime. Reprinted from [4] (courtesy of Ph. Bouyer).

where kmax is the maximum k value, related to the initial chemical potential by
µ = ~2k2

max/2m.
Because the disordered is “quenched” or stationary, energy is conserved, and

each k-component of the wavepacket evolves independently. When averaged
over time, the interference terms between different energy components will be
smoothed out, leaving the averaged wavepacket as the incoherent superposition
of all energy components. From Section 2.2.3, we know that each k-component
localizes with a localization length ξloc(k) equal to twice the transport mean
free path. For the fastest atoms, this localization length is much larger than
the initial spatial extension of the wave packet. Thus, we predict the stationary
spatial distribution once localization sets in to be roughly given by

〈|ψ(z)|2〉 =

∫ kmax

−kmax

Π0(k)ξloc(k)

2
exp

(
− |z|
ξloc(k)

)
dk. (63)

Since ξloc(k) is an increasing function of |k|, see section 5.2.4, the asymptotic
decrease at large distance is dominated by the largest |k| values, such that
〈|ψ(z)|2〉 ∝ exp[−|z|/ξloc(kmax)]. The low-k components have short localization
lengths and thus produce the large bump near the origin in the final density.
Using only the wings of the experimentally measured density, it is possible to
estimate the localization length, for which we derive in Sec. 5.2.4 a theoretical
prediction.

4.1.2 Localization of light: a ten-Euro experiment

The reasoning in section 2.2.3 is entirely based on the construction of a 2 × 2
transfer matrix which can be chained; any randomness in the transfer matrix
then leads to localization. The fact that our starting point was a quantum
matter wave and the underlying wave-particle duality of quantum mechanics
are not central to this argument. Indeed, the transfer-matrix description applies
to all physical situations governed by a 1d (or quasi-1d) linear wave equation.
Consequently, Anderson localization has been observed for many different types
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Transparent mirrors 227

refractive index is to the left or right of the face.
Because of the real part in (23), we can pull out phase
factors from all the matrices, and, defining the complex
variables zs = exp(2iφs ), write E as a 2N -fold contour
integral around unit circles:

E = 2 log

(
1

τ

)
+ 2 lim

N→∞

1

N(2π i)2N

∮
dz1

z1
· · ·

∮
dz2N

z2N

× log Tr
[(

z1 ±√
ρ

±z1
√

ρ 1

)
· · ·

· · ·
(

z2N ±√
ρ

±z2N
√

ρ 1

)]
. (25)

The traces never vanish when |zs | < 1, because then
the matrices in the product correspond to absorbing
optical elements, whereas a zero-trace the matrix would
be elliptic and so represent a transparent medium. A
transfer matrix represents absorption if the eigenvalues
of S†S, where S is the scattering matrix relating
incoming and outgoing waves, are less than unity,
because then the energy flowing out of the element is
always less than that flowing in. It follows that the
absorption condition is

|T |2 + |R|2 < 1, |T |2 + |R−|2 < 1,
(1− |T |2 − |R|2)(1− |T |2 − |R−|2)

> |T ∗R− + T R∗|2. (26)

A short calculation now shows that the logarithm in (25)
is never singular, and the integrals are given by their
residues at zs = 0, which vanish, giving the claimed
result (17).
The naive ray theory can also be formulated in terms

of transfer matrices, and we can ask why the general
exponential argument fails, giving instead the peculiar
linear decay (10). The obvious adaptation of (18) gives
the ray matrix for a single element as

mray = 1

τ

(
τ 2 − ρ2 ρ

−ρ 1

)
. (27)

For transparent films, τ + ρ = 1, so that mray becomes

mray = 1

τ

(
τ − ρ ρ
−ρ τ + ρ

)
= 1+ ρ

τ

( −1 1
−1 1

)
. (28)

This a unimodular matrix with the peculiar feature that
it has degenerate eigenvalues, so that when raised to the
2N th power (for N films) it grows linearly rather than
exponentially: since

( −1 1
−1 1

)2
= 0 (29)

the 2N th power is

m2N
ray = 1+ 2N

ρ

τ

( −1 1
−1 1

)
,

i.e.

(m2N
ray)22 = 1+ 2N

ρ

τ
(30)

whose reciprocal reproduces the transmission (10). This
result is an example of physics (in this case wrong
physics) associated with degeneracies of non-Hermitian
matrices; other examples are given in Berry (1994).
(When there is absorption, the ray transfer matrix is no
longer degenerate, and the transmitted intensity decays
exponentially, but ray theory gives the wrong exponent.)

Figure 3. Dots: measurements of logarithmic
transmitted intensity for stacks of N plastic films (five
runs): full curve, best fit to the data; dashed curve,
predictions of naive ray theory. (a) mean thickness
d̄ = 0.25 mm (best-fit slope, −0.059); (b) d̄ = 0.1 mm
(best-fit slope, −0.046).

7. Experiment

We measured the transmittance in He–Ne laser light of
stacks of two different PPC (polyester carbonate) plastic
films, from a thick folder cover (d̄ = 0.25 mm) and thin
viewgraph transparencies (d̄ = 0.1 mm). In each case,
we cut the films into rectangles and formed these into
a staircase whose treads were 2.5 mm wide, which was
illuminated normally by the laser beam (1 mm wide).
The transmitted intensity was measured by allowing
the beam to enter the aperture (diameter 10 mm) of
a photodetector after passing through the stack. By
moving the staircase through the beam, we measured
the transmittance of N = 0, 1, 2 . . . films.
Figure 3 shows the results. It is clear that the

transmittance decays exponentially as predicted by the
wave theory, and that the naive ray theory is false.
This is an observation of localization of light caused
by macroscopic coherence (that is, coherence between
waves whose path differences are large in comparison
with the wavelength). Similar results were obtained with
white light.
The measured decay exponents were

− log(transmitted intensity)/N
= 0.059 (thick films)
= 0.046 (thin films). (31)

We also measured the average transmitted intensity τ
of the individual films over 20 runs; the result was
τ = 0.94±0.01 for the thick films, and τ = 0.94±0.05
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)
= 1+ ρ

τ

( −1 1
−1 1

)
. (28)

This a unimodular matrix with the peculiar feature that
it has degenerate eigenvalues, so that when raised to the
2N th power (for N films) it grows linearly rather than
exponentially: since

( −1 1
−1 1

)2
= 0 (29)

the 2N th power is

m2N
ray = 1+ 2N

ρ

τ

( −1 1
−1 1

)
,

i.e.
(m2N

ray)22 = 1+ 2N
ρ

τ
(30)

whose reciprocal reproduces the transmission (10). This
result is an example of physics (in this case wrong
physics) associated with degeneracies of non-Hermitian
matrices; other examples are given in Berry (1994).
(When there is absorption, the ray transfer matrix is no
longer degenerate, and the transmitted intensity decays
exponentially, but ray theory gives the wrong exponent.)

Figure 3. Dots: measurements of logarithmic
transmitted intensity for stacks of N plastic films (five
runs): full curve, best fit to the data; dashed curve,
predictions of naive ray theory. (a) mean thickness
d̄ = 0.25 mm (best-fit slope, −0.059); (b) d̄ = 0.1 mm
(best-fit slope, −0.046).

7. Experiment

We measured the transmittance in He–Ne laser light of
stacks of two different PPC (polyester carbonate) plastic
films, from a thick folder cover (d̄ = 0.25 mm) and thin
viewgraph transparencies (d̄ = 0.1 mm). In each case,
we cut the films into rectangles and formed these into
a staircase whose treads were 2.5 mm wide, which was
illuminated normally by the laser beam (1 mm wide).
The transmitted intensity was measured by allowing
the beam to enter the aperture (diameter 10 mm) of
a photodetector after passing through the stack. By
moving the staircase through the beam, we measured
the transmittance of N = 0, 1, 2 . . . films.
Figure 3 shows the results. It is clear that the

transmittance decays exponentially as predicted by the
wave theory, and that the naive ray theory is false.
This is an observation of localization of light caused
by macroscopic coherence (that is, coherence between
waves whose path differences are large in comparison
with the wavelength). Similar results were obtained with
white light.
The measured decay exponents were

− log(transmitted intensity)/N
= 0.059 (thick films)
= 0.046 (thin films). (31)

We also measured the average transmitted intensity τ
of the individual films over 20 runs; the result was
τ = 0.94±0.01 for the thick films, and τ = 0.94±0.05

Figure 9: Logarithmic transmitted intensity across stacks of N plastic films with
mean thickness (a) 0.25 mm; (b) 0.1 mm. Dots: experimental data. Full curve: best
fit to the data. Dashed curve: prediction of incoherent transmission (Ohm’s law).
Reprinted from [29] (courtesy of M.V. Berry).

of non-quantum waves: microwaves, elastic waves in solids, optical waves, to
cite a few.

Even a poor man’s experiment using viewgraph transparencies, i.e., plastic
films made of polyester carbonate, allows to observe Anderson localization. A
stack of several transparencies parallel to each other, separated by air layers
of randomly varying thickness, realizes the simple model shown in fig. 2. The
transmission and reflection coefficients for an individual film can be computed
from its index of refraction and its thickness. If the randomness in the film
spacing is larger than an optical wavelength, we have a truly disordered system.
Transport and localization can be observed by illuminating the stack of trans-
parencies with a plane light wave (or rather a good approximation of a plane
wave, namely, the light from a simple commercial He-Ne laser) and recording
the transmission. Fig. 9 shows the transmission vs. the number N of films or
thickness of the sample. It displays a clear exponential decay, one of the sig-
natures of Anderson localization, and markedly differs from the linear decay
(Ohm’s law) predicted for the incoherent transport of intensities.

It is important to realize that absorption in the transparencies would also
result in an exponential decay of the transmitted intensity. In all Anderson
localization experiments, it is crucial to ensure that absorption is negligible,
especially when working with electromagnetic waves. In this specific case, the
bulk absorption coefficient of polyester carbonate is known to be negligible here.
In principle, one could also double-check that no photon is lost by measuring the
reflection coefficient of the sample and verifying that R+ T = 1. In condensed-
matter experiments with electrons or cold atoms, number conservation of mas-
sive particles makes absorption less relevant and simpler to monitor.

Another crucial requirement in the experiment is that it remains a 1d sys-
tem, i.e., that there is a single transverse electromagnetic mode involved. Light
polarization is not an issue (for perpendicular incidence, scattering is indepen-
dent of polarization), but surface roughness or lack of parallelism can cause
scattering into other transverse modes. This coupling into loss channels even-
tually destroys localization. Some indication of this loss is visible in Fig. 9(b):
the decay is not really exponential, but bent upwards, towards the prediction
for incoherent transmission.

The experimental data show fluctuations of the transmission for various
realizations of the experiment. This is not surprising, on the contrary, according
to Section 2.5, the fluctuations are even expected to be large. However, it turns
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out that the observed fluctuations are smaller than predicted: in the plot, the
transmission logarithm should appear as a cloud of points whose variance, eqn.
(33), increases like N , which is not clearly the case. Most probably, this is due to
the experimental imperfections mentioned above that couple several transverse
modes and consequently attenuate the fluctuations.

4.1.3 Fluctuations

As already emphasized several times, the existence of large fluctuations of the
transmission in a characteristic feature of Anderson localization. A key advan-
tage of measuring relative fluctuations is that they are not much affected by
absorption, which merely induces a global decay of the whole transmission dis-
tribution. Consequently, in the last few years, much progress has been made
in calculating and measuring fluctuations in diffusive and localized systems.
Fluctuations provide us with an unambiguous way of characterizing Anderson
localization, even in the presence of absorption.

In order to illustrate this claim, we show in Fig. 10 the transmission of
microwaves across a quasi-1d sample composed of aluminium spheres randomly
disposed in a long copper tube (cooled with liquid nitrogen so that absorption is
negligible), as a function of the microwave frequency [30]. The transport mean
free path depends on the resonant scattering cross section of the aluminium
spheres, and thus varies strongly with frequency, implying large changes in the
relative sample length t = L/l. Plot (a) is obtained in the diffusive regime,
where the localization length is longer than the sample size: there, the trans-
mitted intensity fluctuates in an apparently random way, but the fluctuations
are relatively small, the rms deviation being comparable to the mean. This is
expected in the diffusive regime for relatively short samples, where the trans-
mission amplitude itself is expected to behave like a complex random number,
whose real and imaginary parts are independent, normally distributed variables.
In contrast, in the localized regime shown in plot (b), the fluctuations are much
larger, the transmission being most of the time very small with some rare events
of exceptionally high transmission, as predicted in Section 2.5.

Visual inspection reveals immediately that plots (a) and (b) are obtained in
different regimes. While plot (a) has relatively small fluctuations, characteristic
of a diffusive regime, where the fluctuations are comparable to the mean, plot
(b) suggests some kind of huge (log-normal) fluctuations, typically associated
with the localized or critical regime. The take-home message here is: don’t
rely solely on exponential decay to prove the existence of localization, look also
at the fluctuations, they are better indicators. Since the relative fluctuations
are insensitive to moderate absorption, they may even provide a quantitative
criterion whether the strong localization threshold has been reached or not, and
this under circumstances when the exponentially decreasing transmission alone
could not be a reliable signature [31, 32].

4.1.4 The Anderson model: a free (numerical) experiment

Although the Anderson model was originally introduced as a tight binding model
for electrons in a disordered crystal, it is of broader interest and has become a
paradigm for one-body localization effects.

Up to now, we have considered continuous models where a wave propagates
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Figure 10: Microwave intensity transmitted across a copper tube filled with scat-
tering aluminium spheres vs. the microwave frequency. In the diffusive regime (a)
(frequency around 17 GHz), fluctuations are comparable to the average value. In the
localized regime (b), huge fluctuations are visible, a hallmark of Anderson localization.
Reprinted from [30] (courtesy of A. Z. Genack).

along a continuous 1d axis, encountering a set of discrete objects that scatter
the wave backward and forward. The transfer-matrix game is just to combine
the discrete scatterers with the proper phases. One can even go one step further,
disregard the ballistic propagation, and build a completely discrete model, where
the wave lives on a 1d lattice. One of the simplest discrete models is certainly
the Anderson model whose Hamiltonian is

H =

+∞∑
n=−∞

(wn|n〉〈n|+ t|n〉〈n+ 1|+ t|n+ 1〉〈n|) (64)

where the state |n〉 is the occupation amplitude of site n with wn its on-site
energy. t is the so-called “tunneling” matrix element coupling neighboring sites,
traditionally taken with numerical value t = 1. In a concrete physical realiza-
tion, typically also the t’s are random variables and thus define “off-diagonal
disorder”. However, it is enough to take diagonal disorder to observe localiza-
tion. The precise value of t is irrelevant, as long as it is not zero, and may be
used to define the energy scale of the problem. If wn = 0, it is easy to check that
the eigenstates are discrete plane Bloch waves ψn = exp ikn, for k ∈ [−π, π[, and
the energy is given by the dispersion relation E(k) = 2 cos k of this single-band
model.

Disorder is introduced by allowing the on-site energies wn to be random
variables. The standard choice is to take wn to be uncorrelated random vari-
ables uniformly distributed in the interval [−W/2,W/2], with W 2 = 12

〈
w2
n

〉
measuring the disorder strength. A noteworthy property—simplifying analytic
calculations—is that the spatial correlation length of the disorder is zero (see
Sec. 5.1.4 for a discussion of spatial correlations arising in optical speckle poten-
tials). Actually, the 1d tight-binding Anderson model can be solved for almost
any distribution [33], with simple closed expressions for the Cauchy-Lorentz on-
site distribution. The techniques developed in Sec. 5 permit to show that the
localization length is at lowest order in W given by

ξloc =
4 sin2 k

〈w2
n〉

=
12(4− E2)

W 2
. (65)
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Exercise 4 – Few properties of the Anderson model.

(i) Show that the equations obeyed by an eigenstate of the Anderson model at
energy E can be put in the following matrix form:(

ψn+1

ψn

)
= Tn

(
ψn
ψn−1

)
(66)

with a transfer matrix:

Tn =

(
E − wn −1

1 0

)
. (67)

Show that the amplitudes of the left and right propagating plane waves in a
disorder-free region can be expressed as simple linear combinations of ψn and
ψn+1. Show that, in consequence, it is possible to construct a transfer matrix
M as in eq. (9). This shows that the general results of section 2.2 can be used
and that exponential localization is expected.

(ii) Consider a continuous model of a 1d particle in a disordered potential V (z). By
discretizing the Schrödinger equation on a lattice with sufficiently small spacing
(much shorter than the de Broglie wavelength and the correlation length of
the potential), show than one recovers the Anderson model, but with spatially
correlated wn.

Numerical simulations of the Anderson model are extremely easy, at least
in dimension 1. Indeed, the previous exercise shows that the time-independent
Schrödinger equation reduces, for an eigenstate |ψ〉 =

∑
n ψn|n〉 with energy E,

to the three-term recurrence relation

ψn+1 + (wn − E)ψn + ψn−1 = 0 (68)

which can be solved recursively. In Fig. 11, we give an example of a simple
script, written in the Perl language, that solves this equation at some arbitrary
energy across a random sample of arbitrary length.

Note that the boundary condition used, ψN = 1 and ψN+1 = eik, describes
a purely outgoing wave with wavevector k and amplitude 1 on the right end of
the sample. The boundary condition on the left is actually more complicated,
because there the incident wave interferes with the reflected wave, whose am-
plitude depends on the microscopic realization of disorder of the entire sample.
The Schrödinger recursion equation is thus better solved backwards from the far
end of the sample, yielding on average an exponentially increasing solution to-
ward the left. This is in agreement with the fact, shown in exercise 2(iv) above,
that the two eigenvalues of the transfer matrix are of the form λ± = e±2x. So
starting with this boundary condition and an arbitrary value of k (and thus
E), one has, with probability one, a finite overlap with the eigenvectors of the
larger eigenvalue and therefore numerically picks up an exponentially growing
solution. This solution is then at the same time physically acceptable for the
transmission experiment, viz., decreasing on average exponentially from left to
right. Since eq. (68) is linear, one can always normalize the solution to unit
incoming flux and thus finally find the transmission probability as the outgo-
ing flux on the right side, calculated as a linear combination of ψN and ψN+1

(cf. the perl script and exercise 4(i)).
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#!/ usr / bin / p e r l
use Math : : Trig ;
use Math : : Complex ;
# compute log ps i2 and log T . p l
# Author : Dominique Delande
# Release date : Feb , 24 , 2010
# License : GPL3
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# This s c r i p t models Anderson l o c a l i z a t i o n in the Anderson model o f d i sordered 1d systems .
# I t computes the transmiss ion across a sample o f s i z e $ s y s t em s i z e at energy $energy .
# Without d isorder , the spectrum i s [−2 ,2] , the d i s p e r s i on r e l a t i o n $energy=2∗cos ( $k ) .
# Disorder i s g iven by the on−s i t e ene rg i e s $w n ,
# uncorre la t ed and uni formly d i s t r i b u t e d in [−$W/2 ,$W/2 ] .
# The equat ions are : \ p s i {n+1} + \ p s i {n−1} + (w n−E) \ ps i n = 0
# They are so l v ed in the backward d i r ec t i on , s t a r t i n g from a normalized outgo ing wave .
# | \ p s i | ∗∗2 i s pr in t ed in f i l e l o g p s i 2 . dat and − l o g (T) in logT . dat
# for $number o f r ea l i z a t i on s independent r e a l i z a t i o n s .
# The l o c a l i z a t i o n l eng t h i s 12∗(4−$energy ∗∗2)/$W∗∗2 at l owes t order in $W.
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$ sy s t em s i z e =1250;
$W=0.6;
$energy =0.5 ;
$k=acos ( 0 . 5∗ $energy ) ;
$ ex p i k=cplx ( cos ( $k ) , sin ( $k ) ) ;
$ n u m b e r o f r e a l i z a t i o n s =3; # put 1000 or 10000 fo r a decent histogram
open(LOGT, ”> logT . dat” ) ; open(LOGPSI2 , ”> l o g p s i 2 . dat ” ) ;
for ( $ j =1; $j<=$ n u m b e r o f r e a l i z a t i o n s ; $ j++) {

$ p s i n p l u s 1=$exp i k ;
$p s i n =1.0 ;
select (LOGPSI2 ) ;
for ( $n=$sy s t em s i z e ; $n>0;$n−−) {

$w n=$W∗(rand ( ) −0 .5 ) ;
$ps i n minus 1 =($energy−$w n )∗ $ps i n−$ p s i n p l u s 1 ;
$ l o g p s i 2= 2 .0∗ log (abs ( $p s i n ) ) ;
print ”$n $ l o g p s i 2 \n” ;
$ p s i n p l u s 1=$ps i n ;
$p s i n=$ps i n minus 1 ;

}
print ” \n” ;
$ps i n minus 1=$energy ∗ $ps i n−$ p s i n p l u s 1 ;
$ r e f l e c t e d =(0.5∗abs ( $ps i n minus 1 ∗ $exp i k−$ps i n )/ sin ( $k ) )∗∗2 ;
$ i n c i d e n t =(0.5∗abs ( $ps i n minus 1−$ex p i k ∗ $ps i n )/ sin ( $k ) )∗∗2 ;
$minus log T=log ( $ i n c i d e n t ) ;
select (LOGT) ; print ” $ j $minus log T \n” ;

}

Figure 11: This perl script, available also at http://www.spectro.jussieu.fr/-Systemes-
desordonnes-, can be run in a few seconds on any reasonable computer with
a perl interpreter, preferably running a Unix-based operating system, or using
a free perl interpreter for the non-free M$-Windoze operating system, such as
http://strawberryperl.com/. Just type perl compute log psi2 and log T.pl in a
shell window. The logarithm of the squared wavefunctions will be output (vs. po-
sition) in the file logpsi2.dat and can be visualized with your favorite plotting tool.
(Minus) the logarithms of the transmissions (one for each realization of the disorder)
are in the file logT.dat; use again your favorite plotting tool to build a histogram.

31

http://www.spectro.jussieu.fr/-Systemes-desordonnes-
http://www.spectro.jussieu.fr/-Systemes-desordonnes-
http://strawberryperl.com/


Figure 12 (left plot) shows the intensity ln |ψn|2 for three different realiza-
tions of the disorder at energy E = 0.5 and disorder strength W = 0.6 for
a moderately large sample of 1250 sites, corresponding to a length L = 10ξloc.
Although the decay is on the average exponential, huge fluctuations from one re-
alization to another are visible with the naked eye. Moreover, even for this pure
transmission experiment from left to right, the intensity is not monotonously
decreasing at all, sometimes increasing by factors larger than 10. The histogram
of the extinction (or transmission logarithm) over 10000 realizations is shown in
the right plot. Its width clearly visualizes the huge fluctuations characteristic
for the localized regime. The agreement with the predicted distribution func-
tion, eq. (36), shown with a red full line, is excellent. One also observes the
convergence toward the truncated normal distribution (dashed), implying the
truncated log-normal distribution (39) for T itself.

The reader is strongly encouraged to play with this script to experiment
personally with Anderson localization. We recommend the following numerical
experiments:

Exercise 5 – Numerical study of 1d Anderson localization

(i) Use a single realization of the disorder and look at the wavefunction (or rather
|ψ|2) inside the medium. Try different sample lengths and different energies, but
avoid the band center E = 0. Indeed, the Anderson model is singular at this
value. There is still Anderson localization, but the localization length slightly
differs from eq. (65), a so-called Kappus-Wegner singularity [33].

(ii) Using a few hundred or thousand realizations, compute the statistical distribu-
tion of the transmission. Compare with the exact prediction eq. (36) as well as
with a truncated normal distribution.

(iii) Modify the script, for example for a Gaussian or Cauchy distribution of disorder
and run additional numerical experiments. You may also introduce correlated
disorder to simulate e.g. cold atoms in a speckle potential (see [20] for generation
of a realization of the disorder with proper correlation functions).

A slightly different approach consist in diagonalizing the Hamiltonian for a
large system numerically. Choosing strict boundary conditions on both ends of
the sample yields normalizable eigenstates, centered at random positions within
the sample and decreasing from there in both directions (similar to Fig. 8(a)),
together with the discrete set of corresponding eigenvalues. In the thermody-
namic limit, these eigenenergies form a dense, but still pure-point spectrum.

An important message to keep in mind is that there is very little difference
between a continuous and a discrete system, as far as localization on large
spatial scales is concerned. For example, the exercise shows how a particle
in a continuous 1d random potential (e.g., an optical speckle) can be mapped
to a variant of the Anderson model. This universality of the Anderson model
cannot really surprise because localization is an asymptotic property taking
place at large distance; whether the underlying configuration space is discrete
or continuous plays only a minor role.

4.2 d = 2

Scaling theory predicts d = 2 to be the lower critical dimension for Anderson
localization. In dimension d = 2 + ε (which can be numerically studied by
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Figure 12: Results of numerical experiments on the 1d Anderson model, with un-
correlated uniform distribution of disorder. The left plot shows the intensity |ψ(z)|2
inside the disordered medium—on a logarithmic scale—for three different realizations
of the disorder. Note the overall exponential decrease, decorated by huge fluctuations:
the transmission across a sample of size L = 10ξloc fluctuates by more than 3 orders
of magnitude. This illustrates why the typical transmission differs from the average
one. The right plot shows the full probability distribution F (− ln(T ), t) (histogram
over 10000 realizations) for t = z/ξloc = 10, together with the prediction eq. (36) (full
red line), which is close to a truncated Gaussian (dashed).

constructing an Anderson model on a fractal set), a critical point should exist
where β(gc) = 0, separating a diffusive phase from an insulating one. Strictly at
d = 2, scaling theory predicts localization provided there is a weak localization
correction with c2 > 0, see section 3.6. We will see in section 7 that this is
indeed what a microscopic approach predicts in spinless time-reversal invariant
systems. Scaling theory does not pretend to be an exact theory, there is thus a
real interest in knowing whether there is localization in 2 dimensions for specific
systems.

Experiments with cold atoms are expected to be much more difficult than
in 1d. Indeed, the localization length, eq. (56), is predicted to increase expo-
nentially with the parameter kl, instead of linearly in 1d. Detailed theoretical
studies [34] have shown that experimental observation requires at the same time
a speckle potential with a very short correlation length (comparable to what has
been done in 1d, but in 2 directions) and a long atomic de Broglie wavelength,
that is very cold atoms. Altogether, satisfying all conditions is far from easy,
making 2d Anderson localization of ultra cold atoms an interesting challenge.

A metal-insulator transition has been observed for electrons in clean semi-
conductor samples [35]. It is generally acknowledged that the Coulomb electron-
electron interaction—much stronger than the atom-atom interaction in a dilute
cold atomic gas—plays a major role in this transition, which is thus qualita-
tively different from the pure Anderson transition and sometimes referred to as
the Mott-Anderson transition [36].

Other types of waves have been successfully used in 2d systems. For exam-
ple, using conveniently engineered optical fibers, one can create a 2d “photonic
lattice” composed of parallel optical guides along which the light can freely prop-
agate. Thanks to the photorefractive material used, its index of refraction can
be adjusted by an external light source. Also the transverse coupling between
the optical guides can be adjusted at will, as well as the disorder due to small
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Figure 13: Experimental results on the propagation of light across a transversally
disordered 2d lattice of photonic wave guides, mimicking the 2d Anderson model. As
the strength of the disorder is increased, the dynamics evolves from ballistic (a and
c) to diffusive (b and d), characterized by a Gaussian shape of the wavepacket, and
eventually to Anderson localization, with a wavepacket of characteristic exponential
shape (e), when the disorder is sufficiently strong to make the localization length
comparable to the extension of the wavepacket. Reproduced from [37] (courtesy of S.
Fishman).

variations of the index of refraction in each guide. As the light propagates at
roughly constant velocity along the guides, the spatial propagation mimics the
temporal evolution of the Anderson model, each guiding mode playing the role
of a site. Using such a device, the evolution from ballistic motion (on a scale
shorter than the mean free path) to diffusive motion and eventually to strong
localization has been experimentally observed [37], see Fig. 13.

The Anderson model itself, described in section 4.1.4, can be trivially ex-
tended to any dimension by adding hopping terms to nearest neighbors in a
(hyper)cubic lattice. The numerical study is slightly more difficult than in 1d.
The basic idea is to study first the quasi-1d propagation on a strip with a fixed
number M of transverse sites, imposing for example periodic boundary condi-
tions along this direction. One can write a 2M × 2M transfer matrix for this
quasi-1d system and calculate its asymptotic properties as the length N goes to
infinity, extracting the quasi-1d localization length ξloc(M). Next, one studies
the behavior of ξloc(M) as M is sent to infinity. If ξloc(M) diverges without
bounds, one concludes that the system is not localized. If on the other hand
ξloc(M) tends to a finite limiting value, one concludes that the system localizes
with ξloc = limM→∞ ξloc(M).

Powerful numerical techniques, such as finite-size scaling [38], make it possi-
ble to extrapolate properties of the infinite system from numerical experiments
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Figure 14: Scaling function β(g) reconstructed from numerical simulations of the
Anderson model. The solid line is for dimension 1, the triangles for dimension 2 and
the crosses for dimension 3. Different sets of microscopic parameters produce data
lying on the same curve, which can be considered an “experimental proof” that the
scaling approach is valid. In 2d, β(g) is always negative, proving that the system is in
the localized regime. In 3d, depending on the disorder strength, the system may be
localized (β(g) < 0, strong disorder) or diffusive (β(g) > 0, weak disorder). Reprinted
from [39] (courtesy of A. McKinnon and B. Kramer).

on limited systems. Especially, the scaling function β(g) can be reconstructed,
see Fig. 14. The fact that various data, computed for various values of the sys-
tem parameters (energy, disorder strength, system size), lead to the very same
β(g) strongly indicates that the scaling approach is valid, and thus corroborates
the existence of universal properties independent of the microscopic details. In
2d, the numerically computed β(g) is always negative, as expected and its shape
is in good agreement with the naive prediction, eq. (53).

4.3 d = 3

Dimension 3 is arguably the most interesting, because scaling theory there pre-
dicts a transition between diffusive behavior for small disorder and Anderson
localized behavior at large disorder. Consequently, much experimental and nu-
merical effort has been spent to observe this Anderson transition. Numerical
simulations of the 3d Anderson model are a very valuable tool, especially to
locate the critical point where β(gc) = 0 and to characterize its vicinity. The
results in Fig. 14 very clearly show the existence of the two regimes and the fact
that β(g) behaves smoothly across the transition. This constitutes a clear-cut
proof that the Anderson transition is a continuous phase transition of second
order. Note the absence of data for g just below gc; this corresponds to lo-
calized systems with a localization length too large to be reliably measured in
the numerical simulations. As shown in Sec. 3.7, the slope dβ/d ln g|gc

at the
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Figure 15: Experimentally measured conductivity of a Si-doped AlGaAs 3d crystal
vs. electron concentration (upper horizontal scale), showing a clear metal-insulator
transition. The critical exponent is very close to unity, a value not compatible with
the universal value ν = 1.58 of the pure 3d Anderson transition. Electron-electron
interaction is probably responsible for the difference. Adapted from [40] (courtesy of
S. Katsumoto).

critical point is the inverse of the critical exponent ν of the Anderson transition.
Although the slope at the critical point cannot be accurately measured on these
data, it is without any doubt smaller than unity—the value of the asymptotic
slope in the deep localized regime ln g → −∞. This implies that the critical ex-
ponent ν is larger than unity. Recent numerical studies on much larger systems
fully confirm this point, the current best estimate being ν = 1.58±0.01 [26, 27].

Direct experimental observation of Anderson localization in 3d is even more
difficult than in 2d, because it requires an even more strongly scattering system
(kl smaller than 1 from the Ioffe-Regel criterion, eq. (57), instead of kl of the
order of few units). Moreover, creation of a sufficiently disordered potential can
be technically much more difficult in 3d: for a speckle potential, this would
require to send plane waves with random phases from a large solid angle. Thus,
Anderson localization of atomic matter waves in a disordered potential has not
yet been observed. However, using the equivalence of a quasi-periodically kicked
rotor with a 3d Anderson model, the Anderson transition with atomic matter
waves has been observed, and its critical exponent experimentally measured, as
discussed in section 8.

Electronic transport in solids, the field where localization theory was origi-
nally developed, provides also interesting experimental results. Metal-insulator
transitions can be observed in solid state samples, but it is never easy to identify
the microscopic mechanism. This is because electron-electron interactions play
an essential role. Whether the observed transition is a one-body effect like the
Anderson transition or a many-body one like the Mott transition [41] is not
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easily proved. We are not aware of any unambiguous observation of the pure
Anderson transition. Figure 15 shows the experimentally measured conductiv-
ity of a Si-doped AlGaAs crystal vs. a parameter essentially representing the
electronic Fermi energy. A clear insulator-to-metal transition is observed. It
seems that the curve is almost linear in the metallic regime, which—because
conductivity is essentially a measure of the diffusion constant —means that the
measured critical exponent is ν ≈ 1. This markedly differs from the exponent
of the pure Anderson transition, indicating that interaction effects are probably
important.

One may also turn to other type of waves, for example ultrasonic waves [42]
or electromagnetic waves. Direct measurement of the electromagnetic field in-
side the disordered medium is not straightforward, and transmission experi-
ments are easier. As mentioned earlier, absorption induces an exponential decay
of the intensity, which must be carefully discriminated from the same effect being
produced by Anderson localization. Thus, experimentalists have turned to mea-
suring tell-tale properties right at the critical point. There, according to scaling
theory, the dimensionless conductance has the constant value gc, independently
of the system size, whereas the classical dimensionless conductance, eq. (45),
increases linearly with the system size L. This additional power of L makes the
total transmission across the sample evolve from a 1/L behavior (Ohm’s law)
in the diffusive regime to a 1/L2 scaling law at the critical point, and eventu-
ally to the exponential decay in the localized regime. Any spurious absorption
is likely to transform the critical 1/L2 behavior into an exponential decrease.
Thus, the existence of an 1/L2 may be considered a sensitive test of observing
the Anderson transition. Fig. 16 shows the experimental result obtained on the
propagation of microwaves in a disordered medium, in the diffusive and critical
regimes. The existence of a range with 1/L2 power law—before absorption wins
at even larger size—is a convincing proof.

Similar results have been obtained in the optical regime [43], where strong
scattering is provided by oxide powders, but the role of absorption has been dis-
cussed controversially [44]. Recently, time-resolved transmission experiments,
where absorption has less impact, have shown a slowing down of classical trans-
port [45], which gives strong evidence for Anderson localization.

In the last few years, several numerical and laboratory experiments have
characterized the fluctuations appearing in the vicinity of the Anderson tran-
sition. In particular, numerical experiments on the 3d Anderson model have
shown that the critical eigenstates have a multi-fractal structure, implying the
coexistence of regions where the wavefunction is exceptionally large together
with regions where it is exceptionally small. This is presently a very active field
of research [47], whose description is beyond the scope of these lectures. The
reader may refer to the recent review paper of Evers and Mirlin [15]. In the
near future, it is very likely that experiments on localization of atomic matter
waves will concentrate on the existence and properties of fluctuations.
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Figure 16: Experimentally measured transmission of microwaves through a 3d
strongly scattering medium vs. the size of the medium (doubly logarithmic scale).
In the usual diffusive regime (open symbols), a 1/L decrease is observed, in agreement
with classical transport theory (Ohm’s law). At the critical point of the Anderson
transition (filled symbols) a characteristic 1/L2 behavior is observed, in agreement
with the scaling theory of localization. Note that, because of residual absorption, the
signal drops at large size. Reprinted from [46] (courtesy of A.Z. Genack).

5 Microscopic description of quantum transport

5.1 Diagrammatic perturbation theory

In section 2, we have seen that localization in (quasi-)one-dimensional systems
can be very efficiently described by a transfer-matrix approach. In higher di-
mensions, we have resorted to the scaling arguments presented in section 3. We
now wish to give an introduction to a microscopic description of quantum trans-
port in disordered systems. The main advantage of diagrammatic perturbation
theory lies in its versatility. It applies in arbitrary dimensions d and to any
model with a Hamiltonian of the form

H = H0 + V, (69)

in which H0 describes regular propagation in an ordered substrate, and V is
the disorder potential that breaks translational invariance. On a microscopic
level, “disorder” refers to degrees of freedom whose detailed dynamics are not of
interest and whose properties are only known statistically. In the following, we
will consider static or quenched disorder that remains frozen on the timescale
of wave propagation under study (as sole exception of this rule, we mention in
section 6.3 the dephasing effect of moving impurities).

A first model of type (69) describes a single quantum particle in an external
potential,

H =
p2

2m
+ V (r), (70)

with direct bearing on experiments with non-interacting matter waves like [4],
but equally applicable to other massive particles like electrons, neutrons, etc.
Note that the plain Hamiltonian (70) operating in Hilbert space describes the
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same single-particle physics as the more fanciful many-body version

H =

∫
ddrΨ†(r)

[
− ~2

2m
∇2 + V (r)

]
Ψ(r), (71)

defined in terms of particle creation and annihilation operators Ψ(†) in Fock
space.

Since we assume that H0 is translation-invariant (if only by discrete trans-
lation on a lattice), the following equivalent formulation in Fourier space is also
useful:

H =
∑
k

ε0
ka
†
kak +

∑
k,q

Vqa
†
k+qak. (72)

Here, wave vectors k are used as good quantum numbers labeling the eigenstates
of H0. If there is an underlying lattice, one has to include also a Bloch band
index. ε0

k is the free dispersion relation; for matter waves, ε0
k = ~2k2/2m. Par-

ticle annihilators ak = L−d/2
∫

ddreik·rΨ(r) and creators a†k fulfill the canonical

commutation relations [ak, a
†
k′ ]± = δkk′ .

The disorder potential breaks translation invariance by scattering particles
k → k′ with an amplitude given by its Fourier component Vq = 〈k + q|V |k〉 =
L−d

∫
ddre−iq·rV (r), conveniently represented by

Vq = k k + q

q

. (73)

This model Hamiltonian (72) is not limited to matter waves. By appropri-
ate changes in ε0

k, different physical systems can be described. For instance,
photons and other mass-less excitations have a linear dispersion ε = ~ck with
characteristic speed c. Yet another realization is provided by the elementary
excitations of Bose-Einstein condensates, featuring the Bogoliubov dispersion
εk =

√
ε0
k(ε0

k + 2µ), that interpolates between a linear sound-wave dispersion
at low energy and a quadratic particle-like dispersion ε0

k = ~2k2/2m at high
energy. The general formalism to be introduced below applies to all these cases,
provided the scattering potential Vq is known.

The basic model can be made richer, depending on the circumstances and
effects one wishes to describe. For example, spin often plays an important
role, for instance via spin-orbit effects, due to coupling of spin and direction
of propagation. Also spin-flip processes can be of interest, as in electronic
spin-flips induced by magnetic impurities or photon polarization flips induced
by Zeeman-degenerate atomic dipole transitions. A typical spin-flip process
(m,σ) 7→ (m′, σ′) changes the spin of the propagating object from σ to σ′, while
the impurity spin undergoes m 7→ m′. Processes of this type can store informa-
tion about the path traveled, and generally act as a source of strong decoherence
(as discussed in Sec. 6.3 below).

The main drawback of the diagrammatic Green function approach is its per-
turbative character. Most results are obtained from an expansion in powers
of V and are valid only for small enough potential strength. If one is inter-
ested in truly strong-disorder effects, it may be worthwhile to start from the
opposite situation where the propagation described by H0 is small; Anderson’s
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original method of a “locator expansion” [5] is an example for such a weak-
coupling perturbative approach. In any case, it takes considerable effort to
derive non-perturbative results using controlled approximations. Yet, the ba-
sic diagrammatic technique is a prerequisite for more powerful, field-theoretic
methods involving, e.g., replica methods, renormalization-group analysis and
supersymmetry [48].

5.1.1 Quantum propagator

Let us then start by calculating the Green function for the single-particle Hamil-
tonian (70) that determines the time evolution of a state |ψ〉 in Hilbert space
according to the Schrödinger equation i~∂t|ψ〉 = H|ψ〉. For t > 0, the forward-
time evolution operator GR(t) = − i

~θ(t) exp{−iHt/~} solves the differential
equation

[i~∂t −H]GR(t) = δ(t). (74)

Obviously, GR(t) is the retarded Green operator for the Schrödinger equa-
tion. It encodes the same information than its many-body version GR

kk′(t) =

− i
~θ(t)

〈[
ak(t), a†k′

]〉
that one would use starting from (72); in the following,

we stick to the simpler form, referring the reader to the literature for the more
advanced presentation [49, 50, 51, 52]. Going from time to energy by Fourier
transformation, one defines the resolvent

GR(E) = lim
η→0+

∫
dtei(E+iη)t/~GR(T ) = lim

η→0+
[E −H + iη]

−1
=: [E −H + i0]

−1
.

(75)
The limiting procedure η → 0+ guarantees that indeed the retarded Green op-
erator is obtained, different from zero only for t > 0. The advanced Green
operator GA(t) is obtained by taking η → 0−. In the basis where H is diago-
nal, H|n〉 = εn|n〉, the resolvent is also diagonal and thus admits the spectral
decomposition G(z) =

∑
n |n〉[z − εn]−1〈n| for any argument z ∈ C outside the

spectrum of H. The resolvent’s matrix elements are called “propagators”. For
example, in the position representation 〈r|n〉 = ψn(r),

GR(r, r′;E) = 〈r′|GR(E)|r〉 =
∑
n

ψn(r′)ψ∗n(r)

E − εn + i0
= r r′ . (76)

This propagator contains precious information: As function of E, it has singu-
larities on the real axis that are precisely the spectrum of H and thus encode all
possible evolution frequencies. Furthermore, the residues at these poles provide
information about the eigenfunctions.

The total Hamiltonian (70) contains the disorder potential so that we cannot
write down its eigenfunctions and eigenvalues analytically (numerically, one may
of course calculate eigenfunctions and eigenvalues for each realization of disor-
der). We start therefore with the free Hamiltonian H0. Its resolvent G0(z) =
[z−H0]−1 is diagonal in momentum representation, 〈k′|G0(z)|k〉 = δkk′G0(k, z)
with

GR
0 (k;E) =

1

E − ε0
k + i0

=
k

. (77)
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Now we are ready to describe the perturbation due to the potential V : Using
G(E) = [E −H0 − V ]−1 = [(E −H0){1− (E −H0)−1V }]−1, we express

G(E) = [1−G0V ]−1G0 (78)

= G0 +G0V G0 +G0V G0V G0 + . . . (79)

as the Born series in powers of V . For notational brevity, we have already
suppressed the energy argument on the right-hand side. Still, if one tries to
write out a matrix element 〈k′|G(E)|k〉, the operator products convert into
cumbersome expressions that tend to obscure the series’ simple structure:

〈k′|G(E)|k〉 = δkk′G0(k)+G0(k′)Vk′−kG0(k)+
∑
k′′

G0(k′)Vk′−k′′G0(k′′)Vk′′−kG0(k)+. . .

(80)
At this point, we are well advised to use the graphical representation known as
“Feynman diagrams”, for which we have already all ingredients at hand:

〈k′|G(E)|k〉 = δkk′
k

+
k k′

+
k k′′ k′

+ . . . (81)

Already, we achieve a much more compact notation, aided by the fact that
we do not need to label the dangling impurity lines, defined in (73), since their
momentum is automatically determined by the incident and scattered momenta.
Also, we henceforth use the prescription that all internal momenta have to be
summed over, here k′′ in the last contribution.

5.1.2 Ensemble average

In principle, the Born series (81) permits to calculate the full propagator per-
turbatively. However, the result will be different for each realization of disorder.
We are really only interested in suitable expectation values and thus have to
understand how to perform the ensemble average over the disorder distribution.

The potential V (r) as a function fluctuating in space is a random process. As
such, it can be completely characterized by its moments or correlation functions
〈V1〉, 〈V1V2〉, 〈V1V2V3〉, etc., with the short-hand notation Vi = V (ri). We will
assume that the process is stationary or, preferring the spatial dictionary, sta-
tistically homogeneous, which means that correlation functions can only depend
on coordinate differences rij = ri − rj . We can therefore define the following
correlation functions and corresponding diagrams:

〈V1〉 = 〈V 〉 (82)

〈V1V2〉 = P (r12) =
1 2

(83)

〈V1V2V3〉 = T (r12, r23) =
1 2 3

(84)

and so on for arbitrary n-point correlation functions. Without loss of generality,
one may always take 〈V 〉 = 0 by defining a centered potential V 7→ V − 〈V 〉
while redefining the zero of energy E − 〈V 〉 7→ E. In Fourier representation,
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these correlation functions are

P (q) =

q

, T (q, q′) =

q q′

, etc. (85)

Depending on the specific type of disorder, these general correlation functions
can take different forms, and it may be instructive to discuss two of them in
detail.

5.1.3 Gaussian disorder

As a first example, let us consider Gaussian-distributed disorder that is com-
pletely defined by its first two moments 〈V 〉 = 0 and P (r) = V 2

0 C(r). Here,
one conveniently factorizes the one-point variance V 2

0 =
〈
V 2

1

〉
from the spatial

correlation function C(r) that obeys C(0) = 1 by construction. The characteris-
tic property of a Gaussian process is that all higher-order correlation functions
completely factorize into pair correlations. Indeed, a simple property of the
Gaussian integral implies that the moments of a normally distributed, centered
scalar random variable X are

〈
X2n

〉
= Cn

〈
X2
〉n

where Cn = (2n)!/(2nn!) is
the number of pairs that can be formed out of 2n individuals. Similarly, the
Gaussian moment theorem applies to a Gaussian-distributed random potential:

〈V1 · · ·V2n〉 =
1

2nn!

∑
π

〈
Vπ(1)Vπ(2)

〉
· · ·
〈
Vπ(2n−1)Vπ(2n)

〉
(86)

where π denotes the (2n)! permutations. Pictorially, this implies also a complete
factorization of 2n-point potential correlation into products of pair correlations.
The first interesting example is n = 2 with

= + + (87)

and so on for higher orders.
Such a Gaussian potential can be constructed with arbitrary spatial corre-

lation C(r). A popular choice here is often to model it as a Gaussian as well,
C(r) = exp{−r2/2σ2}, such as in [53], because this is easy to implement numer-
ically (it suffices to draw uncorrelated random variables Vi on a discrete grid and
convolute by a Gaussian correlation function afterwards). Moreover, this choice
leads to simple analytical calculations because also the k-space pair correlator
is Gaussian, P (q) = V 2

0 σ
d(2π)d/2 exp{−q2σ2/2}. In the limit of low momenta

qσ � 1, the potential details cannot be resolved and it appears δ-correlated.
Then, everything can be expressed in terms of P (0) = (2π)d/2σdV 2

0 .

5.1.4 Speckle

A slightly more interesting example is provided by the optical speckle poten-
tial used recently for matter-wave Anderson localization [4, 54]. The atoms are
subject to an optical dipole potential V (r) = K|E(r)|2 created by the local
field intensity of far-detuned laser light. K contains the frequency-dependent
atomic polarizability besides some constants [55]. With a laser beam that is
blue-detuned from the optical resonance, one has K > 0 and thus expells atoms
from high-intensity regions. This potential landscape features repulsive peaks
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with 〈V 〉 > 0. Conversely, a red-detuned laser leads to K < 0, and one finds
a potential landscape with attractive wells and 〈V 〉 < 0. To create a disorder
potential, the laser beam is focused through a diffuse glass plate, whose ran-
domly positioned individual grains act as elementary sources for the emitted
field. The electric field E(r) at some far point then is the sum of a large number
of complex amplitudes. By virtue of the central limit theorem, it is a complex
Gaussian random variable with normalized pair correlator

γij = γ(ri − rj) =
〈E∗(ri)E(rj)〉
〈|E|2〉 = ∗

i j
(88)

with the obvious properties γ∗ij = γji and γii = 1. In a 1d-geometry, the pair
correlator takes its simplest form in Fourier components:

γ(q) = πζΘ(1− |q|/kζ) (89)

where kζ = kα is the maximum wave-vector that can be built from a monochro-
matic laser source with wave vector k seen under an optical aperture α. This
eqn (89) simply says that the random field contains all wave vectors inside the
allowed interval with equal weight. In real space, this Fourier transforms to
γ(r) = sin(r/ζ)/(r/ζ) with the correlation length ζ = 1/kζ = 1/(αk).

Other pair correlations such as EiEj and E∗i E
∗
j have uncompensated random

phases and average to zero. The Gaussian moment decomposition now applies
to arbitrary moments of the speckle disorder potential Vi = KE∗i Ei. An n-point
potential correlation is really a (2n)-field correlation, which decomposes into all
possible pair correlations (88). As in a conventional ballroom dancing situation
involving n couples, all possible heterosexual pairings between the E∗i s and Ejs
are allowed. This gives for the 2-point potential correlator

〈V1V2〉 = K2〈E∗1E1E
∗
2E2〉 = 〈V 〉2 [γ11γ22 + γ12γ21] . (90)

Setting r1 = r2 shows that
〈
V 2
〉

= 2〈V 〉2, which means that the potential

variance is equal to its mean square, var(V ) =
〈
V 2
〉
− 〈V 〉2 = 〈V 〉2.

The shift V 7→ V −〈V 〉 to the centered potential removes the first term in the
bracket in (90). The same applies to all diagrams with field self-contractions:

~ = 0. (91)

So henceforth, we can neglect those diagrams by considering a centered potential
〈V 〉 = 0. Altogether, we have as a first building block the speckle potential pair
correlator

〈V1V2〉 = P (r12) = V 2
0 C(r12) = V 2

0 ~
1

~
2

(92)

Here, the potential strength V 2
0 = var(V ) is factorized from the dimensionless

correlation function C(r) = |γ(r)|2 that is normalized to C(0)=1. In d = 1,
from (89), we have the real-space intensity correlator C(r) = [sin(r/ζ)/(r/ζ)]2.
In higher dimensions and in an isotropic setting, the Fourier transformation of
the simple k-space field correlator yields C(r) = [2J1(r/ζ)/(r/ζ)]2 in d = 2 and
C(r) = [sin(r/ζ)/(r/ζ)]2 again in d = 3 [34].

An interesting effect occurs for potential correlations of odd order (2n+ 1).
They are really field correlation of twice the order, which is even and thus
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different from zero. The first example of this kind is (since the fields ∗ and ◦
will always appear together, we note ~ = • from now on)

〈V1V2V3〉 = V 3
0 2Re{γ12γ23γ31} = V 3

0
1 2 3

(93)

Diagrams of this type can only contain closed loops of field correlations (because
field self-contractions no longer appear). Since the loops can be closed both
clockwise and counterclockwise, there are two contributions complex conjugate
of each other.

5.1.5 Average propagator: self-energy

Now we are in position to take the ensemble average of the single-particle prop-
agator (79):

〈G〉 = G0 +G0〈V G0V 〉G0 +G0〈V G0V G0V 〉G0 + . . . (94)

or

〈G〉 = + + + . . . (95)

The precise form of potential correlations depends on the model of disorder. As
shown by the example of the Gaussian model (87), starting from the fourth-
order term there appear completely factorized contributions. Before writing all
possible combinations down, we had better introduce one of the cornerstones of
diagrammatic expansions: the self-energy Σ(E) defined by the Dyson equation

〈G〉 = G0 +G0Σ〈G〉. (96)

Introducing the self-energy invariably prompts the following frequently asked
questions:

1. Why is the self-energy convenient for perturbation theory?

2. How do I calculate Σ?

3. What is the physical meaning of Σ?

4. Is there a simple example?

Let us answer them in turn.
1. By iterating the Dyson equation (96), one finds that the average propa-

gator expands as

〈G〉 = + Σ + Σ Σ + Σ Σ Σ + . . . (97)

By construction, there are no disorder correlations between the different self-
energies appearing here. In return, this implies that the self-energy contains
exactly all correlations that cannot be completely factorized by removing a free
propagator G0 in between. These non-factorizable terms are called “one-particle
irreducible” (1PI). Moreover, the self-energy contains only the correlations and
internal propagators, but is stripped off the external propagator lines (“ampu-
tated”). This makes the self-energy the simplest object describing all relevant
disorder correlations.
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2. Due to statistical homogeneity, the self-energy is diagonal in momentum
and thus only depends on k and E. The self-energy matrix element Σ(k,E) is
calculated by applying so-called Feynman rules to evaluate the diagrams. As a
specific example, let us give the Feynman rules for the self-energy of the retarded
single-particle propagator

〈
GR(k,E)

〉
in momentum representation for the case

of the speckle potential:

(i) Draw all amputated 1PI diagrams with incident momentum k:

Σ(k,E) = + + . . . (98)

(ii) Convert straight black lines to free propagators

k
= GR

0 (k,E) = [E − ε0
k + i0]−1.

(iii) Convert disorder correlation lines to •
q
• = γ(q). The precise func-

tional dependence γ(q) depends on dimension and geometry.

(iv) For each scattering vertex, multiply by one power of the potential strength
and the conservation of momentum:

k k′

q′q

= V0δk+q,k′+q′ (99)

(v) Sum over all free momenta after respecting momentum conservation.

For other types of disorder, these rules have to be adapted slightly to the precise
shape of diagrams, correlation functions and vertex factors. But in all cases,
the general idea of writing all possible combinations, respecting momentum
conservation and integrating out the free momenta is the same.

3. One can rewrite the Dyson equation (96) as [1−G0Σ]〈G〉 = G0 and solve
formally for the average propagator: 〈G〉 = [1 − G0Σ]−1G0 = [G−1

0 − Σ]−1.
Thus, its matrix elements are〈

GR(k,E)
〉

=
1

E − ε0
k − Σ(k,E)

. (100)

We recognize that the self-energy modifies the free dispersion relation. Gener-
ally, the self-energy is a complex quantity with a real as well as an imaginary
part. The modified dispersion relation

Ek = ε0
k + ReΣ(k,Ek) (101)

is an implicit equation for the new eigen-energy Ek of the mode k. So one effect
of the disorder is to shift the energy levels. 4 But plane waves with fixed k
are no longer proper eigenstates of the disordered system. This is encoded in

4Alternatively, one can also solve for kE as the modified k-vector of an excitation with
given energy E.
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the imaginary part. Writing Γk = −2ImΣ(k,Ek) and using the fact that the
self-energy varies smoothly with k and E, one finds a spectral density

A(k,E) = −2Im
〈
GR(k,E)

〉
=

Γk
(E − Ek)2 + Γ2

k/4
. (102)

This spectral function is the probability density that an excitation k has energy
E. Its wave-number integral is the average density of states per unit volume,

N(E) =
1

2π

∫
ddk

(2π)d
A(k,E). (103)

For the free Hamiltonian, A0(k,E) = 2πδ(E − ε0
k). The disorder introduces a

finite spectral width Γk, which translates into a finite lifetime ~Γ−1
k . Equiva-

lently, this finite lifetime translates into a finite scattering mean-free path ls for
the spatial matrix elements of the average propagator,

〈G(r − r′, E)〉 =

∫
ddk

(2π)d
eik·(r

′−r)〈G(k,E)〉 = G0(r − r′, E)e−|r
′−r|/2ls , (104)

showing an exponential decay with ls = kΓk/(2E) evaluated at k =
√

2mE/~.
4. The simplest possible example is the calculation of the lifetime from the

lowest-order, so-called Born approximation

Σ(k,E) =
k′k k

k − k′

(105)

for some potential with correlation function P (q). To lowest order in V0, we can
use Ek = ε0

k and thus find

Γk
2ε0
k

=
1

kls
= π

∫
ddk′

(2π)dε0
k

P (k − k′)δ(ε0
k − ε0

k′) =
πP (0)N0(ε0

k)

ε0
k

(106)

in terms of the free density of states N0(ε) and the low-k limit P (0) of potential
correlation, eq. (85), that is appropriate for the δ-correlated limit. This is
precisely the result that one gets from a straightforward application of Fermi’s
Golden Rule for the average probability of scattering out of the mode k by the
external potential Vq. The interest of the full-fledged diagrammatic expansion
is of course that one is in principle able to calculate corrections to the lowest-
order estimate, and to tackle more complicated potentials. There exist literally
hundreds of other applications in the most diverse physical systems. Let us
mention two examples from our own experience.

For two-dimensional Gaussian correlated potentials such as the one intro-
duced in section 5.1.3, the scattering rate evaluates to

1

kls
=

Γk
2ε0
k

=
2πV 2

0

k2σ2E2
σ

e−k
2σ2

I0(k2σ2) (Gauss, d = 2) (107)

where Eσ = ~2/mσ2 is a characteristic correlation energy and I0 a modified
Bessel function.
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For matter waves in a one-dimensional speckle potential, we can use (105)
and (106) with the speckle potential correlation function (92). In d = 1, the only
contributions can come from forward scattering k′ = k and backward scattering
k′ = −k, such that

1

kls
=

Γk
2ε0
k

=
V 2

0 k

ε0
k

2 [P (0) + P (2k)] (speckle, d = 1) (108)

in terms of the k-space pair correlator P (2k) = πζ(1− |kζ|) Θ(1− |kζ|).
The estimates (107) and (108) can only be trusted if Γk/ε

0
k � 1 or equiv-

alently kls � 1, otherwise the assumption of a small correction to the free
dispersion is no longer valid. Since the scattering rates diverge at low k, we find
that the perturbative approach breaks down at low energy. A closer analysis
shows that a sufficient criterion for weak disorder is Ek � V 2

0 /Eσ [34].
Sometimes, also the real part of the self-energy is of importance. For ex-

ample, one can calculate the speed of sound in interacting Bose-Einstein con-
densates, and especially the shift due to correlated disorder by the same Green
function formalism [56]. Incidentally, for sound waves the scattering mean-free
path grows as k → 0, and the perturbative approach stays valid even at very
low energy.

5.2 Intensity transport

We would like to calculate the ensemble-averaged density n(r, t) = 〈〈r|ρ(t)|r〉〉
(or, its many-body form

〈〈
Ψ†(r)Ψ(r)

〉〉
) in the limit of long time. In the

Schrödinger picture, the state evolves as ρ(t) = U†(t)ρ0U(t). After transforming
the time evolution operators to Green functions as in (75), we need a theory for
the ensemble-averaged product

〈
GA(E)GR(E′)

〉
. This is known as the average

intensity propagator. In most experimental situations—be it with electromag-
netic or matter waves—one measures intensities (see for example the average
transmission through a 1d disordered system of length L studied in section 2);
the average intensity propagator is thus the fundamental quantity of interest.
Before going into details, we propose to have a look at what we should expect
to be the result.

5.2.1 Density response

The generic behavior that one may expect for transport in a disordered envi-
ronment is diffusion. Indeed, diffusion follows from two very basic and rather
innocuous hypotheses. Firstly, one generally has a local conservation law, for
instance for particle number, taking the form of a continuity equation:

∂tn+∇ · j = s (109)

where j(r, t) is the current density associated with n(r, t), and s(r, t) is some
source function. Secondly, one assumes a linear response in the form of Fourier’s
law

j = −D∇n, (110)

saying that a density gradient induces a current that tries to reestablish global
equilibrium. The diffusion constant D appears here as a linear response coef-
ficient. Inserting (110) into (109), we immediately find as a consequence the
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diffusion equation
[∂t −D∇2]n(r, t) = s(r, t). (111)

This equation can be solved by Fourier transformation5. The solution for a unit
source s(r, t) = δ(r)δ(t) is the Green function for this problem, viz., the density
relaxation kernel

Φ0(q, ω) =
1

−iω +Dq2
. (112)

Its temporal version

Φ0(q, t) =

∫
dω

2π
e−iωtΦ0(q, ω) = θ(t) exp{−Dq2t} (113)

shows that the relaxation exp{−t/τq} with characteristic time τq = 1/Dq2 be-
comes very slow in the large-distance limit q → 0 because of the local conserva-
tion law. In real space and time, the relaxation kernel reads

Φ0(r, t) =

∫
ddq

(2π)d
eiq·rΦ0(q, ω) = θ(t)[4πDt]−d/2 exp{−r2/4Dt}. (114)

This relaxation kernel describes diffusive spreading with
〈
r2
〉

= 2dDt.
This is the “hydrodynamic” description of dynamics on large distances and

for long times, accessed by small momentum q and frequency ω. A microscopic
theory is then only required to calculate the linear response coefficient D.

5.2.2 Quantum intensity transport

In complete analogy to the Dyson equation (96) for the average single-particle
propagator, one may write a structurally similar equation for the intensity prop-
agator Φ =

〈
GRGA

〉
, known as the Bethe-Salpeter equation:

Φ =
〈
GR
〉〈
GA
〉

+
〈
GR
〉〈
GA
〉
UΦ. (115)

Here, one splits off the known evolution with uncorrelated, average amplitudes

〈
GR(k,E)

〉〈
GA(k′, E′)

〉
=

k

k′

. (116)

The upper part of intensity diagrams describes the retarded propagator, called
“particle channel” in condensed-matter jargon, whereas the lower part contains
the advanced propagator or “hole channel”. All scattering events that couple
these amplitudes are contained in the intensity scattering operator U . By con-
struction, this “particle-hole irreducible” vertex contains exactly all diagrams
that cannot be factorized by removing a propagator pair (116). Its detailed
form again depends on the model of disorder. In all cases, Ukk′(E) is essentially

5which was invented right for this purpose by Joseph Fourier, namesake of the French
university in Grenoble hosting the Les Houches school.
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the differential cross-section for scattering from k to k′ and generally has the
following structure:

U(k, k′;E) =

k′

k

k

k′

= + + + + . . . (117)

Linear-response theory shows that this scattering vertex permits to calculate the
transport mean-free path l, in close analogy to the calculation of the scattering
mean-free path ls from the self-energy. Their ratio is expressed as

ls
l

= 1− 〈cos θ〉U (118)

where θ is the scattering angle between k and k′, and the brackets 〈.〉U indicate
an average over the scattering cross-section U . The physical interpretation of
the transport mean free path l is the following: while the scattering mean free
path ls measures the distance after which the memory of the initial phase of
the wave is lost, l is the distance over which the direction of propagation is
randomized.

5.2.3 Diffusion

The scattering processes encoded in U are perhaps more easily visualized in real
space. We will draw a full line for every amplitude ψ propagated by GR (upper
lines in (117)) and a dashed line for every ψ∗ propagated by GA (lower lines
in (117)). Impurities are represented by black dots as before. Then, the first
contribution to U describes the single-scattering process

UB : r1

r

r′

(119)

in which both ψ and ψ∗ are being scattered by the same impurity at position r1.
This process is insensitive to phase variations and could just as well take place
for classical particles. So this Boltzmann contribution UB describes classical
diffusion with diffusion constant

DB =
vlB
d

(120)

The Boltzmann transport mean-free path is calculated by inserting UBkk′ =
V 2

0 P (k − k′) into (118):

ls(k)

lB(k)
= 1−

∫
dΩd cos θP (2k| sin(θ/2)|)∫

dΩdP (2k| sin(θ/2)|) (121)

Depending on the microscopic scattering process, lB can be longer than ls, if
forward scattering is dominant, 〈cos θ〉UB

> 0. This is the case for matter waves
in spatially correlated potentials. For isotropic scattering with 〈cos θ〉UB

= 0,
these two length scales coincide, ls = lB.
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By combining eq. (121) with eq. (106) giving the scattering mean free path,
one can easily compute, in the Born approximation, the transport mean free
path and consequently the classical Boltzmann diffusion constant, using only
microscopic ingredients: the dispersion relation of the free wave and the corre-
lation function of the scattering potential.

5.2.4 Localization length in 1d systems

As we have already seen repeatedly in previous sections, in 1d the transport
mean free path is (up a factor 2) equal to the localization length, ` = ξloc/2, an
identity that can also be verified microscopically [57], at least to lowest order
V 2

0 in perturbation theory.6 So now we are in a position to give a microscopic
prediction for the 1d localization length for arbitrarily correlated potentials,
namely taking twice the backscattering contribution from (108), selected by the
(1− cos θ)-factor in (121):

1

kξloc
=
V 2

0 k

4ε0
k

2P (2k). (122)

Figure 17, taken from [4], shows this prediction for Lloc = 2ξloc as a dashed line
together with the results of a fit to the intensity measured in the real experiment
(see Fig. 8). Here P (2k) = πζ(1 − kmaxζ)Θ(1 − kmaxζ) with kmax the largest
k-value present in the expanding wave packet, resulting in:

ξloc =
~4k2

max

πm2V 2
0 ζ(1− kmaxζ)

. (123)

There is no adjustable parameter, and the agreement is rather satisfactory. Sig-
nificant deviations are visible both for small disorder (there the localization
length becomes too large and experimental limitations start to show) and for
large disorder, where the lowest-order theoretical estimate, or Born approxi-
mation (123) becomes insufficient. Moreover, for strong disorder, atom-atom
interaction for the strongly localized cloud may no longer be negligible and
induce some delocalization.

An interesting scenario occurs in speckle potentials when the fastest atoms
have a wave vector kmax larger than the most rapid spatial fluctuations, with
wave vector 1/ζ. Then, P (2kmax) = 0, and (123) predicts prima facie ξloc =∞
or absence of localization, which would signal the existence of a mobility edge in
this 1d random potential, contradicting rigorous mathematical theorems stating
that all states are exponentially localized [58]. In fact, exponential localization
still prevails, but requires more than a single scattering event by the smooth
random potential. Going to higher orders in perturbation theory, beyond the
Born approximation, one can show in excellent quantitative agreement with
numerics, that the localization length is always finite [21, 20]. However, for weak
disorder, the localization length can become much larger than the system size,
such that numerical or experimental results show an apparent mobility edge.
For other types of long-range correlations, one does find mobility edges [59].
There seems to be no obvious way of deciding, for a certain class of potentials,
whether true exponential localization exists or not, and correlated potentials are
still actively investigated in different contexts, see [60] and references therein.

6Whether this holds to all orders in perturbation theory is to our knowledge an open, and
also interesting question, especially in optical speckle potentials [20].
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exponent of 1.956 0.10 (62 s.e.m.), in agreement with the theor-
etical prediction that density decreases like 1/z2 in the wings. The
semi-log plot (inset) confirms that an exponential would not work as
well. For comparison, we present in Fig. 4b a log–log plot and a semi-
log plot (inset) for the case with kmaxsR5 0.65 and VR/min5 0.15,
where we conclude in favour of exponential rather than algebraic
tails. These data support the existence of a crossover from an expo-
nential to an algebraic regime in our speckle potential.

Direct imaging of atomic quantum gases in controlled, optical
disordered potentials is a promising technique to investigate a variety
of open questions on disordered quantum systems. First, as in other
problems of condensed matter simulated using ultracold atoms,
direct imaging of atomicmatter waves offers unprecedented possibil-
ities to measure important properties, such as localization lengths.
Second, our experiment can be extended to quantum gases with
controlled interactions where localization of quasi-particles26,27,
Bose glass14,15,28 and Lifshits glass29 are expected, as well as to Fermi
gases and to Bose–Fermi mixtures where rich phase diagrams have
been predicted30. The reasonable quantitative agreement between our
measurements and the theory of one-dimensional Anderson local-
ization in a speckle potential demonstrates the high degree of control
in our set-up. We thus anticipate that it can be used as a quantum
simulator for investigating Anderson localization in higher dimen-
sions31,32, first to look for the mobility edge of the Anderson trans-
ition, and then to measure important features at the Anderson
transition that are still under theoretical investigation, such as critical
exponents. It will also become possible to investigate the effect of
controlled interactions on Anderson localization.

METHODS SUMMARY
Momentum distribution of the expanding BEC. To compare measured local-
ization lengths with those calculated from equation (1), we need to know kmax,
the maximum amplitude of the k-vector distribution of the atoms, at the begin-
ning of the expansion in the disordered potential.Wemeasure kmax by releasing a
BEC with the same number of atoms in the waveguide without disorder, and
observing the density profiles at various times t. Density profiles are readily
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Figure 3 | Localization length versus amplitude of the disordered potential.
Lloc is obtained by an exponential fit to the wings of the stationary localized
density profiles, as shown in Fig. 2. Error bars, 95% confidence intervals for
the fitted values (62 s.e.m.); 1.73 104 atoms ; min5 219Hz. The dash–dot
line is plotted using equation (1), where kmax is determined from the
observed free expansion of the condensate (see Methods). The shaded area
represents uncertainty associated with the evaluations of kmax and sR. We
note that the limited extension of the disordered potential (4mm) allows us
to measure values of Lloc up to about 2mm.
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Figure 4 | Algebraic and exponential regimes in a one-dimensional speckle
potential. Log–log and semi-log plots of the stationary atomic density
profiles, showing the difference between the algebraic (kmaxsR. 1) and
exponential (kmaxsR, 1) regimes. a, Density profile for VR/min5 0.15 and
kmaxsR5 1.166 0.14 (62 s.e.m.). The momentum distribution of the
released BEC has components beyond the effective mobility edge 1/sR. The
fit to the wings with a power-law decay 1/ |z | b yields b5 1.926 0.06
(62 s.e.m.) for the left-hand wing and b5 2.016 0.03 (62 s.e.m.) for the
right-hand wing. The inset shows the same data in a semi-log plot, and
confirms the non-exponential decay. b, For comparison, a similar set of plots
(log–log and semi-log) in the exponential regime for the same VR/min5 0.15
and kmaxsR5 0.656 0.09 (62 s.e.m.).
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Figure 2 | Stationarity of the localized profile. a, Three successive density
profiles, from which the localization length Lloc is extracted by fitting an
exponential, exp(22 | z | /Lloc) (dotted black lines), to the atomic density in
the wings. b, Localization length Lloc versus expansion time t. Error bars,
95% confidence intervals for the fitted values (62 s.e.m.).
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Figure 17: Comparison between the experimentally measured localization length for
a quasi-1d atomic wave-packet launched in the disordered optical potential created by
a speckle pattern, and the theoretical prediction, eq. (123), when the strength of the
disordered potential is varied. There is no adjustable parameter. Reprinted from [4]
(courtesy of Ph. Bouyer).

Despite the nice agreement shown in Fig. 17, some caution is indicated.
The experimental observation involves averaging over k, and also over several
different realizations of the disorder (single-shot results look similar, just more
noisy). This means that the experimental data resembles the average transmis-
sion 〈T (z)〉 as a function of sample thickness z.7 In section 2.2.3, we showed
that it is the typical transmission Ttyp(z) = exp(〈lnT (z)〉) which decays expo-
nentially, not the average transmission. At very large z, this can make a huge
difference, see section 2.5. Fortunately, for z of the order of the localization
length (t or order unity in the language of 2.5), the fluctuations have not yet
built up, and the difference between the typical and the average value is still
small, ln 〈T (z)〉 ≈ −z/ξloc, making the pure exponential decay an acceptable
approximation. Further in the wings, one expects deviations of the average
density from a pure exponential decay, see eq. (38). This takes place however
in the region where fluctuations are huge, so that a typical experiment may not
measure the average value of the density, but rather its typical value.

5.2.5 Weak-localization correction

The first corrections to the classical, incoherent scattering process (119) shown
in (117) involve one more scatterer and several possibilities of intermediate prop-
agation. The most well-known type of correction stems from the diagram with

7The situation is actually more complicated, because this expansion experiment strictly
speaking does not measure the transmission across a sample. Instead, one starts with an
atomic density inside the medium and see how it propagates. The boundary conditions are
thus different from those of a transmission experiment with its connection to outside leads.
Still, huge fluctuations must exist in the localized regime, implying that the average trans-
mission deviates from a pure exponential, as discussed in Section 2.5.
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two crossed lines. In real space, the scattering process is

r1

r2

r

r′

(124)

This is an interference correction with a phase shift ∆ϕ between ψ and ψ∗ that
depends on the impurity positions r1 and r2. Contributions of this type are
ensemble-averaged to zero—or rather, almost averaged to zero. Indeed, if the
starting and final point of propagation come close, r ≈ r′, the phase shift picked
up by the two counter-propagating amplitudes becomes smaller:

r1

r2

r
r′

(125)

At exact backscattering r = r′ and in the absence of any dephasing mechanisms,
the phase difference is exactly zero. Vanishing phase difference means construc-
tive interference and therefore enhanced backscattering probability to stay at
the original position. This holds true no matter how many scatterers are visited
on the path. One is led to consider all maximally crossed diagrams:

UC = + + . . . (126)

These diagrams were first considered in the electronic context [61] and be-
came known as the Cooperon contribution. This contribution is peaked around
backscattering k = −k′. Therefore, one may resort to a diffusion approximation
and sum up all contributions with the help of the diffusion kernel (112):

1

l
=

1

lB

[
1 +

1

πN0

∫
ddq

(2π)d
1

−iω +DBq2

]
ω→0

(127)

Writing this in terms of the diffusion constant, one arrives at the weak-localization
correction

1

D
=

1

DB

[
1 +

1

πN0DB

∫
ddq

(2π)d
1

q2 − i0

]
(128)

The quantum correction of the Cooperon makes D < DB, and we have thus
found the microscopic reason for the weak-localization correction that was first
mentioned in the scaling section 3.5. Before looking in more details at this
correction in section 7, we should like to understand it better by selectively
probing the Cooperon contribution. In Optics, this is indeed possible and is
developed in the next section.

6 Coherent backscattering (CBS)

One can probe the specific geometry of scattering paths like (124) by using a
source of plane waves together with a collection of randomly positioned scatter-
ers in a half-space geometry (fig. 18). Hereafter, we suppose normal incidence
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Figure 18: Half-space geometry of a backscattering experiment with cylindrical coor-
dinates r = (R, z). 2′ is the image point of the exit scatterer 2 used to construct the
half-space propagator for the incoherent intensity. As an example, the contribution of
scattering from four scatterers is depicted.

and detection close to the backscattering direction; generalizing to arbitrary
incident and detection angles changes nothing to the central argument.

6.1 Theory

The picture in Fig. 18 shows scattering by four impurities, contributing to the
incoherently transported intensity. The corresponding intensity diagram is

. (129)

The sum of all such diagrams with a distinct ladder topology yields the intensity
propagator or diffuson, whose long-distance and long-time form is precisely the
diffusion kernel (112), evaluated with the Boltzmann diffusion constant.

ΦB =
1

−iω +DBq2
. (130)

The total back-scattered diffuse intensity per unit surface is given by summing
contributions from all possible starting and end points:

IL ∝
∫

dz1 e
−z1/ls

∫
dz2 e

−z1/ls
∫

d2RΦB(r1, r2). (131)

The exponential attenuation factors describe the propagation of intensities from
the surface to the first scatterer and back out again with average propagator〈
GR(zi)

〉
, (104), featuring the scattering mean free path ls. Moreover, trans-

lation invariance along the surface direction has been used, leaving only the
surface integral over the lateral distance R = R1 −R2.

The propagation inside an infinite disordered medium would occur with
the bulk kernel (130) and thus have a time-integrated diffusion probability of
ΦB(r) =

∫
dtΦB(r, t) = [4πDBr]

−1. This expression leads to a diverging inte-
gral over R in (131). But the starting and end points r1 and r2 lie rather close
to the surface, namely typically one scattering mean-free path ls away from it.
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So for calculating the back-scattered intensity (131), we have to worry about
appropriate boundary conditions. The complete integral equation for intensity
propagation in a half-space geometry of a scalar wave and isotropic scatterers,
known by the name Milne equation, can be solved exactly [62, 63], albeit with
considerable mathematical effort. For a simple solution involving the diffusive
bulk propagator valid far from the boundary, one can employ the method of
images that is often used in electrostatics. Since photons reaching the surface
would escape prematurely from the medium, one can exclude these events by
subtracting the contribution of propagation to an image point r2′ = (R2,−z2)
mirrored to the outside of the sample:

ΦB(r1, r2) =
1

4πDB

[
1

r12
− 1

r12′

]
. (132)

This half-space propagator behaves like R−3 at large R and thus permits to carry
out the integration. The final result is some number IL and gives the incoherent
background on top of which we now study the interference contribution.

Each multiple-scattering diagram like (129) has an interference-correction
counterpart such as

(133)

in which the conjugate amplitude travels along the same scatterers, but in op-
posite direction. The contribution of such maximally crossed diagrams to the
back-scattered intensity can be accounted for along the same lines. First of all,
incident and scattered amplitudes now pick up a phase between the surface and
the scattering end points. Namely, the amplitude ψ picks up exp{ik · r1} at the
entrance and exp{ik′ ·r2} at the exit of the medium. The path-reversed complex
conjugate amplitude picks up exp{−i[k ·r2 +k′ ·r1]}. So after all, there is a total
phase difference of ∆ϕ = (k+ k′) · (r1− r2). Exactly toward the backscattering
direction, k′ = −k, this phase difference vanishes. Close to backscattering, for
a small angle θ � 1, one has |k + k′| ≈ k⊥ = k sin θ ≈ kθ, and the phases differ
by ∆ϕ = kRθ.

Thus, each path acts like Young double-slit interferometer with the two
end-point scatterers playing the role of the two slits. The larger the trans-
verse distance R between the scatterers, the finer the interference fringes. The
only point where all fringes are bright is the symmetry point θ = 0 toward
backscattering. Sufficiently far away from this direction, the sum of random
fringe patterns averages out to zero. The sum of all interference term is again
the integral over all end points with the appropriate weight furnished by the in-
tensity propagator (132) (which must be modified if some additional dephasing
processes are at work, see section 6.3 below). This simple calculation predicts
a relative interference enhancement over the background

IC(θ)

IL
≈ 1

(1 + kl|θ|)2
(134)

The interference-induced enhancement, shown in figure 19 as a dashed blue line,
survives in an angular range ∆θ = 1/kl = λ/(2πl) around backscattering. Very
characteristically, this peak features a triangular cusp at backscattering (plotted
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Figure 19: Coherent backscattering (CBS) (a) Schematic picture of a four-scatterer
path; the constructive interference of path-reversed amplitudes in the backscattering
direction θ = 0 leads to an observable intensity enhancement. Away from backscat-
tering, the phase differences average out and leave only the background intensity. (b)
CBS profile as function of reduced scattering angle q = klθ, normalized to the value at
θ = 0. Solid black: exact solution (136). Dashed blue: Diffusive solution (134). Dotted
orange: Linear solution (135) with characteristic slope discontinuity at backscattering.

in dotted orange),
IC(θ)

IL
= 1− 2|q|+O(q2) (135)

where q = klθ is the reduced momentum transfer.
The exact solution for scalar waves and isotropic point scatterers can be

calculated solving the Milne equation of intensity transport. The CBS profile
can then be expressed as the integral [63]

IC(θ)

IL
=

1

C
exp

{
− 2

π

∫ π/2

0

dβ ln

[
1− arctan

√
q2 + tan2 β√

q2 + tan2 β

]}
(136)

where q = klθ and a constant C = exp
{
− 2
π

∫ π/2
0

dβ ln [1− β cotβ]
}
≈ 8.455

such that at the origin IC(0) = IL. This profile is plotted as a black curve in
Fig. 19. It becomes apparent that the diffusive solution (134) gives a very good
description for small scattering angles. Notably, its slope at θ = 0 is precisely
equal to the exact value that can be extracted from (136). This was to be ex-
pected since diffusion should be valid for long-distance bulk propagation, and
long scattering paths have widely separated end points that contribute to the
small transverse momenta making up the top of the CBS peak. Indeed, the dif-
fusion prediction (134) is precisely recovered by replacing the exact propagation
kernel under the logarithm by its diffusion approximation:

A(Q) = arctan(Q)/Q ≈ 1− 1

3
Q2 (137)

valid at small Q =
√
q2 + tan2 β.

The agreement between the diffusive profile (134) and the exact result (136)
deteriorates at larger angle q = klθ. This discrepancy is due to low scattering
orders that are not accurately captured by the diffusion approximation and the
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imaging method used to mimic the exact boundary conditions. Indeed, only the
very tip of the CBS peak stems from long paths reaching far into the bulk. The
larger part of the total signal is due to contributions from rather short paths,
for which scattering inside the surface skin layer is crucial.

One can calculate the contribution of scattering orders n = 1, 2, . . . to the
total incoherently back-scattered intensity, measured in units of the incident
flux by the so-called bistatic coefficient γ(cos θ′, cos θ) [64] that depends on the
angles θ′ and θ of incidence and observation. For exact backscattering and
normal incidence (θ = θ′ = 0), one has γ =

∑
n≥1 γn. The largest contribution

comes from single scattering with γ1 = 1/2 followed by double-scattering with
γ2 = ln(2)/2 ≈ 0.35 and so on, with an asymptotic decrease as γn ∼ n−3/2 [63].

When the CBS peak was first observed in the beginning of the 1980’s [65, 66,
67], the diffusive theory used an image point placed at z2′ = −(2z0 + z2) such
that the diffuse propagator vanishes at a distance z0 = 2/3 outside the sample.
This translates to the boundary condition that the total incident diffusive flux
on the surface vanishes [62, 68] and leads to a diffusive CBS peak shape of

IC(q)

IL
=

1

(1 + |q|)2

1

1 + 2z0

[
1 +

1− exp{−2z0|q|}
|q|

]
. (138)

This diffusive solution predicts a different slope at the origin, viz., −2[1+z2
0/(1+

2z0)], which is off by more than 20% from the exact value, although one would
expect the diffusion solution to get this value right [63]. This is all the more
disturbing as fits to the diffuse CBS peak shape are generally used to mea-
sure the transport mean-free path. Also at larger angles this solution cannot
convince because the diffusion profile decays as q−2, whereas the exact solu-
tion decreases like |q|−1. This asymptotic behavior is known to come from the
double-scattering contribution.

Bart van Tiggelen has noticed [69] that the diffusion approximation becomes
virtually exact if single- and double scattering are included separately since

1

1−A(q)
= 1 +A(a) +

A(q)2

1−A(q)
≈ 1 +A(q) +

3α

q2
(139)

both for small and large q, with a numerical coefficient α = 1 for q → 0 and
α = π2/12 ≈ 0.822 for q →∞. Therefore, the best approximation to the exact
solution is obtained by first taking the exact double-scattering profile [63, 70]

γ2(q) =
1

π

∫ π/2

0

dβA

(√
q2 + tan2 β

)
=

2 cosh−1 (1/|q|)− cosh−1
(
1/q2

)
2
√

1− q2

(140)
where cosh−1(x) is the inverse hyperbolic cosine function, then adding the dif-
fusive solution

γdiff(q) =
3α

2(1 + |q|)2

[
1 +

1− exp{−2z0|q|}
|q|

]
(141)

and finally fitting the extrapolation length z0 and diffusion-constant multiplica-
tor α such that height and slope are equal to the exact values at the origin. Doing
this, we find α∗ ≈ 0.86 within the expected interval [0.822, 1] and z∗0 ≈ 0.81.
Figure 20 shows the exact CBS profile (with the single-scattering contribution
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Figure 20: CBS intensity enhancement in units of the background intensity as function
of reduced scattering angle q = klθ. Solid black: exact solution (136) minus the single-
scattering value γ1 = 1/2. Dashed blue: double scattering contribution (140). Dashed
red: sum of double scattering and best diffusive solution, (141) with α∗ ≈ 0.86 and
z∗0 ≈ 0.81. Dotted orange: Traditional diffusive CBS peak, eq. (141), with α = 1
and z0 = 2/3 shown for comparison. Even for this time-reversal invariant case, the
backscattering enhancement is slightly smaller than 2 because of the single-scattering
contribution to the background that is absent in the CBS signal.

subtracted as required) together with the double scattering contribution plus
the full approximated diffusive CBS profile that turns out to be in excellent
agreement, both for small and large angles.

The full width at half height of the CBS profile is ∆q ≈ 0.73kl ≈ 4.59l/λ,
and observing the CBS peak can be used to measure the transport-mean free
path quite accurately. The explicit occurrence of the wavelength λ emphasizes
that CBS is a genuine interference effect. In many circumstances, the mean-
free path is much longer than the wavelength, such that kl ∼ 102...103, and
∆θ is at most a couple of mrad. This makes CBS difficult to observe with the
naked eye, together with the constraint that one has to look exactly toward the
backscattering direction, but it can be easily imaged using standard optics, as
schematically shown in Fig. 21.

6.2 Live experiment

Because the CBS cone is typically very narrow and its maximum height at best
equal to the average background, a source with large angular dispersion will
broaden the signal too much and reduce enhanced backscattering. Thus, it is
highly desirable to use a quasi-parallel beam obtained from a laser source, with
angular divergence smaller than a fraction of mrad. This is turn requires a large
spot, with a diameter larger than the mean free path, which is easily obtained
by expanding the output beam of a commercial diode laser with a telescope.
The scattering medium should scatter efficiently and must not absorb the light:
a bright white object is thus chosen. A piece of ordinary paper turns out to
give the best results. A sheet of paper is about 100µm thick and obviously
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Figure 21: Schematic view of a table-top CBS experiment. Light from a wide laser
beam with small angular dispersion is directed onto a disordered sample. The diffuse
retro-reflected intensity is sent by a beam-splitter (BS) in the focal plane of a lens
and recorded by a CCD camera, thus imaging the angular distribution. Polarization
elements (p1 and p2) select a suitable polarization channel; generally, the helicity-
preserving channel of opposite circular polarization is recommended.

scatters most of the incoming beam, meaning that the mean free path does not
exceed a few tens of µm. A piece of teflon could also be used, but the mean
free path is significantly larger, meaning a narrower CBS cone, much harder
to detect. White paint or milk make also good samples, with the advantage
that the concentration and thus the mean free path can be varied and that the
thermal motion of scatterers inside the solvent provides us with configuration
averaging for free; however, these samples must be put inside some transparent
container whose surface can produce specular reflection that is easily confounded
with the CBS signal.

A semitransparent plate (beamsplitter) can be used to send the back-reflected
light into a 1280×1024 pixel CCD camera with pixel size around 5µm, located
about 20 cm from the scattering medium, thus ensuring a 0.025 mrad angular
resolution. Fig. 22 (left) shows the image recorded from a fixed piece of paper.
This situation corresponds to a single realization of the disorder. The electric
field on each pixel is the coherent sum of the field amplitudes radiated by each
point of the sheet of paper. Because of its disordered nature, each contribution
picks a random amplitude and phase, resulting in a characteristic speckle pat-
tern on the CCD camera, the “optical fingerprint” of the paper. The angular
size of the speckle grain is of the order of 1/kL where L is the size of the il-
luminated spot on the sheet of paper. For our case, it is about 0.1 mrad, i.e.
slightly larger than the pixel size, in agreement with the experimental observa-
tion. The attentive reader may notice that the bright spots look slightly brighter
in a roughly circular area on the right side of the figure. In order to see the
CBS cone, one should perform configuration averaging. This is easily done by
mounting the piece of paper on a rotating device (in our case a battery-powered
computer fan). On the time-averaged intensity, shown in Fig. 22 (right), the
fluctuating speckle pattern has been washed out, leaving a uniform background,
on top of which appears a smooth bright spot of approximate width 10 mrad
due to coherent backscattering. The effect is perhaps not dramatic, as the en-
hancement factor cannot be larger than 2 (it is 1.6 in this live experiment), but
clearly present and visible with the naked eye.

58



Figure 22: Intensity around the back-scattered direction for a piece of paper exposed
to a parallel laser beam. For a fixed paper (left figure), one observes a characteristic
speckle pattern, due to random interference of phase-coherent light scattered by a
single configuration of disorder. By averaging over various parts of the paper, small-
scale random variations are averaged out, but an enhanced intensity is clearly visible
around exact backscattering. Original data from an experiment performed during
the Les Houches Summer School in Singapore on July, 15th, 2009. Special thanks to
David Wilkowski, Kyle Arnold, and Lu Yin from the Center for Quantum Technologies,
National University of Singapore, for generous support and invaluable help in setting
up the experiment.
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Figure 23: Experimentally measured coherent backscattering signal, together with a
fit to the simplest theoretical formula, (134) (full red line), and to (146) with phe-
nomenological decoherence included (dashed blue). From the angular width of the
CBS signal, one can extract the transport mean free path inside the sheet of paper,
here 25µm. Experimental imperfections limit the coherence of the phenomenon and
are responsible for the deviation from the peaked shape at the center of the cone.
When properly taken into account (dashed curve), the agreement is very good.
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A cut across the spot center is presented in Fig. 23 together with a fit to the
simplest theoretical formula, eq. (134). The fit is quite good in the wings and
allows us to extract the mean free path inside the piece of paper, in our case
25µm. The fact that the top of the CBS peak is rounded can be attributed to
various experimental imperfections such as the finite angular resolution, geomet-
rical aberrations, finite thickness and residual absorption of the piece of paper,
but could in principle also highlight the presence of a decoherence mechanism.

6.3 Dephasing/decoherence

The CBS phenomenon presented so far relies on perfect phase coherence of the
multiply scattered wave. What happens if some external agent—such as some
degree of freedom inside the paper coupled to the wave—affects the scattered
amplitude in an uncontrolled way? Qualitatively, it is clear that amplitudes
of long scattering paths are more fragile than those of shorter paths. As very
long paths are responsible for the characteristic triangular shape of the CBS
cone around the exact backscattering direction, it is important to understand
the effect of decoherence on the CBS signal. In return, the CBS enhancement
factor can serve as a sensitive measure for phase coherence.

There is no universal way of breaking phase coherence, and the effect on
CBS can be different depending on the specific mechanism at work. Never-
theless, a simple phenomenological approximation may often be used, and we
will see below that several physical processes are well described by this approx-
imation. This assumption is that phase coherence is lost at a constant rate,
characterized by a phase-coherence time τφ, also called dephasing time. Then,
interference terms associated with paths who are visited in a time t have to be
multiplied by a factor exp(−t/τφ). An example of such a situation is provided
by a Michelson interferometer operated with a classical light source, where the
interference disappears once the optical path length difference exceeds cτφ, with
τφ the longitudinal coherence time of the source. Note that these phenomena
are typically called “dephasing” in the context of classical waves, and “decoher-
ence” for quantum mechanical matter waves. The bottom line is simply that
interference is lost by coupling to some external degree of freedom.

The exponential attenuation of interference as exp(−t/τφ) applies especially
often to the Cooperon contribution. In Fourier space, the effect is simply tan-
tamount to the replacement

ω 7→ ω +
i

τφ
(142)

or, in the diffusive propagator (112):

1

−iω +DBq2
7→ 1

−iω + 1
τφ

+DBq2
=

1

−iω +DB

(
q2 + 1

DBτφ

) (143)

which can be also be obtained via the replacement

q2 7→ q2 +
1

L2
φ

. (144)

The phase coherence length,

Lφ =
√
DBτφ, (145)
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is the average distance over which the wave propagates diffusively before losing
its phase coherence.

This simple replacement can be used to calculate the shape of the CBS
cone in the presence of decoherence effects. Indeed, Sec 6.1 discusses several
approximate expressions for the shape, all expressed as a function of the trans-
verse momentum k⊥ ≈ k|θ|, which is nothing but the sum of the incoming
and outgoing momenta (in the limit of small angles θ � 1). The substitution
k2
⊥ 7→ k2

⊥ + 1/DBτφ in eq. (134) yields

IC(θ)

IL
≈ 1[

1 +
√

(klθ)2 + l2/L2
φ

]2 . (146)

This expression is now a smooth function of θ (no cusp at θ = 0 anymore).
In the limiting case l � Lφ, one recovers the previous expression, only slightly
perturbed near the tip. In the opposite limit Lφ � l, the CBS cone disappears
completely, which is quite natural as interference effects are washed out before
the wave travels a single mean free path. The relative height of the CBS peak,
compared to the background at kl|θ| � 1, is

IC(0)

IL
=

1

[1 + l/Lφ]
2 ≈ 1− 2

l

Lφ
= 1− 2

√
τl
τφ

(147)

where the last two expressions are valid in the limit of weak decoherence l� Lφ.

Here, τl =
√
DB/l2 is the mean free time separating two consecutive scattering

events. This expression emphasizes the sensitivity of the CBS cone to dephasing
effects. Indeed, if the dephasing time is say 10 times larger than the mean free
time, its effect on the CBS cone is still very noticeable, reducing its height by
almost 50%. For example, the experimentally observed CBS cone in the live
experiments is well fitted by eq. (146), with a decoherence time τφ = 12.5τl.

Several other types of decoherence have been studied in great detail in con-
nection with light and cold atoms. In the following, we present a few of them
qualitatively, referring to the literature for more details.

6.3.1 Polarization

For simplicity, we have up to now considered a scalar complex wave, describing
e.g. a spinless atomic matter wave. Many real atoms, all electrons and also
electromagnetic waves are more complicated because of their spin/polarization.
Especially light scattering does not preserve polarization, as is obvious from the
requirement of transversality. Thus the light back-scattered along the direct
and reverse paths generically emerges from the medium with different polariza-
tion. But orthogonal polarizations do not interfere, and thus one may expect a
reduced enhancement factor.

Technically, one has to dress the multiple-scattering Cooperon contribution
with the polarization structure. Two independent polarizations of the propa-
gating intensity must be taken into account (one in the retarded, one in the
advanced Green function), leading to a tensorial structure for diffuson and
Cooperon alike. The complete calculation of this effect is possible by decom-
posing the intensity kernel into irreducible tensor moments [72]. To make a
long story short, it is enough to say that each contribution has a kernel of the
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Figure 24: CBS of light by cold Strontium atoms [71]. The backscattering enhance-
ment is close to 2, which indicates full phase coherence. Signal observed in the helicity
preserving channel (incoming light circularly polarized, detection in the opposite cir-
cular polarization). Solid line: the result of a calculation taking into account the finite
geometry and inhomogeneous density of the atomic cloud.

type (143), with its own τφ of the order of τl. The physical interpretation is
clear: because scattering will on average lead to depolarization, all channels as-
sociated with specific polarization correlations must decay during propagation.
Only the one channel measuring the total intensity is protected by conservation
of energy, with 1/τφ = 0, and propagates diffusively.

If the system is additionally time-reversal invariant, the same conserved in-
tensity channel also exists for the Cooperon. The population of the various
contributions depends on the specific choices for the incoming and outgoing
polarizations used for recording the CBS signal. Using the same linear polar-
ization for excitation and analysis populates the conserved mode and ensures
an optimal interference contrast for long scattering paths, at least for classical
point-like objects (such as dye molecules) acting as Rayleigh scatterers (we will
discuss in Sec. 6.3.4 the more general case). The same is true if the incident
field has circular polarization and the opposite circular polarization is used for
detection (helicity-preserving channel), with the additional advantage that the
single scattering background of the diffuson is filtered out, allowing in principle
the observation of a a perfect CBS enhancement by a factor of 2 [73, 71].

6.3.2 Residual velocity of the scatterers

The previous derivation assumed quenched disorder, i.e. scatterers at fixed po-
sitions. Moving scatterers are a cause of decoherence: as light travels along
two reciprocal paths, it visits the same scatterers, but in opposite order, i.e. at
different times. If, during the time delay separating the scattering events on
the direct and reversed path, the atom has moved by at last one wavelength,
the phase coherence between the two paths will be lost. This phenomenon can
alternatively be interpreted in the frequency domain, where moving scatterers
induce a Doppler shift of the scattered photon which is different along the direct
and reversed path. Although this phenomenon does not lead to a strict expo-
nential decay of the phase coherence [74], it reduces the enhancement factor,
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Figure 25: (a) Light scattering by a degenerate atomic dipole transition Fg ↔ Fe can
either preserve spin (Rayleigh transition, full arrows) or change the spin (degenerate
Raman transition, dotted arrows). (b) Multiple light scattering by randomly placed
atoms with internal spin states involves depolarization/decoherence from both spin-
orbit (transversality) and spin-flip effects.

which has been notably observed with cold atoms [75].
In general, interference of waves is suppressed once the environment has

acquired knowledge of the path taken by the scattered object. This can be
most simply seen in experiments of the Young’s double-slit type [76], but applies
equally to the CBS by light from moving atoms, where moreover the storage of
which-path information in the atomic recoil has been studied [77].

6.3.3 Non-linear atom-light interaction

Because atoms have extremely narrow resonance lines, they have large polaris-
abilities and already quite low laser intensities can saturate an atomic transition,
in which case the atom scatters photons inelastically. It is easy to understand
that such a non-linear inelastic process will reduce the phase coherence of the
scattered light and the enhancement factor. This indeed has been observed [78].
A full quantitative understanding of multiple inelastic scattering is still not avail-
able. For a model system of two atoms driven by a powerful laser field, a rather
complete understanding of the CBS signal has been achieved (see [79, 80] and
references therein).

In the context of matter waves, one may study coherent backscattering of
interacting matter waves, obeying a non-linear equation such as the Gross-
Pitaevskii equation, evolving in a random optical potential. It has been shown
that already a moderate non-linearity induces a phase-shift between the direct
and reversed paths and thus a decrease of the height of the CBS peak, and may
in some cases even create a negative contribution in the backward direction [53].
These theoretical predictions still await experimental realization.

6.3.4 Internal atomic structure/spin-flip

The preceding description treats atoms as Rayleigh point scatterers that radiate
a purely dipolar electromagnetic field, with an induced dipole directly propor-
tional to the incoming electric field. This is an excellent approximation for
atoms with a non-degenerate electronic ground state, such as Strontium. The
situation is radically different if the atomic ground state is degenerate: indeed,
when scattering a photon, the atom may stay in the same atomic state (Rayleigh
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transition) or change to another state with the same energy (degenerate Raman
transition), see Fig. 25(a).

The basic rules of quantum mechanics imply that orthogonal final state
cannot interfere. In other words, two multiple scattered paths will interfere only
if they are associated with the same initial and final states of all atoms.8 Note
that there is no need for the initial and final states to be identical, so that Raman
transitions can very well contribute to interference terms, if and only if the same
Raman transitions occur along the interfering paths.9 A commonly encountered
situation is that the degeneracy of the atomic ground state is due to its non-
zero total angular momentum, see Fig. 25(a): Raman transitions then involve
different Zeeman sub-states. The detailed calculation of the scattering vertex
requires to incorporate also the angular momentum, i.e. the polarization, of the
light. Then, the whole structure of the diffuson and the Cooperon boils down
to various kernels of type (143), where the various depolarization/decoherence
rates are rotational invariants that depend only on the angular momenta Fg, Fe

[70, 83].
For a typical alkali atom like 85Rb with a Fg = 3 → Fe = 4 resonance line,

the longest decoherence time for the Cooperon is τφ = 19
21τl [72], meaning that

the CBS interference is quite efficiently killed already by very few scattering
events. An immediate consequence is that the CBS cone observed on a cold
Rb gas has a much reduced enhancement factor [85]. A less trivial feature is
that the best Rb CBS signal is not observed in the same channels than with Sr.
Detailed calculations can be performed and an excellent agreement between the
measured and the calculated CBS signals is observed [84], see Fig. 26.

The internal atomic degrees of freedom are here responsible for the loss of
coherence. Information flows from the light to the atoms; as long as we do
not precisely measure the internal state of each atom, this information is lost
and the interference contrast is reduced. This information-theoretic argument
can be made quantitative by investigating how much which-path information is
stored within the atomic internal degrees of freedom. A quantitative measure of
this wave-particle-duality, developed originally in the context of Mach-Zehnder-
type interferometers [86], can be investigated analytically in the simplest cases
and highlights the rôle of which-path information in the loss of CBS interference
visibility [87].

A simple way to restore phase coherence is to lift the atomic degeneracy by
applying an external magnetic field. Fields as small as a few Gauss are enough
to detune some of the atomic transitions far from resonance, thus reducing the
effect of Raman transitions. It has been experimentally observed and theoreti-
cally explained how this can increase the enhancement factor [88]. We here face
a seemingly paradoxical situation (in view of the negative magneto-resistance
discussed in Sec. 7), where adding an external magnetic field, which should break
the time-reversal symmetry, has the effect of increasing the interference between
time-reversed paths! Similarly, strong magnetic fields in electronic samples have
been used to align free magnetic impurities, reduced thus spin-flip effects and

8Not taking this into account may lead to incorrect results, see for example [81], corrected
in [82].

9Thus, one must take statements like “Raman scattered light is incoherent”, often made by
quantum opticians, with great care. It is true that Raman scattered light does not interfere
with the incoming reference beam—because the final states of the atom are different—but a
single Raman-scattered photon along two different paths does very well interfere with itself.
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Figure 26: CBS by a cloud of cold Rubidium atoms, in four polarization channels
(upper/lower left: parallel/perpendicular linear polarization; upper/lower right: cir-
cular polarization with non-preserving/preserving helicity). Solid red line: calculation
taking into account the geometry of the atomic cloud. [84]. The enhancement factor
is strongly reduced compared to ideal Rayleigh scatterers such as Strontium, Fig. 24.
This is due to the internal Zeeman structure of the Rubidium atom, Fig. 25a). Note
in particular that the helicity preserving channel—where the largest enhancement is
found for point scatterers such as Strontium—gives here the smallest enhancement.

restore Aharonov-Bohm interference [89, 90].

7 Weak localization (WL)

As discussed in the preceding section, the Cooperon is responsible for enhanced
backscattering, which implies an increased probability to return to the starting
point. In the bulk of a disordered system, diffusive transport is thus hindered.
This phenomenon, known as weak localization, is quantitatively expressed by a
reduction of the diffusion constant (or dimensionless conductance/conductivity)
with respect to the classical diffusion constant expected for phase-incoherent
transport.

The weak-localization effect of the Cooperon is expressed by eq. (128). For
the sake of concreteness, we will take in the following quantitative estimates
the example of atomic matter waves with a quadratic dispersion relation ε =
~2k2/2m. The free density of states (103) is

N0(ε) =
Sd

(2π)d
mkd−2

~2
(148)

where Sd = 2πd/2/Γ(d/2) is the area of the unit sphere in dimension d: S1 =
2, S2 = 2π, S3 = 4π. The Boltzmann diffusion constant DB = ~kl/dm is
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directly proportional to the transport mean free path l. Because the Cooperon
is isotropic, the d-dimensional integral in (128) can be reduced to a trivial (d−1)-
dimensional angular integral and a radial integral over momentum q, such that

1

D
=

1

DB

(
1 +

~
πmkd−2DB

∫ ∞
0

qd−1dq

q2 − i0

)
. (149)

The result of the q-integral depends crucially on the dimensionality of the sys-
tem. This is a consequence of the fact, well known from classical random walks,
that the return probability to the origin is the higher, the lower the spatial
dimension d. Therefore, weak—and consequently also strong—localization are
immediately seen to have the largest impact in low dimensional systems.

7.1 d = 1

In dimension d = 1, the integral (149) diverges for small q. However, for a
system of size L, the momentum q cannot take arbitrary small values, and a
lower cutoff of the order of 1/L must be used. A simple way of implementing
it—following the recipe of Sec. 6.3 for including decoherence effects—consists in
replacing q2 by q2 + 1/L2. One then gets:

1

D
=

1

DB

(
1 +

L

2l

)
. (150)

This expression is valid only if the weak localization contribution is a small
correction, i.e. for L� l. To lowest order, we recover D ≈ DB(1−L/2l), which
is the exact result (49) already derived for 1d systems in Sec. 3.3. The interest
of the present approach is that a full microscopic theory provides us with the
weak localization correction and thus puts the scaling theory of localization on
firm grounds.

7.2 d = 2

In dimension 2, the integral diverges both for small and large q. A suitable
cutoff at small q is again 1/L, the inverse of the system size. Diffusive transport
is a long time, large distance behavior. It is not expected to give an accurate
description on a scale shorter than the mean free path. Performing the integral
with a natural cutoff 1/l at large q thus leads to

D ≈ DB

[
1− 2

πkl
ln

(
L

l

)]
. (151)

In terms of the dimensionless conductance g = 2mD/~, this implies the following
scaling relation:

β(g) =
d ln g

d lnL
= − 2

πg
. (152)

Our microscopic calculation thus gives an explicit prediction that can be readily
incorporated into scaling theory, as anticipated in Sec. 3.6.

How can weak localization be observed experimentally? A priori, any mea-
sured diffusion constant incorporates already all interference corrections to the
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Figure 27: Experimentally measured resistance of a thin Mg film exposed to a per-
pendicular magnetic field. The magnetic field breaks the constructive interference of
waves counter-propagation along closed loops, reduces the weak localization effect,
and thus results in negative magneto-resistance. Similarly, larger temperatures reduce
the phase coherence of the electronic wavefunction, and also reduce weak localization
corrections. Adapted from [91] (courtesy of G. Bergmann).

classically expected value. Fortunately, the Cooperon contribution to weak lo-
calization is due to the constructive interference between a multiply scattered
path and its time-reversal. If one breaks time-reversal symmetry on purpose,
then the delicate interference is likely to disappear, and an enhancement of
diffusive transport should be observed.

For charged particles—such as electrons in solid state samples—the simplest
way is to add a magnetic field perpendicular to the sample. In the presence of a
vector potential ~A, a charged particle picks an additional phase

∫
e ~A ·d~l/~ along

a closed loop. This is nothing but e/~ times the enclosed magnetic flux. Along
each closed loop, this additional phase appears in the Cooperon contribution.
If this phase fluctuates largely from one loop to the other, the resulting interfer-
ential contribution will vanish. As the smallest area enclosed by a diffusive loop
is l2, the weak localization correction is expected to vanish above B ≈ ~/el2.
For a typical mean free path of a fraction of µm, this is in the Tesla range.
Figure 27 shows the measured resistance of a 2D Mg film vs. magnetic field at
various temperatures [91]. At the lowest temperature, propagation is almost
fully phase coherent and one observes a decreasing resistance, i.e. a increasing
conductance, when a magnetic field is applied. This negative magneto-resistance
was a mystery when first observed and only later explained as a manifestation
of weak localization. When temperature increases, the phase coherence of the
electrons diminishes, and the weak localization correction gets smaller. This
is, in a different context, analogous to decoherence phenomena discussed for
coherent backscattering in Sec. 6.3. Note that, from such experimental data, it
is possible to measure the transport mean free path (via the width of the weak
localization peak) as well as the temperature-dependence of the decoherence
time. In recent times, weak localization measurements have been used as very
sensitive detectors for minute concentrations of magnetic impurities, which in-
duce spin-flip decoherence and are responsible for finite decoherence times even
at zero temperature [92, 90, 93].
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7.3 d = 3

In dimension 3, the integral in eqn (149) requires only a cutoff at large q, which
we take again as 1/l and obtain

D ≈ DB

(
1− 3

π(kl)2

)
. (153)

This diffusive Cooperon contribution to weak localization is found to scale as
1/(kl)2. However, this is not the whole story, because other diagrams, not in-
cluded in the simple diffusive Cooperon, give contributions that are actually
more important for small disorder kl � 1. Just as for the CBS cone discussed
in Sec. 6.1, also here the double-scattering diagrams appearing in eqn (117)
contribute to leading order 1/kl. In d = 3, the static electronic conductivity
was found to be given by [36]

σ(ω = 0)

σ̊
= 1− 2π

3kl
− π2 − 4

(kl)2
ln(kl) +O((kl)−2). (154)

As long as kl � 1, the weak localization is only a small correction, again pro-
viding us with a macroscopic ground for the scaling theory of localization. It
also gives an approximate criterion for the onset of Anderson localization, which
should set in approximately when the right hand sides of eqns (153) or (154)
vanish, i.e. (kl)c = O(1). This is Ioffe-Regel criterion, eq. (57). However, the
precise calculation of the critical point is a delicate endeavor. What precisely
happens at the 1/l scale is not universal. The same is true for the Ioffe-Regel
criterion, but the latter nonetheless yields a first estimate on where to expect
the Anderson transition.

7.4 Self-consistent theory of localization

Weak localization describes how diffusive transport is affected by interference.
In essence, however, weak localization is a perturbative result: first, because the
Cooperon contribution is evaluated using a diffusive kernel valid in the absence
of interference; second, because this simple approach takes into account only
a specific type of diagrams. The first assumption is especially questionable in
1d, where diffusive transport actually never occurs, because localization appears
at the very same scale (the localization length) than diffusion (the mean free
path). Concerning the second point, the dominant rôle of the Cooperon in large
systems was recognized already by Gorkov et al. [94] and Abrahams et al. [19].
However, a weak-disorder perturbation theory in powers of 1/kl alone would
never be able to describe the Anderson transition (in 3d) for strong disorder,
nor the crossover from weak to strong localization in 1d and 2d systems.

The self-consistent theory of localization, developed by Vollhardt and Wölfle
in the 1980s [95, 96, 97], is an attempt to escape this seemingly hopeless situation
by applying a suitable self-consistency scheme, as often employed with success
to describe phase transitions in statistical physics. Rather than a theory with
rigorously controlled approximations, it must thought of as a guess, albeit highly
educated, about the most important contributions of diagrams to all orders.
The basic observation is that the diffusive contribution of large closed loops
in eq. (149) must itself be modified by weak localization: inside a large loop,
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the wave explores smaller loops, leading to a decreased diffusion constant for
propagation along the large loop. This argument can of course be repeated: one
should take into account loops within loops within loops..., all the way down to
the smallest loops, stopping at the scale of the transport mean free path.

The whole description must now be self-consistent, describing what happens
at every scale from the mean free path up to the size of the system—or toward
infinity in the bulk. The simplest idea would be to replace the static Boltzmann
diffusion constant DB in the integral of (149) by the renormalized diffusion con-
stant D itself, thus providing us with an implicit equation for D. It turns out
that this is not enough: indeed, a single number—the static diffusion constant
D—cannot describe the full dynamics both for short times, where it is diffusive,
and for long times where localization may eventually set in. So we require a
scale-dependent diffusion constant, and it turns out that it is simpler to con-
sider various time scales rather than various spatial scales. We thus consider
a diffusion constant D(ω) which depends on frequency ω. The self-consistent
expression for D(ω) just derives from (149) by re-introducing the ω dependence
and replacing DB by D(ω) in the integral:

D(ω) +
~

πmkd−2

∫
qd−1dq

q2 − (iω/D(ω))
= DB. (155)

In the short-time limit ω → ∞, the contribution of the integral vanishes and
one gets back to classical Boltzmann diffusive propagation, as expected. The
most interesting part takes place at long times, i.e. in the limit ω → 0, whose
consequences again depend crucially on the dimension.

7.4.1 d = 1

At finite ω, the integral in (155) does not need any regularization, it is simply
π
2

√
D(ω)/(−iω), and the implicit equation for D(ω) is easily solved [98]:

D(ω)

DB
=

√
1− 16iωτl − 1√
1− 16iωτl + 1

(156)

where τl = l2/DB is the mean free time between two scattering events. This
function is plotted in the left panel of Fig. 28 as function of −iω.10 In the
limit of small ω, it behaves linearly D/DB ≈ −4iωτl. This in turns implies
that the propagation kernel 1/(−iω +D(ω)q2) is just 1/(−iω)× 1/(1 + 4l2q2).
When going back from momentum to configuration space by inverse Fourier
transform, it implies that the intensity kernel is proportional to exp(−|z|/2l)
at long times. It successfully describes exponential localization with the local-
ization length ξloc = 2l, i.e. the exact result for the localization length! The
elementary ingredients used for obtaining this important result are: quantum
kinetic theory, microscopic calculation of the weak localization correction in the
perturbative regime and its self-consistent extension. That the exact result is
eventually obtained is a strong hint that the self-consistent approach catches an
important part of the physics of localization.

10Imaginary frequency is only used for convenience, as it makes the diffusion constant purely
real and thus easier to plot. The most important transport property is the small-|ω| behavior,
which is linear in the localized regime, both for real or imaginary ω.
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Figure 28: Diffusion constant vs. (imaginary) frequency, in units of Boltzmann
diffusion constant and mean free time, respectively, as predicted by the self-consistent
theory of localization, in 1d (left) and 2d (right, for kl=1.5). At large ω (short time),
one recovers the classical Boltzmann diffusive behavior. At small ω, the dependence is
linear, which implies exponential localization in configuration space, in agreement with
scaling theory, numerical and experimental observations (in 1d). In 2d, the localized
regime is reached at much smaller frequency because the localization length and time
are exponentially large.

But beware! This triumph is somewhat tarnished by the fact that it is the
typical intensity that decays with ξloc, whereas the average intensity calculated
here should asymptotically decay with 4ξloc, as shown in Sec. 2.5. The precise
source for this discrepancy escapes our present understanding. Clearly, the self-
consistent theory is built for the average intensity kernel

〈
GRGA

〉
and thus

cannot describe the huge fluctuations in the localized regime. One lacks a
diagrammatic expansion for the typical transmission, which would require to
calculate contributions of advanced and retarded Green functions to all orders.

Decoherence effects can be easily included in the self-consistent approach by
the replacement −iω 7→ −iω+ 1/τφ explained in Sec. 6.3. In Figure 28, this re-
placement simply translates the curve horizontally to the left. One immediately
finds that the diffusion constant no longer vanishes at ω = 0, but takes a finite
value, implying diffusive motion at long times. In the limit of weak decoherence
τl � τφ, the residual diffusion constant is D ≈ 4τlDB/τφ = ξ2

loc/τφ. It is much
smaller than the Boltzmann diffusion constant and allows for a simple physical
interpretation: a phase-breaking event, occurring on average every τφ, destroys
the delicate interference responsible for localization. This implies a restart of
diffusion during time τl after which localization sets in again, until the next
phase breaking event, etc.

7.4.2 d = 2

In 2d, the integral in (155) diverges in the large-q limit, requiring a regular-
ization. The natural short-distance cut-off is the mean free path l. Elementary
manipulations shows that D(ω) is implicitly determined by

D(ω)

DB
= 1− 1

πkl
ln

(
1− D(ω)

DB

1

2iωτl

)
. (157)
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Figure 29: Diffusion constant (normalized to the Boltzmann diffusion constant) com-
puted from the self-consistent theory of localization, for atomic matter waves with
wave vector k exposed to a 2d speckle potential with correlation length ζ and different
amplitudes V0. A stronger potential means a smaller value of kl. Dashed lines are the
prediction of the simple perturbative weak localization correction, eqn (151), solid lines
the result of the self consistent approach, eqn (157), including residual decoherence due
to spontaneous emission implemented via eqn (142). A rather sharp cross-over between
the Boltzmann diffusive behavior at high energy and the quasi-localized behavior at
low energy is observed around a critical value kc [99].

In contrast with the 1d case, D/DB is not a universal function, it depends on
the parameter kl. The right panel of Fig. 28 plots it for kl = 1.5. It displays the
classical diffusive behavior D ≈ DB at large ω (short times), and localization
at long times. Indeed, for ω → 0, one finds D(ω) ≈ −iωξ2

loc, i.e. exponential
localization with the localization length

ξloc = l
√

exp (πkl)− 1 ≈ l exp

(
πkl

2

)
. (158)

This provides us with a microscopic derivation of the result of scaling theory,
eq. (56). The self-consistent approach describes correctly the exponentially large
localization length in 2d.11 Note that, even for strong disorder with a rather
small value kl = 1.5, the linear regime in Fig. 28 is observed only at very small
ω, i.e. for very long times.

Decoherence can be taken into account exactly like in 1d. Instead of a true
metal-insulator transition, one observes a cross-over from classical diffusion at
large kl towards a residual diffusion (triggered by decoherence) at small kl.
Explicit calculations have been carried out in [99] for the case of atomic matter
waves in a speckle potential, where residual spontaneous emission is one source of
decoherence that can be experimentally tuned. Figure 29 shows typical results.
Because of the exponential dependence in 2d, the cross-over from quasi-localized
behavior at small k to diffusive behavior at large k is rather rapid. In any case,
a crucial requirement is to have very cold atoms, with de Broglie wavelength
shorter than the speckle correlation length.

Considering an expanding BEC wave packet released from a harmonic trap,
one can calculate the expected stationary (for negligible decoherence) density

11The same caveats than in 1d exist, concerning average versus typical quantities.
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Figure 30: Diffusion constant vs. (imaginary) frequency, in units of Boltzmann dif-
fusion constant and mean free time, respectively, computed from the self-consistent
theory of localization in 3d, eqn (159). Dotted red line: metallic regime kl = 1.2 with
finite diffusion constant at long times. Dashed blue line: insulating regime kl = 0.8
with a finite localization length. Solid black line: critical point kl = (kl)c =

√
3/π

of the metal-insulator Anderson transition, where the diffusion constant scales like
(−iω)1/3, implying an anomalous diffusion 〈r2(t)〉 ∝ t2/3 at long times.

distribution along the lines of (63). Just as in 1d, the asymptotic decay is gov-
erned by the wave vector kmax of the fastest atoms, and the density is predicted
to be

〈
|ψ(r)|2

〉
≈ Cr−5/2 exp{−r/ξloc(kmax)} [99].

7.4.3 d = 3

In 3d, the same short-distance regularization than in 2d is necessary, leading to
the following implicit equation, valid in the limit ωτl � 1:12

D(ω)

DB
+

3

π(kl)2

(
1− π

2

√
−3iωτl
D(ω)/DB

)
= 1. (159)

The behavior of the solution, shown in Fig. 30, depends on the Ioffe-Regel
parameter kl and defines three distinct regimes:

Diffusive regime: For kl > (kl)c =
√

3/π, D/DB tends to a constant value
in the limit ω → 0, which means that the system behaves always diffusively,
albeit with a diffusion constant smaller than the Boltzmann diffusion constant.
This is the regime of weak localization.

Localized regime: For kl < (kl)c, it is easy to see that D/DB → 0 in the
limit ω → 0. More precisely, one has exponential localization:

D(ω) ≈ −iωξ2
loc with ξloc ∼

1

(kl)c − kl
(160)

12This formula features only the static Cooperon contribution, which suffices for qualitative
predictions, but should be extended to include the full interference terms appearing in (154)
when quantitative precision is necessary.
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immediately below the Anderson transition, on the insulating side. This means,
see eq. (58), that the critical exponent deduced from the self-consistent approach
is ν = 1, quite far from the true value ν = 1.58 known from numerical simu-
lations [26]. The reason lies in the approximate character of the self-consistent
approach, which disregards the huge fluctuations in the vicinity of the critical
point. Field-theoretic approaches can in principle capture the effect of fluctua-
tion and have been quantitatively tested in d = 2+ε dimensions [15]. For d = 3,
however, to our knowledge no analytical theory is available that makes a better
quantitative prediction than the self-consistent theory.

Critical regime: At the critical point kl = (kl)c, it is easy to see that the solu-
tion of eq. (159) scales like D(ω) ∼ (−iω)1/3. Consequently, the critical behavior
is anomalous diffusion where the squared extension increases subdiffusively at
long times: 〈r2(t)〉 ∝ t2/3. This anomalous diffusion has been experimentally
observed with the quasi-periodically kicked rotor, see Sec. 8.

8 Kicked rotor

The physics of Anderson localization is, as amply discussed in the preceding sec-
tions, highly dependent on the dimension of the system. While the 1d situation
is fairly well understood—localization is the generic behavior, the localization
length is comparable to the mean free path, and the fluctuation properties in the
localized regime are essentially well understood—the physics of higher dimen-
sions is much richer still. Dimension 3 is especially interesting, as one expects
a so-called mobility edge, separating, in the continuum case, localized states at
low energy/strong disorder from extended states at high energy/weak disorder.

As explained in Sec. 4.3, it is very difficult to find a clean experimental
system to observe this metal-insulator Anderson transition unambiguously. Cold
atomic matter waves are very attractive because they can be directly observed,
and because most experimental imperfections as well as atom-atom interactions
can be precisely controlled, if not reduced to a minimum. The main difficulty
consists in reaching the Ioffe-Regel threshold kl = O(1), eq. (57), i.e. preparing
a sufficiently small k (low energy, large de Broglie wavelength) and short mean
free path l. Indeed, the latter cannot be shorter than the correlation length of
the disordered potential, i.e. of the order of 1µm for optical speckle.

This limitation on the mean free path can be overcome using a different
approach, where disorder is not provided by an external potential in configura-
tion space, but by classically chaotic dynamics in momentum space. This idea
has been realized experimentally with the atomic kicked rotor, and Anderson
localization in 1d has been observed as early as 1994 [100], 14 years prior to
the widely noticed Anderson localization in configuration space [4]! A key ad-
vantage of the kicked rotor is that is does not require ultra-cold atoms from a
Bose-Einstein condensate: a standard magneto-optical trap suffices to prepare
the initial state. The kicked rotor also has permitted the clean observation
of the metal-insulator Anderson transition in 3D, and the first experimental
measurement of the critical exponent, with non-interacting matter waves [101].
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8.1 The classical kicked rotor

We consider a one-dimensional rotor whose position can be described by the
angle x (defined modulo 2π) and the associated momentum p, and kick it pe-
riodically with a position-dependent amplitude. In properly scaled units, the
Hamiltonian function can be written as

H =
p2

2
− k cosx

+∞∑
n=−∞

δ(t− nT ) (161)

where T and k are period and strength of the kicks, respectively.
Because of the time-dependence, energy is not conserved, but thanks to

the time-periodicity, we can analyze the motion stroboscopically and build a
Poincaré map picturing the evolution once every period. This map relates the
phase space coordinates just before kick n + 1 to the coordinates just before
kick n: {

In+1 = In +K sinxn
xn+1 = xn + In+1

(162)

where K = kT and In = Tpn. This is nothing but the celebrated standard map
(also known as the Chirikov map) that has been widely studied [102, 103]: it is
almost fully chaotic and ergodic around K = 10 and above.

When the stochasticity parameter K is very large, each kick is so strong that
the positions of the consecutive kicks can be taken statistically uncorrelated. By
averaging, one thus gets:

〈p2
n+1〉 ' 〈p2

n〉+ k2〈sin2 xn〉 ' 〈p2
n〉+

k2

2
(163)

It follows that the motion in momentum space is diffusive (〈p2〉 increases linearly
with time) with diffusion constant

D =
k2

2T
. (164)

Numerical experiments [102] show that this expression works well for K ≥ 10.
Note that the kicked rotor is a perfectly deterministic system, without any
randomness. It is the chaotic nature of the classical motion, and thus its extreme
sensitivity to perturbations, which renders the deterministic classical motion
diffusive on average.

8.2 The Quantum Kicked Rotor

The quantum Hamiltonian is obtained from the classical one, eq. (161), through
the canonical replacement of p by −i~∂x. The evolution operator over one period
is the product of the free evolution operator and the instantaneous kick operator:

U = U(T, 0) = exp

(
− i
~
p2T

2

)
exp

(
i

~
k cosx

)
(165)

The long-time dynamics is generated by successive iterations of U. Thus, one
can use the eigenstates of U as a basis set. U being unitary, its eigenvalues are
complex numbers with unit modulus:

U |φi〉 = exp

(
− iEiT

~

)
|φi〉 (166)
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with 0 < Ei ≤ 2π~/T are defined modulo 2π~/T . They are not exactly the
energy levels of the system—the |φi〉 are not stationary states of the time evolu-
tion, but are only periodic—and are called quasi-energy levels, the |φi〉 being the
Floquet eigenstates. This Floquet description is the time-analog of the Bloch
theorem that applies to spatially periodic potentials.

8.3 Dynamical Localization

The quantum dynamics of the kicked rotor can be quite simply studied numer-
ically by repeated application of the one-period evolution operator U to the
initial state, alternating free propagation phases with instantaneous scattering
events in momentum space induced by the kicks. The free evolution between
kicks, exp

(
−ip2T/2~

)
, is diagonal in momentum representation, such that each

momentum eigenstate, characterized by its momentum m~ with integer m, picks
up a different phase shift. The kick operator exp (ik cos θ/~), in contrast, is di-
agonal in position representation and couples different momenta. Being unitary,
it plays the role of a scattering matrix in momentum space and contains the
quantum amplitude for changing an incoming initial momentum in an outgoing
one, under the influence of one kick; k is the parameter controlling the scatter-
ing strength. The dynamics of the kicked rotor can be seen as a sequence of
scattering events interleaved with free propagation phases.

For sufficiently large K = kT , the classical dynamics is diffusive in momen-
tum space, but it should come as no surprise to the reader now familiar with
1d Anderson localization, that the quantum dynamics may be localized at long
times. This localization was baptized “dynamical localization” when it was
observed in numerical simulations [104]. Only later, people realized that it is
nothing but the Anderson scenario of 1d localization, as explained below.

Dynamical localization has been experimentally observed in the dynamics of
a Rydberg electron exposed to an external microwave field [105]. Arguably the
simplest observation uses a cold atomic gas, prepared in a standard magneto-
optical trap with a typical velocity spread of few recoil velocities [100, 106, 101].
After the trap is switched off, a periodic train of laser pulses is applied to the
atoms. Each pulse is composed of two far-detuned counter-propagating laser
beams producing a spatially modulated optical potential. Each laser pulse thus
produces a kick on the atom velocity, whose amplitude is proportional to the
gradient of the optical potential.

If the kicks are infinitely short, we recover exactly the kicked rotor, eq. (161),
where the position of the atom in the standing wave plays the role of the x vari-
able and its velocity is the p variable. The kick strength k is proportional to
the laser intensity divided by the detuning. The spatial dimensions perpen-
dicular to the laser beams do not play any role in the problem, so that we
have an effectively one-dimensional time-dependent problem. The mapping of
the dimensionfull Hamiltonian for cold atoms to the kicked rotor Hamiltonian,
eq. (161), shows that the effective Planck’s constant of the problem [107] is
~eff = 4~k2

LT/M = 8ωrT where kL is the laser wavenumber and M the atomic
mass. Up to a numerical factor, it is the ratio of the atomic recoil frequency
ωr to the pulse frequency, and can be easily varied in the experiment, from the
semiclassical regime ~eff � 1 to the quantum regime ~eff ∼ 1.

After the series of pulses is applied, the momentum distribution is measured
either by a time of flight technique [100] or velocity selective Raman transi-
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Figure 31: Experimental time evolution of the momentum distribution of the atomic
kicked rotor [100], from the initial Gaussian distribution until the exponentially local-
ized distribution at long time; N is the number of kicks (courtesy of M. Raizen).

tions [101]. Figure 31 shows the momentum distribution as a function of time.
While, at short time, the distribution is Gaussian—as expected for a classical
diffusion—, its shape changes around the localization time and evolves toward
an exponential shape exp(−|p|/ξloc) at long time, a clear-cut manifestation of
Anderson/dynamical localization.

Adding decoherence on the system—either by adding spontaneous emis-
sion [106] or by weakly breaking the temporal periodicity [108]—induces some
residual diffusion at long time, in accordance with the discussion in Sec. 6.3
and 7.4. This is another proof that dynamical localization is based on delicate
destructive interference.

8.4 Link between dynamical and Anderson localizations

So far, we have only made plausible that dynamical localization with the quan-
tum kicked rotor is similar to Anderson localization in a spatially disordered
medium. We now demonstrate the connection between the two phenomena,
following [109]. Consider the evolution operator, eq. (165), and the associated
eigenstate |φ〉 with quasi-energy E. The part of the evolution operator associated
with the kick can be written as:

exp

(
i

~
k cosx

)
=

1 + iW (x)

1− iW (x)
(167)

where W (x) is a periodic Hermitean operator which can be Fourier-expanded:

W (x) =

∞∑
r=−∞

Wr exp (irx). (168)

Similarly, the kinetic part can be written as:

exp

[
− i
~

(
p2

2
− E

)
T

]
=

1 + iV

1− iV (169)
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The operator V is diagonal is the eigenbasis of p, labeled by the integer m (see
above). If one performs the following expansion in this basis set,

1

1− iW (x)
|φ〉 =

∑
m

χm |m〉, (170)

it is straightforward to show that the eigenvalue-equation (166) can be rewritten
as

εmχm +
∑
r 6=0

Wrχm−r = −W0χm (171)

where
εm = tan

[(
E − 1

2m
2~2
)
T/2~

]
. (172)

Equation (171) is the time-independent Schrödinger equation for a one-
dimensional Anderson model, cf. (68), with site index m, on-site energy εm,
coupling Wr to the nearest sites and total energy W0. Compared to (68), there
are two new ingredients: firstly, there are additional hopping amplitudes to
other neighbors. But since they decrease sufficiently fast at large distance, they
do not play a major role. Secondly, the εm values, determined deterministically
by (172), are not really random variables, but only pseudo-random13 with a
Lorentzian distribution.14 Still, localization is expected and indeed observed.
The computation of the localization length follows the general lines explained
in section 5, and is in good agreement with experimental observations.

It should be emphasized that space and time play different roles in the
Anderson model and in dynamical localization. What plays the role of the
sites of the Anderson model are the momentum states. This is why dynamical
localization is not observed in configuration space, but in momentum space.

8.5 The quasi-periodically kicked rotor

How can the kicked rotor be used to study Anderson localization in more than
one dimension? The first idea is to use a higher-dimensional rotor with a clas-
sically chaotic dynamics and to kick it periodically. It turns out that this is not
easily realized experimentally, as it requires to build a specially crafted spatial
dependence[110]. Yet, remember that time and space have switched roles, and
so a simpler idea is to use additional temporal dimensions rather than spatial
dimensions. Instead of kicking the system periodically with kicks of constant
strength, one may use a temporally quasi-periodic excitation. Various schemes
have been used [111], but the one allowing to map on a multi-dimensional An-
derson model uses a quasi-periodic modulation of the kick strength, the kicks
being applied at fixed time interval [112].

13As is well known, “random-number generators” implemented in computers also generate
deterministic, merely pseudo-random sequences; most of them use formulae analogous to
(172).

14The non-random character appears for example, when the product ~T/2 is chosen as an
integer multiple of 2π. Then all εm are equal, the motion is ballistic and localization is absent.
Similarly, when ~T is commensurate with π (the so-called quantum resonances), the sequence
εm becomes periodic, and Anderson localization does not take place, giving way to Bloch-band
transport.
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We will be interested in a 3d Anderson model, obtained by adding two quasi-
periods to the system:15

Hqp =
p2

2
+K(t) cosx

∑
n

δ(t− n) , (173)

with
K(t) = K [1 + ε cos (ω2t+ ϕ2) cos (ω3t+ ϕ3)] . (174)

Now where is the three dimensional aspect in the latter Hamiltonian? The
answer lies in a formal analogy between this quasi-periodic kicked rotor and a
3d kicked rotor with the special initial condition of a “plane source”, as follows.

Take the Hamiltonian of a 3d, periodically kicked rotor:

H =
p2

1

2
+ ω2p2 + ω3p3 +K cosx1 [1 + ε cosx2 cosx3]

∑
n

δ(t− n), (175)

and consider the evolution of a wavefunction Ψ with the initial condition

Ψ(x1, x2, x3, t = 0) ≡ ψ(x1, t = 0)δ(x2 − ϕ2)δ(x3 − ϕ3). (176)

This initial state, perfectly localized in x2 and x3 and therefore entirely delo-
calized in the conjugate momenta p2 and p3, is a “plane source” in momentum
space [98]. A simple calculation shows that the stroboscopic evolution of Ψ un-
der (175) coincides exactly with the evolution of the initial state ψ(x = x1, t = 0)
under the Hamiltonian (173) of the quasi-periodically kicked rotor (for details,
see [107]). An experiment with the quasi-periodic kicked rotor can thus be
seen as a localization experiment in a 3d disordered system, where localiza-
tion is actually observed in the direction perpendicular to the plane source. In
other words, the situation is comparable to a transmission experiment where the
sample is illuminated by a plane wave and the exponential localization is only
measured along the wave vector direction. Therefore, the behavior of the quasi-
periodic kicked rotor (173) matches all dynamic properties of the quantum 3d
kicked rotor.

The classical dynamics has been shown to be a chaotic diffusion, provided
the parameter ε is sufficiently large to ensure efficient coupling between the 3
degrees of freedom [113]. As for the standard 3d kicked rotor (175), its quantum
dynamics can be studied using the Floquet states via mapping to a 3d Anderson-
like model:

εmΦm +
∑
r 6=0

WrΦm−r = −W0Φm , (177)

where m ≡ (m1,m2,m3) labels sites in a 3d cubic lattice, the on-site energy εm
is

εm = tan

{
1

2

[
ω −

(
~
m1

2

2
+ ω2m2 + ω3m3

)]}
, (178)

and the hopping amplitudes Wr are the Fourier expansion coefficients of

W (x1, x2, x3) = tan [K cosx1(1 + ε cosx2 cosx3)/ 2~] . (179)

15In this section, we take the kicking period T as unit of time
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Figure 32: Experimentally measured temporal dynamics of the quasi-periodically
kicked rotor, for increasing values of the kick strength. The average kinetic energy
〈p2(t)〉 tends to a constant in the localized regime (lower curve, K = 4, ε = 0.1),
increases linearly with time in the diffusive regime (upper curve, K = 9, ε = 0.8). At
the critical point K = Kc ≈ 6.4 (middle curve), anomalous diffusion 〈p2(t)〉 ∼ t2/3

(dashed curve) is clearly observed.

A necessary condition for localization is obviously that εm not be periodic.
This is achieved if (~, ω2, ω3, π) are incommensurate. When these conditions
are verified, localization effects as predicted for the 3d Anderson model are ex-
pected, namely either a diffusive or a localized regime. Localized states would
be observed if the disorder strength is large compared to the hopping. In the
case of the model (177), the amplitude of the disorder is fixed, but the hop-
ping amplitudes can be controlled by changing the stochasticity parameter K
(and/or the modulation amplitude ε): Wr is easily seen to increase with K. In
other words, the larger K, the smaller the disorder. One thus expects to ob-
serve diffusion for large stochasticity K and/or modulation amplitude ε (small
disorder) and localization for small K and/or ε (large disorder). It should be
emphasized that stricto sensu there is no mobility edge in our system that would
separate localized from delocalized eigenstates. Depending on the parameters
K, ~, ε, ω2, ω3, either all Floquet states are localized or all are delocalized. The
boundary of the metal-insulator transition is in the (K, ~, ε, ω2, ω3)-parameter
space. As seen below, K and ε are the primarily important parameters.

In the experiment performed at the University of Lille [101], kicks are applied
to atoms with an initially narrow momentum distribution, and the final mo-
mentum distribution is measured using velocity-selective Raman transitions.16

Figure 32 shows the experimental data. For large disorder, one clearly sees the
initial diffusive phase and the freezing of the quantum dynamics in the local-
ized regime (lower curve). In the diffusive regime (upper curve), 〈p2(t)〉 is seen
to increase linearly with time. The intermediate curve displays an anomalous

16Measuring the average 〈p2(t)〉 is tedious and very sensitive to noise in the wings of the
momentum distribution. It is much easier to measure the atomic population Π0(t) at zero
momentum. Because of atom number conservation, 〈p2(t)〉 is roughly proportional to 1/Π2

0(t).
The proportionality factor depends on the shape of the distribution, but does not show large
changes. As we are interested in scaling properties, 1/Π2

0(t) or 〈p2(t)〉 are essentially equiva-
lent.
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diffusion 〈p2(t)〉 ∼ t2/3. The anomalous exponent 2/3 is exactly the prediction
of the self-consistent theory of localization, section 7.4.3, which also fully agrees
with the scaling theory of localization. Time here plays the role of the system
size L in the scaling theory: going to longer times means following the renor-
malization flow in fig. 7. Only exactly at the unstable critical point will the
anomalous diffusion subsist for arbitrarily long times. At slightly larger (resp.
smaller) K, the motion will eventually turn diffusive (resp. localized) at long
time. Experimental constraints prevent the observation beyond 150-200 kicks.
Numerical simulations may extend much beyond: it has been checked that the
anomalous diffusion with exponent 2/3 is followed for at least 108 kicks [107].

Since in numerical or experimental practice one always works in finite-size
systems, we should emphasize that there is an important difference between a
true metal-insulator transition and a cross-over between two limiting behaviors.
For example, consider the simplest 1d situation where the dynamics eventually
localizes for sure, with a localization time depending on the kick strength K.
Over a finite experimental time, one may observe an apparently diffusive behav-
ior if the localization time is longer than the duration of the experiment.17 An
intermediate situation with the localization time comparable to the duration of
the experiment could produce data looking like anomalous diffusion. However,
this could be only a transient behavior and a longer measurement will eventually
show localization. In contrast, the t2/3 behavior at the critical point of the An-
derson transition is not a transient behavior, it extends to infinity, highlighting
the scale-free behavior with fluctuations of all sizes present right at the critical
point.

The unavoidable experimental limitation by finite size can also be turned
into a powerful tool of analysis. It is known as finite-size scaling [38] and has
its roots in the scaling properties observed in the vicinity of the transition. The
idea is that all results, obtained for various values of parameters and time, are
described by a universal scaling law depending on a single parameter, namely,
the distance to the critical manifold. Close to the transition, there is only one
characteristic length (which diverges at the critical point) and all details below
this scale are irrelevant. Such an approach has been extremely successful to
extract critical parameters from numerical simulations of the Anderson model
for various system sizes. The approach has been transposed to the kicked rotor—
see [107, 114] for details—and makes it possible to extract the localization length
(in momentum space) from numerical or experimental data acquired over a
restricted time interval.

The results are shown in Fig. 33 for both numerical simulations and experi-
mental observations. One clearly sees the divergence of the characteristic length
(the localization length on the insulator side) in the vicinity of the transition.
The divergence is smoothed by experimental imperfections and the finite dura-
tion of numerical and real experiments. The smoothing is much more important
in the latter case than in the former one, because the duration of the real ex-
periment (110 kicks maximum) is about 4 orders of magnitude shorter than in

17This also occurs for 1d Anderson localization in a speckle potential [4], as already pointed
out in Sec. 5.2.4: Because the localization length and time vary rapidly with energy, one
observes localization at low energy and apparently diffusive behavior at high energy. In
between, an apparent mobility edge appears [20], which should not be confounded with the
true Anderson metal-insulator transition taking place in the thermodynamic limit, although
the experimental signatures may be similar.
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Figure 33: Characteristic length (for localization in momentum space) extracted from
numerical (left) and real (right) experiments on the quasi-periodically kicked rotor,
in the vicinity of the metal-insulator Anderson transition [101]. Finite-size scaling
is used. The characteristic length is proportional to the localization length on the
insulating side, and to the inverse of the diffusion constant on the metallic side. It
has an algebraic divergence 1/|K − Kc|ν at the transition, smoothed by finite size
and decoherence, which are more important in the real experiment (limited to 110
kicks) than in the numerical calculations (up to one million kicks). In both cases, it is
possible to extract a rather precise estimate of the critical exponent ν ≈ 1.5.

numerical experiments. It is nevertheless possible to extract the critical expo-
nent of the transition. For the numerical experiments, one finds ν = 1.58± 0.01
in perfect agreement with the best determination on the Anderson model. More-
over, it has been checked that this exponent is universal, i.e. independent of the
microscopic details such as the choice of the parameters ~, ω2, ω3 [27]. This is
an additional confirmation that the transition observed is actually the metal-
insulator Anderson transition.

The critical exponent can also be determined—albeit with reduced accuracy—
from the experimental data [101]. For the data of Fig. 33, one obtains:

νexp = 1.4± 0.3 (180)

These values are in excellent agreement with the numerical results. The key
point is that the exponent significantly differs from unity, which is the value
deduced from solid state measurements, see Fig. 15, and the prediction of the
self-consistent approach.

Since the atom-atom contact interaction in a cold dilute gas is much smaller
than the electron-electron Coulomb interaction in a solid sample, and since
atoms are less easily lost than photons, cold atoms appear particularly suitable
for precise measurements of the Anderson transition. Moreover, the possibility
to picture wave functions directly opens the way to studies of fluctuations in the
vicinity of the critical point [113], and may even permit to observe multifractal
behavior [47] with matter waves. The flexibility of the kicked rotor could also
be used to study the Anderson transition in lower dimensions (by reducing the
number of quasi-periods) or, why not, even higher dimensions (by increasing it
beyond 3). In any case, it is an attractive alternative to experiments on spatially
disordered systems.
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